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Motivation and the main goal...
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Outline

0 Underlying stochastic model

Nonlinear conditional expectile regression (risk modeling)

O Statistical changepoint test

Real-time changepoint detection procedure (online regime)

0 Theoretical properties

Asymptotic guarantees of the estimation and detection (validity)

0 Empirical performance

Real data illustrations and simulation results (utilization)
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Theoretical pivots

(1 Relatively flexible but (still) fully parametric model

— nonlinear regression frsmework, irregularities with respect to parameter changes

[d Robust and complex (distributional) estimation

— conditional expectile estimation with additional complexity of the model

1 Theoretical justification and statistical consistency

— stochastically valid decisions based on a consistent statistical test

(1 Online regime for (some) structural break detection

— online detection of various model instabilities in terms of parameter changes

1 Data-driven algorithm (no nuisance parameters)

— simple computational approach, free of the specific analytical model form
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Starting with a simple location model ...

[ a sparse location model proposed by Harchaoui and Lévy-Leduc (2010)
Yi=pi+e, fori=1....N;

(Yao and Au (1989); Mammen and Van De Geer (1997); Massart (2004), Boysen (2009);
Frick et al. (2014); Fryzlewicz (2014); Lin et al. (2017); Ciuperca and M. (2020), and others;)
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Starting with a simple location model ...

[ a sparse location model proposed by Harchaoui and Lévy-Leduc (2010)
Yi=pi+e, fori=1....N;
(Yao and Au (1989); Mammen and Van De Geer (1997); Massart (2004), Boysen (2009);

Frick et al. (2014); Fryzlewicz (2014); Lin et al. (2017); Ciuperca and M. (2020), and others;)

[ a general model extension into a nonlinear regression model
Yi=f(X,Bi)+te, BieR, i=1.._N;

for f : R9*P — R with an analytic formula that depends on some
unknown parameter B € R” (Ciuperca, M., and Pesta, 2024)
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Covid-19 cases in Prague, Czech Republic

New positive cases
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1 Covid-19 positive cases in Prague, Czech Republic
(1 Period from the first positive case (March 1, 2020) until end of May 2021
(1 Covid-19 restrictions and their role in the overall (global) population
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Underlying stochastic (changepoint) model

[ historical data {(Y;, X;); i =1,..., m}, for g-dimensional X; € RY;

[ underlying nonlinear regression model of the form
\/;: (X;,,B)+E;, i:1,...,m

— for a given nonlinear parametric function f(-,3) : R — R and
some unknown vector of parameters 3 € R” (to be estimated);
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Underlying stochastic (changepoint) model

[ historical data {(Y;, X;); i =1,..., m}, for g-dimensional X; € RY;
[ underlying nonlinear regression model of the form
Y,-:f(X,-,,8)+5,-, i:1,...,m

— for a given nonlinear parametric function f(-,3) : R — R and
some unknown vector of parameters 3 € R” (to be estimated);

[ after historical data new online data {(Y;, Xj); i=m-+1,....m+ Tn}
are sequentially observed—in a one by one manner (for T,, € N);

(1 analogous model as for the historical data is supposed to hold, however

Y,-:f(X,-,,B,-)—i—é,-, I:m+1,,m+Tm

< again for unknown vectors of parameters 3; € R” but some of them
hypotetically different than 8 € R”;
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Formal statistical test of no changepoint

[ In the first step the historical data {(Y;, X;); i=1,..., m} are used

o~

to construct an empirical estimate 3, for the unknown vector 8 € RP;
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Formal statistical test of no changepoint

[ In the first step the historical data {(Y;, X;); i=1,..., m} are used

o~

to construct an empirical estimate 3, for the unknown vector 8 € RP;

1 In the second step the online data {(Y;, Xj); i=m+1,....,m+ Tn}

are utilized to run a real-time changepoint test of the null hypothesis
Ho: Bi=p° i=m+1.... m+T,
against the alternative hypothesis of the form
Hpy: 3K € {1,..., T, — 1}
such that

Bi=pB" i=m+1,....,m+k"
Bi=p i=m+k+1,....m+ Tn

where 8° £ g*;
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Formal statistical test of no changepoint

[ In the first step the historical data {(Y;, X;); i=1,..., m} are used

o~

to construct an empirical estimate 3, for the unknown vector 8 € RP;

1 In the second step the online data {(Y;, Xj); i=m+1,....,m+ Tn}

are utilized to run a real-time changepoint test of the null hypothesis
Ho: Bi=p° i=m+1,....m+ T,
against the alternative hypothesis of the form
Hpy: 3K € {1,..., T, — 1}
such that

Bi=p i=m+1,....m+ kS
Bi=p" i=m+k+1,.... m+Tn

where 8° £ g*;
(1 Real-time (online) testing procedures performed as online data arrive;
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Step 1: Estimation of the parameter vector (3

