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PDE 1, WS 2018-2019 Written exam

Each step must be carefully justified. If you use some lemma or theorem do not forget to check

that all assumptions are satisfied.

Name:
Question 1 2 3 Score
Maximum points 0 100 100 200
Points
1. Introduce the notion of Gelfand triple and give the proper meaning to (... ,...)y for properly

chosen space V.

Solution:

See lecture.
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[100] 2. 30% Define the notion of a set 2, which is C%<.
35% Consider the domain € given as
Q= {(z,y) €R? |z| +|y| < 1}.
Show from the definition that €2 is Lipschitz.
35% Show from the definition that €2 is not C!.

Solution:
Only a sketch:
Definition: We say that Q € €%, if it is open and there exist positive numbers o, 3,
M orthogonal transformations T, and M C%® functions a, such that if we define
Vih = {(2),2,) €ERY |2l | <afori=1,...d -1, a.(2)) < 2y, < ar(2)) + B}
Vo= {(al,z,,) €RY a2l | <afori=1,...d—1, a.(z}) — B <, < ar(z})}
Ay i={(2},z,) ERY |2 | <afori=1,...d—1, a,(2]) =z, }

Then
T,(VH) cQ, T, (V) c R\ Q, 99 = e, T,(A,).

T

Task 2: We set M = 4 and define a,.(z}) := |z}| for all » = 1,...,4. We also set a = 3/4
and f := 1/4 and define the set V,. (it is the same set for each ). Finally, we find four
proper orthogonal transformations as

T (z1,22) = (21,29 — 1),
To(x1,22) = (21,1 — z2),
T3(x1,22) := (22 — 1,21),
Ty(x1,22) := (1 — xa, 7).

Finally, it is easy to check that such a setting gives the desired property. (Note that
T covers neighborhood of (0,—1), T5 represents (0, 1), T3 stands for (—1,0) and T} for
(1,0).

Task 3 Assume for a contradiction that 2 is C!. Let us consider a point (0,—1) € 9.
Then we can find an orthogonal transformation T, a C! function a such that for all
1] < @

T(x1,a(x1)) C 00

in addition there is Z, |Z| < « such that T(Z,a(Z)) = (0,—1) Since any orthogonal
transformation in 2D can be written as (for some ¢, ¢y, c2)

Y1 :=x1cost + xosint + ¢, Yo := —x18int + xgcost + co
We obtain from the constrain that for all |z1]| < «

|x1 cost + a(xy)sint + ¢1| + | — zysint + a(xy) cost + co| = 1. (1)
In addition we know that here exists & such that

f1(Z) := Zcost + a(Z)sint +¢; =0, f2(&) := —Tsint + a(Z) cost + co = —1.
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Consequently, it follows from (1) that on some neighborhood of Z, we have
—1< —Zsint+ a(Z) cost + co < 0.
Thus, fo has a minimum at Z, so
[5(%) = —sint + /(&) cost = 0. (2)
Let us also assume for a moment that
f1(Z) := cost +a'(z)sint = 0.

However, combining this with (2) we see that it cannot happen (multiply f} by —sint,
f1 by cost and sum the resulting identities). Hence, we have f{(%) # 0, and since f; € C!
and we have f1(Z) = 0 then the function |fi(x1)| cannot have derivative at Z. Since (1)
is equivalent to

|z1cost + a(zy)sint + c1| = 1+ fa(xq) (3)

we see that the right hand side has derivative at & while the left hand side does not.
Which is a contradiction.
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3. Let Q C R be a Lipschitz set and n € N. Assume that f; € L?(Q2) for i = 1,...,n. Consider

the problem: Find n functions u; : @ — R (here i = 1,...,n) solving

n
—Aul—FE aj;ju; = f; in §, 1=1,...,n,
i=1
u; =0 on 09, i=1,...,n,

where a;; € R are given.

20% Find a proper definition of a weak solution. Check that for given data such a definition
is meaningful.

30% Use the Lax-Milgram theorem and show that if the matrix A = {a;;}';_, is positively
semidefinite, then there exists a unique weak solution. (Hint, find a proper bilinear form
and a proper function space (a subspace of W2 x ... x W12) for which you can use

the Lax-Milgram theorem.)

30% In case that A is not positively definite, find the sharp relation between the spectrum
of A and the spectrum of the operator —Aw that guarantees the existence of a weak
solution for every f; € L?(Q), with i = 1,...,n. (Hint, consider a proper basis {w; }32,
of W,* and consider a solution of the form u; = Zj’;l bijw;.)

20% Consider Q := (0,7)%, n = 2 and f; = f» = sinx; sinxy. Find the sharp assumption on
the matrix A for which you can find a solution. Is it unique? (Hint: I hope you remember
the homework about eigen-functions and eigen-vectors for the Laplace operator on the
square.)

