Probability distributions convoluted by quasigroups

Alexey Yashunsky

Keldysh Institute of Applied Mathematics, RAS Moscow, Russia

Loops'11, July 25-27

Alexey Yashunsky (KIAM)

Probability convolutions

Loops'11, July 25-27 1 / 15

Probabilities on quasigroups

Let Q be a *finite binary quasigroup* with multiplication $a \cdot b$, and $a \setminus b$, b/a — the corresponding left and right divisions.

Probabilities on quasigroups

Let Q be a *finite binary quasigroup* with multiplication $a \cdot b$, and $a \setminus b$, b/a — the corresponding left and right divisions.

$$Q = \{1, \ldots, q\}$$

 $u = (u_1, u_2, \ldots, u_q), \quad u_i \ge 0$
 $u_1 + u_2 + \ldots + u_q = 1$

1/30+4/15+7/30+2/15+4/15+1/15=1

Probabilities on quasigroups

Let Q be a *finite binary quasigroup* with multiplication $a \cdot b$, and $a \setminus b$, b/a — the corresponding left and right divisions.

$$Q = \{1, \dots, q\}$$
$$u = (u_1, u_2, \dots, u_q), \quad u_i \ge 0$$
$$u_1 + u_2 + \dots + u_q = 1$$

1/30+4/15+7/30+2/15+4/15+1/15=1

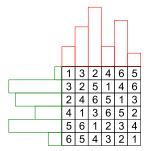
Distribution support: $N(u) = \{i \in Q : u_i > 0\}.$

Alexey Yashunsky (KIAM)

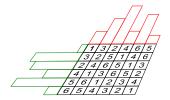
$$(u * v)_i = \sum_{j=1}^q u_j v_{j \setminus i} = \sum_{j=1}^q u_{i/j} v_j$$

$$(u * v)_i = \sum_{j=1}^q u_j v_{j \setminus i} = \sum_{j=1}^q u_{i/j} v_j$$

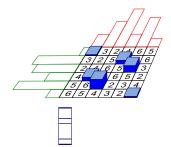
$$(u * v)_i = \sum_{j=1}^q u_j v_{j\setminus i} = \sum_{j=1}^q u_{i/j} v_j$$



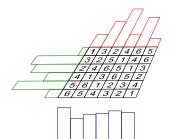
$$(u * v)_i = \sum_{j=1}^q u_j v_{j \setminus i} = \sum_{j=1}^q u_{i/j} v_j$$



$$(u * v)_i = \sum_{j=1}^q u_j v_{j\setminus i} = \sum_{j=1}^q u_{i/j} v_j$$



$$(u * v)_i = \sum_{j=1}^q u_j v_{j\setminus i} = \sum_{j=1}^q u_{i/j} v_j$$



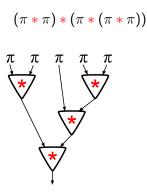
Iterated convolutions

Let π be an initial distribution on Q.

$$(\pi * \pi) * (\pi * (\pi * \pi))$$

Iterated convolutions

Let π be an initial distribution on Q.

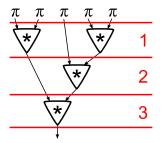


Length L = 4.

Iterated convolutions

Let π be an initial distribution on Q.

$$(\pi * \pi) * (\pi * (\pi * \pi))$$



Length L = 4. Depth D = 3.

$$(\ldots(\pi*\pi)*\pi)\ldots)*$$

π) | a Markov chain (quasigroup stream filters)

•	$(\ldots(\pi*\pi)*\pi)\ldots)*\pi$		
•	<i>Group Q</i> , arbitra convolution	ry	a Markov chain (random walks on finite groups)

```
۲
```

Group Q, arbitrary convolution

 $(\dots (\pi * \pi) * \pi) \dots) * \pi)$ | a Markov chain | (quasigroup stream filters) a Markov chain (random walks on finite groups)

```
N(\pi) = Q:
ergodic Markov
chain is with a
bistochastic matrix
L \to \infty:
convolutions
converge to the
uniform
distribution on Q.
```

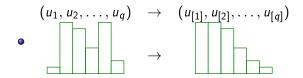
٠	$(\ldots(\pi*\pi)*\pi)\ldots)*\pi)$	a Markov chain (quasigroup stream filters)	$N(\pi) = Q$: ergodic Markov chain is with a bistochastic matrix
۰	<i>Group Q</i> , arbitrary convolution	a Markov chain (random walks on finite groups)	$L \rightarrow \infty$: convolutions converge to the uniform distribution on Q .

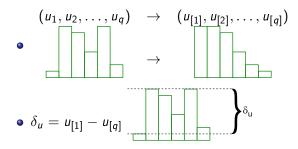
• $N(\pi) = Q$, averages of distributions with L = m, $m \to \infty$: converge to the uniform distribution.

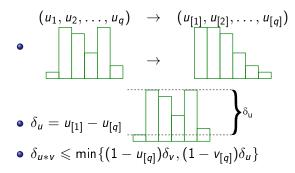
٠	$(\ldots(\pi*\pi)*\pi)\ldots)*\pi)$	a Markov chain (quasigroup stream filters)	$N(\pi) = Q$: ergodic Markov chain is with a bistochastic matrix
•	<i>Group Q</i> , arbitrary convolution	a Markov chain (random walks on finite groups)	$L \rightarrow \infty$: convolutions converge to the uniform distribution on Q .