1 Conditional expectile estimation of the unknown parameter vector
B € RP with the true value being denoted as 8o € R”

1 Conditional expectiles provide complex insight into the data-generating
mechanism, they are always defined (unlike conditional quantiles) and
they are known as coherent and elicitable risk measures (Phillipps, 2022)
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Step 1: Estimation of the parameter vector (3

1 Conditional expectile estimation of the unknown parameter vector
B € RP with the true value being denoted as 8o € R”

1 Conditional expectiles provide complex insight into the data-generating
mechanism, they are always defined (unlike conditional quantiles) and
they are known as coherent and elicitable risk measures (Phillipps, 2022)

[ The estimate for 3 € R” obtained in terms of the minimization problem
Am = Argmin Y = (X )
B = Argmi Zp (vi- . 9)

— for the expectile loss function p-(x) = |7— — <oy |x for x € R and
some expectile level 7 € (0,1) (NLS for 7 =1/2)
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Asymptotic properties

Technical assumptions imposed on the function f(-, 3), continuous distribution of the

error terms (independent), and some regularity conditions (e.g., moment properties)

[0 Assymptotic behaviour of the proposed expectile estimator of 8° € R”:

B =B+ 07 LS VX B)e(=) + ox(m ™)

i=1

for the sample size of the historical data tending to infinity, thus m — oo;
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Asymptotic properties

Technical assumptions imposed on the function f(-, 3), continuous distribution of the

error terms (independent), and some regularity conditions (e.g., moment properties)

[0 Assymptotic behaviour of the proposed expectile estimator of 8° € R”:

B = B0+ 7S VA, 881 (1) + 0n(m )

i=1

for the sample size of the historical data tending to infinity, thus m — oo;

1 Notation:
o 2=E[h(e)| V(8°) and V(8°) = limm—sc0 Vim(B°)

o Vin(B°) = L 327 VF(Xi, Brm)V T F(Xi, Bm)

o gr(x) = pp(x) and hr(x) = pl/(x)
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Some computational issues

(d Optimization problem and the solution

[ the solution B, can be obtained in terms of a convex minimization
problem or a nonconvex optimization problem instead

1 different optimization toolboxes and algorithmic approaches must be used
(all depending on the underlying problem) to obtain the final estimate

1 Nuisance parameter estimation

1 some quantities (e.g., E[h.,—(s)] = E[pfr’(s)], or Var[gr(g)] = Var[p,(e)])
must be estimated to perform the test

1 alternative approaches based on various resampling techniques and
bootstrap can be used instead =—> future ongoing work ...

Changepoints in a nonlinear expectile model 11/ 91
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Step 2: Test of the null hypothesis H; against H,

[ Null hypothesis: the online data are generated under the same
probabilistic model as the model generating the historical data (,BO € RP);

[ Alternative: the online data are generated from a different model than
the historical data however, the change is only determined within the
paramter vector B* # %
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Step 2: Test of the null hypothesis H; against H,

[ Null hypothesis: the online data are generated under the same
probabilistic model as the model generating the historical data (,BO € RP);

[ Alternative: the online data are generated from a different model than
the historical data however, the change is only determined within the
paramter vector B* # %

1 Test statistic
1S(m, k)|l
1<k<T, 2z(m k)
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Step 2: Test of the null hypothesis H; against H,

[ Null hypothesis: the online data are generated under the same
probabilistic model as the model generating the historical data (,BO € RP);

[ Alternative: the online data are generated from a different model than
the historical data however, the change is only determined within the
paramter vector B* # %

1 Test statistic
1S(m, k)|l
1<k<T, 2z(m k)

1 Notation: .
o S(m,k) = Jn*(Bm) ST VE(Xi, Bm)er (1)

o In(Bm) = LIECL SN (X, Br) VT F(X;, i)

o z(m, k,v) = m*/2(1+ k/m)(k/(k + m))?, for some v € [0, 1)
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Changepoint test asymptotics

4 Distinguishing for two differrent scenarios:

o Open-end procedure: limp_ o0 Trm/m = oo
o Closed-end procedures: limm_soo Tm/m= T, for T € (0, 00)
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Changepoint test asymptotics

4 Distinguishing for two differrent scenarios:

o Open-end procedure: limp_ o0 Trm/m = oo
o Closed-end procedures: limm_soo Tm/m= T, for T € (0, 00)

1 Distribution of 7 (m) under the null hypothesis:
Under some technical assumptions and the null hypothesis validity
[S(m k)l D, [ W (8l

= Su, Su,
7(m) 1gkgrm z(m, k,y)  m—oe  0<t<L(T) tY

for a p-dimensional Wiener process { W,(t); t € (0,00)} and either
L(T) =1 (open-end) or L(T) = T /(T + 1) (closed-end);
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Changepoint test asymptotics

