Name and surname:

Problem	1	2	3	4	Total points
Points	7	7	10	6	30
Points earned					

[7] 1. Operator and its properties

Let the operator $L: L^2((0,1)) \to L^2((0,1))$ be defined through

$$(Lu)(x) := \int_0^x u(s) \,\mathrm{d}s$$

- 1. Show that for every $u \in L^2((0,1))$, the function Lu is Hölder continuous; in fact you should show that $u \in C^{0,\frac{1}{2}}((0,1))$. Is then $L \in \mathcal{L}(L^2((0,1)))$?
- 2. Show that $L: L^2((0,1)) \to L^2((0,1))$ is compact.
- 3. Find the adjoint operator L^* to L.
- 4. Does the equation u-Lu = g have a unique solution for a given $g \in L^2((0,1))$? Explain in detail. If g is differentiable, what ODE is satisfied by such a solution?

[7] 2. Spectrum

Consider $L: \ell^{\infty} \to \ell^{\infty}$ defined through

$$L: (x_1, x_2, x_3, \dots) \mapsto (x_2, x_3, \dots).$$
(1)

- 1. Show that $L \in \mathcal{L}(\ell^{\infty})$ and its norm equals to 1. Is L onto? Is L one-to-one?
- 2. Define the definition of spectrum, point spectrum, essential spectrum, continuous spectrum and residual spectrum (for any $L \in \mathcal{L}(X)$, X being a Banach space). Give definition of spectral radius, its characterization and the upper bound.
- 3. Determine all these spectra for the operator L from (1).

[10] 3. Weakly converging sequence

Let X be a Banach space.

- 1. Define X^* and explain why X^* is a Banach space.
- 2. Give the definitions of $\{x_n\}$ converges to x (i) strongly, (ii) in the norm, (iii) weakly, (iv) *-weakly.
- 3. Explain correctness of the concept of weak convergence.
- 4. Show that if $\{\Phi_n\}$ converges to Φ in X^* , then $\{\Phi_n\}$ converges to Φ^* -weakly.
- 5. Show that weakly converging sequence is bounded.
- 6. Give an explicit description of $\{f_n\}$ converges to f weakly in $L^p(\Omega)$.
- 7. Is $\{\sin(nx)\}\$ converging weakly in $L^2((0,1))$? If so, what is the (weak) limit?
- 8. Is $\{\sqrt{n}\sin(nx)\}\$ converging weakly in $L^2((0,1))$?

[6] 4. Weak formulation

Consider the problem: given $f \in L^2(\Omega)$ and two functions $a, c \in L^{\infty}(\Omega)$, find $u : \Omega \to \mathbb{R}$ satisfying

$$-\operatorname{div}(a(x)\nabla u) + c(x)u = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega.$$
 (2)

- 1. Give the definition of weak solution to (2).
- 2. Find sufficient (but general) conditions on a and c so that you can guarantee the existence and uniqueness of weak solution. Provide the explanation.
- 3. What conditions on u guarantee that weak solution satisfies the first equation in (2) almost everywhere (pointwise)? Give explanation.