Solution:

Weak formulation: We deal with homogeneous Dirichlet problem. Hence, we say that
u; with 4 = 1,...,n is a weak solution if u; € Wol’Q(Q) for all i = 1,...,n and for all
@ € Wy?() and all i = 1,...,7n there holds

/Q o Qgso [ 1w (4

Thanks to the Holder inequality all integrals are well defined. Equivalently, we can set

V=W (Q) x - x W2 (Q)

n—times
and look for w = (u1,...,u,) € V such that for all ¢ € V' there holds
/Vu:Vga+Au~<p:/f-go. (5)
Q Q

Here, we set f := (f1,..., fn), the matrix {A};; := a;;, the symbol “”denotes the scalar
product in R” and the symbol “:”denotes the scalar product in R” x R,
Existence of solution for positively semidefinite A: For our purposes, we define
the bilinear B form on V as

d n

- 8uz 61)1-
B(u,v) ::/QVu:Vv—kAu-v:/szaxj oz, + Z aijujv;

i=1 j=1 i,j=1
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and F' € V* as

n
(F,v)v ::/f-vz/Zfivi, for allv e V.
Q Qi

Clearly, the problem then reduces to: find u € V such that for all v € V' there holds
B(u,v) = (F,v)y. (6)

The existence and uniqueness will be proven by the Lax-Milgram theorem and the fact
that A is assumed to be positively semidefinite. Indeed, V' is a Hilbert space. The form
B is evidently also bilinear and V-bounded, which follows from the Hélder inequality.
Thus, it just remains to prove coercivity. However, using the fact that A is positively
semidefinite, we get (we use that u has zero trace)

n 9 n 9 Poincaré n 9 2
Blu,u) = 3 [ Vus 2 +/ Au-u> SVl E 0wl = el
i=1 Q i=1

1=1

Hence, B satisfies all assumptions of the Lax—Milgram theorem. Thus, existence and
uniqueness is proven.

Characterization via spectrum: First, we know that there exists a basis {w;}32,

of WO1 2 which is orthogonal in WO1 2 and orthonormal in L2, which consists of eigen
functions and eigen vectors of Laplace operator, i.e.,

/ wwy = ik,
Q

/ Vw; - Vo = /\Z-/ wip,  for all p € W, (Q).
Q Q

Note, that we also have \; > 0 for all 7. Since, it is a basis, every u; and f; can be written
as

0o n
wi = bigwj, i =) Fjw; with Fyj = / Fowg "
p = Q

Due to the property of basis, we can equivalently rewrite (4) as

/Vui-Vwk—i—/Zaijujwk:/fiwk foralli=1,...,nand k € N.
Q Q53 ‘ Q

Using, the definition (7) and the orthogonality and orthonormality of the basis, it reduces
to: Find b;; € R such that

birAk + D aijbj = Fy  foralli=1,...,nand k€ N. (8)

j=1
Hence, if we denote by by, Fr € R™ as

by = (big, ..., buk), Fp:=Fig -, Fur)
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Then the relation (8) can be reformulated as: for every k € N find by, € R™ such that
()\kﬂ + A)bk = Fy, (9)

where I is the identity matrix in R"*". Next, (9) is just linear algebraic equation. The-
refore, if we require that there exists unique solution to (9) for arbitrary Fj, then ne-
cessarily Al + A) must be a regular matrix, whin means nothing else that

Ak ¢ spt (—A) for all k € N. (10)

Solution for special choice of f; and fy: Here, we recall the homework, where you
proved that the eigen-functions and eigen-values for the Laplace operator with zero trace
on the square are of the form (we do not normalize them to have L? norm equal to 1)

wyy, = sin(lzy) sin(kxy), Mg = 12 + k2, I,k €N.
Hence, it follows from (10) that if for all I,k € N
—12 — k? ¢ spt (A)

then we have a unique solution.

Now, we can follow the preceding step and look for u of the form

o0
wi =Y bukwi, 1 =wa, f» = wi1. (11)
=1

Repeating step by step the previous procedure, we end up with the system of equations

1 ifk=1&1=1,

biki Akt + a11b1r + ar2bop =
1kIAKL 1191kl 1202kl {O otherwise

(12)
1 ifk=1&1=1,

baki Akt + a21b1k1 + az2bop =
2kiAkL T A2101k1 7 42202k {0 otherwise

Hence, if we consider [ > 1 or k > 1 then we can simply set bj; = 0 to fulfill (12).
However, if spectrum of —A contains (I + k%) we can chose b, as a corresponding
eigen-vector to A, so we have non-uniqueness.

Finally, if the spectrum of A does not contain —2, the system (12) always have a (non-
unique) solution. On the other, if the spectrum of —A contains 2 then we can first rewrite
(12) for k =1 =1. Then it reduces (denoting (B = by11,b211)) to find B such that

21+ A)B = (1,1).

Since —2 is in spectrum of A the above equation has a (nonunique) solution if and only
if

0=w +wy=(1,1) - (w1, ws) for any solution w to (21 4+ AT)w = 0.
Or in other words, the vector (1,1) must be orthogonal to eigen-vectors of matrix AT
corresponding to eigen-value —2.