4 Distinguishing for two differrent scenarios:

o Open-end procedure: limp_ o0 Trm/m = oo
o Closed-end procedures: limm_soo Tm/m= T, for T € (0, 00)

1 Distribution of 7 (m) under the null hypothesis:
Under some technical assumptions and the null hypothesis validity
[S(m k)l D, [ W (8l

= Su, Su,
7(m) 1gkgrm z(m, k,y)  m—oe  0<t<L(T) tY

for a p-dimensional Wiener process { W,(t); t € (0,00)} and either
L(T) =1 (open-end) or L(T) = T /(T + 1) (closed-end);

1 Consistency of the test (behaviour of 7 (m) under the alternative:
Under the alternative hypothesis and m*/?||8° — 8> — oo for m — oo

T(m) 5

m—» 00
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Step 3: Changepoint time estimate

1 Stopping time — the first observation for which the null hypothesis is
rejected (in favor of the alternative hypothesis)

[ The corresponding changepoint estimate can be defined as

2 1S(m, k)|
km =€ <k>1; su — > Ca R
{ 1§k§me z(m, k,v) ™

where ¢, (7) is the corresponding quantile of the limiting distribution of

o V()]
0<t<L(T) tY

and k., = oo otherwise.
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Step 3: Changepoint time estimate

1 Stopping time — the first observation for which the null hypothesis is
rejected (in favor of the alternative hypothesis)

[ The corresponding changepoint estimate can be defined as

. 1S(m, k)|
km =€ <k>1; su — > Ca R
{ 1§k§me z(m, k,v) ™

where ¢, () is the corresponding quantile of the limiting distribution of

o V()]
0<t<L(T) tY

and k., = oo otherwise.

[d Moreover, it holds that (test consistency)

lim Plkm < co|Ho)] =«  and lim Plkn < oo|Hi] =1
m—00 m— oo
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Simulation setup

Motivated by Choi, S.H., Kim, H.K., Lee, Y. (2003). Nonlinear asymmetric least squares
estimators. Journal of the Korean Statistical Society 32(1), 47 — 64.

[0 Gompertz curve f(x, 8) = exp{—pfre "%}, for Bo = (b1, 52)" = (10,5)"
O Estimation of 8 € R? by the iterative grid search algorithm
[ Historical data: m € {20,50,200}; Online data: T, € {10, m/2, mlog m}

(1 Various changepoint scenarios wrt. to 8 and the changepoint location

Changepoints in a nonlinear expectile model
A
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!mplrlca pe!lormance

Under the null hypothesis

Distribution ~ m | B1 | Std.Er. s | StdEr. | S ol S 02 S io 3
B1 = 10.00 B2 = 5.00 T, = 10 Ty =m/2 Ty, = mlog(m)
N(0,1) 20 10.52 (2.832)  5.32 (1.825) 7714 % 7.74 % 7.52 %
7 = 0.5000 50 | 10.32 (2.857) 5.20 (1.382) 4.92 % 6.08 % 5.64 %
200 | 10.24 (2.766)  5.03 (0.808) 5.08 % 5.58 % 6.54 %
N(1,1) 20 10.18 (2.889)  5.61 (2.020) 5.76 % 5.76 % 6.28 %
#=0.0719 50 | 10.27 (2.869) 5.39 (1.638) 4.08 % 3.26 % 4.46 %
200 | 10.30 (2.833)  5.08 (0.977) 4.40 % 4.26 % 4.88 %
L(0,1) 20 | 10.50 (2.842) 5.32 (1.797) 7.84 % 7.84 % 9.86 %
7 =0.5000 50 | 10.37 (2.850) 5.18 (1.87) 4.08 % 512 % 7.38 %
200 | 10.29 (2.769)  5.02 (0.799) 5.06 % 4.90 % 5.58 %

Table 1 Simulation results under the null hypothesis (with the theoretical value of

7 = 0.5 for the symmetric distributions and the empirical estimate # = 0.0719 in terms of
Remark 1 for the asymmetric distribution). The parameter estimates are reported with
the corresponding standard errors (in parentheses) over 5000 Monte Carlo simulations.
Relative proportions of false rejections are given for three different scenarios for T,
reflecting the open-end and closed-end procedures. The nominal level of all the tests is
always set to be o = 0.05.

Changepoints in a nonlinear expectile model
A
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Empirical performance

Under the alternative hypothesis

Dist. m kO, Scenario 1 Scenario 2 Scenario 3
T = 10 T = m/2 Ty, = mlog(m)
N@O,1) 20 K| 279% [orriors  279% [or7|o7s 244 % [0.72] 071
2 | 1280 % [a31jo2y 1280 % [031]027 2040 %  [0.19]0.12]
50 k& 410 %  [0.73 ] 0.76] 410 %  [0.76 | 0.78] 520 % [0.93]0.93]
k2 | 1330 % [033]011] 14.60 % [0.44]046 35.30 %  [0.32]0.25]
[

200 kY 6.52 %  [0.87]0.89] 899 % [0.80]0.82 21.76 %  [0.83 | 0.85]
k2 | 16.70 % 046 | 0.44] 47.60 %  [0.46 | 0.49] 96.40 %  [0.15|0.10]

N(1,1) 20 kﬁ,‘b) 251 % [0.71]0.67] 251 % [0.71]0.67) 242 % [0.62]0.55
Icﬁ;‘:) 11.20 % (037039 11.20% [0.37]039 23.30 %  [0.29 | 0.22]

50 Icﬁ,p 420 % [0.83]0.83 430 %  [0.83]0.83] 5.00 % [0.85]0.89]

D | 1220% [43]046] 13.30 % [0.49]0.33 32.30 %  [0.48 | 0.58]

200 k% | 552% (os2)o84 7.20% [055]055 21.71%  [0.83]0.85]

k2 | 1421 % [042]044 38.00% [048]049 93.80 %  [0.18]0.15]

L(0,1) 20 kS | 264% [orrio7s 264% [or7|o78  2.29%  [0.74]0.78]
2 | 1150 % [036]0.22 11.50 % [0.36] 022 21.20%  [0.24]0.16]

50 kLY 3.95% [0.75]0.78] 410 %  [0.78]0.79] 4.99 %  [0.81]0.86]

2 | 1200 % [043]044 13.20% [048]0.50] 37.70 %  [0.30 | 0.21]

200 k& 6.70 %  [0.75 | 0.67] 6.93% [0.80]0.79) 24.04 %  [0.81]0.83]

ED | 15.60 % [0.40 047 37.90 %  [0.46]0.47 96.40 %  [0.18]0.12]

Table 2 Empirical powers of the proposed real-time changepoint test
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Covid-19 positive cases in Prague

Motivated by Chen, D.G., Chen, X., Chen, J.K. (2020.) Reconstructing and forecasting the
covid-19 epidemic in the united states using a 5-parameter logistic growth model. Global Health
Research and Policy 32(1), 1 - 7.

1 Gompertz model f(x,3) = Kexp{—ﬂle_ﬂzx}, for B = (81,52, K)T € R
[ Historical data: m = 1275; Online data: T,,, = 176

[d The null hypothesis rejected on the second day of the online data
(test statistics 7(m) = 3.4211 with the critical value cp.95(7) = 2.4260 for v = 0.1)
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Empirical performance

Covid-19 positive cases in Prague

Motivated by Chen, D.G., Chen, X., Chen, J.K. (2020.) Reconstructing and forecasting the
covid-19 epidemic in the united states using a 5-parameter logistic growth model. Global Health
Research and Policy 32(1), 1 - 7.

[0 Gompertz model f(x, 8) = K exp{—p1e >}, for B = (b1, 52, K)" € RS
[ Historical data: m = 1275; Online data: T,,, = 176

[ The null hypothesis rejected on the second day of the online data
(test statistics 7(m) = 3.4211 with the critical value cp.95(7) = 2.4260 for v = 0.1)

Estimation method & Data \ B1 B2 K Objective function
Historical data (until 01/12/2020)
Symmetric least squares (r = 0.50) | 36.04 0.0129 187 811 3.00 x 10°
Expectile method (r=0.11) | 37.97 0.0129 188 576 0.78 x 106
Re-estimation after the change detection (04/12/2020)
Symmetric least squares (7 = 0.50) | 35.38 0.0130 180 174 3.27 x 108
Expectile method (r=0.19) | 36.04 0.0129 179 718 1.92 x 106
All available data (until 26/05/2021)
Symmetric least squares (7 = 0.50) | 20.17 0.0096 256 970 10.9 x 108

Expectile method (r=0.26) | 20.18 0.0095 255 032 8.53 x 10°

Changepoints in a nonlinear expectile model
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Covid-19 positive cases in Prague
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IO concl u!e...

Overview

[ Nonlinearity and flexibility of the model
(relatively high model flexibility while preserving straightforward
interpretation in terms of well defined parameters)

1 Complex characterization wrt. conditional expectiles
(additional robustness with respect to asymmetric error distributions, or
some heavy tails — optimal for risk modeling)

[d Online regime for instability detection
(distribution of the null hypothesis does not depend on the functional
form of the underlying model nor the unknown parameters)

1 Straightforward applicability
(relatively mild technical assumptions but some caution is needed when
using different functional models)

Changepoints in a nonlinear expectile model
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Thank you for your attention!

Ciuperca, G., MM, and PeSta M. (2024). Real-time detection of a change in a nonlinear model by the expectile method.
Metrika, 87(2), 105 — 131.D0I:10.1007/500184-023-00904-6
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