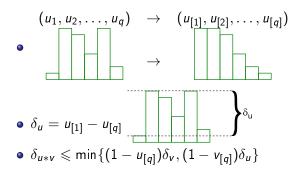
• $N(\pi) = Q$, averages of distributions with L = m, $m \to \infty$: converge to the uniform distribution.

When do quasigroup convolutions converge to the uniform distribution?









Theorem

Let w be an iterated convolution of depth k with initial distribution π . Then:

$$\delta_{\mathsf{w}} \leqslant (1 - \pi_{[q]})^k.$$

Theorem (convergence in depth)

Let w be an iterated convolution of depth n with initial distribution π , $|N(\pi)| > \frac{|Q|}{2}$. Then there exists a $d \in (0, 1]$:

$$\delta_w \leqslant (1-d)^n,$$

Theorem (convergence in depth)

Let w be an iterated convolution of depth n with initial distribution π , $|N(\pi)| > \frac{|Q|}{2}$. Then there exists a $d \in (0, 1]$:

$$\delta_w \leqslant (1-d)^n$$
,

and consequently

$$\max \left| w_i - \frac{1}{|Q|} \right| \leqslant (1-d)^n.$$

Theorem (convergence in depth)

Let w be an iterated convolution of depth n with initial distribution π , $|N(\pi)| > \frac{|Q|}{2}$. Then there exists a $d \in (0, 1]$:

$$\delta_w \leqslant (1-d)^n$$

and consequently

$$\max \left| w_i - \frac{1}{|Q|} \right| \leqslant (1-d)^n.$$

Theorem (convergence in length)

Let w be an iterated convolution of length m with initial distribution π , $|N(\pi)| > \frac{|Q|}{2}$. Then there exists an $\alpha > 0$:

$$\max \left| w_i - \frac{1}{|Q|} \right| \leqslant \frac{1}{m^{\alpha}}.$$

	1	2	3	4	5	6
1	1	3	2	4	6	5
2	3	2	5	1	4	6
3	2	4	6	5	1	3
4	4	1	3	6	5	2
5	5	6	1	2	3	4
6	6	5	4	3	2	1

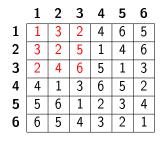
$$N(\pi) = \{1, 2\}$$

Alexey Yashunsky (KIAM)

	1	2	3	4	5	6
1	1	3	2	4	6	5
2	3	2	5	1	4	6
3	2	4	6	5	1	3
4	4	1	3	6	5	2
5	5	6	1	2	3	4
6	6	5	4	3	2	1

$$N(\pi) = \{1, 2\}$$

•
$$N(\pi * \pi) = \{1, 2, 3\}$$



$$N(\pi) = \{1,2\}$$

	1	2	3	4	5	6
1	1	3	2	4	6	5
2	3	2	5	1	4	6
3	2	4	6	5	1	3
4	4	1	3	6	5	2
5	5	6	1	2	3	4
6	6	5	4	3	2	1

$$N(\pi) = \{1, 2\}$$

Let D_n be the set of all distributions with depth n (for some fixed π).

Let D_n be the set of all distributions with depth n (for some fixed π).

$$N_n^D = \bigcup_{u \in D_n} N(u).$$

Let D_n be the set of all distributions with depth n (for some fixed π).

$$N_n^D = \bigcup_{u \in D_n} N(u).$$

Theorem

There exists a subquasigroup $Q' \subseteq Q$ and a number n' such that for all n > n':

$$N_n^D = Q'.$$

Q' is generated by elements of $N(\pi)$.

Let D_n be the set of all distributions with depth n (for some fixed π).

$$N_n^D = \bigcup_{u \in D_n} N(u).$$

Theorem

There exists a subquasigroup $Q' \subseteq Q$ and a number n' such that for all n > n':

$$N_n^D = Q'.$$

Q' is generated by elements of $N(\pi)$.

Without loss of generality: Q' = Q.

Convergence of averages

Define $d^{(n)}$ — the average of distributions with depth *n*:

$$d^{(n)}=\frac{1}{|D_n|}\sum_{u\in D_n}u.$$

Remark: $d^{(n)}$ is itself a probability distribution on Q.

Convergence of averages

Define $d^{(n)}$ — the average of distributions with depth *n*:

$$d^{(n)}=\frac{1}{|D_n|}\sum_{u\in D_n}u.$$

Remark: $d^{(n)}$ is itself a probability distribution on Q.

Theorem

There exist $d \in (0; 1]$ and n' such that for every $n \ge n'$:

$$\delta_{d^{(n)}} \leqslant (1-d)^{n-n'},$$

and consequently

$$\max_{i\in Q}\left|d_i^{(n)}-\frac{1}{|Q|}\right|\leqslant (1-d)^{n-n'}.$$

Support periodicity in length

Let L_m be the set of all distributions with length m (for some fixed π).

Let L_m be the set of all distributions with length m (for some fixed π).

$$N_m^L = \bigcup_{u \in L_m} N(u).$$

Let L_m be the set of all distributions with length m (for some fixed π).

$$N_m^L = \bigcup_{u \in L_m} N(u).$$

Theorem

There exist r and m' such that for every $m \ge m'$ the sets

$$N_m^L, N_{m+1}^L, \ldots, N_{m+r-1}^L$$

are pairwise disjoint, while $N_{m+r}^L = N_m^L$. $N_m^L \cup N_{m+1}^L \cup \ldots \cup N_{m+r-1}^L$ is a subquasigroup $Q' \subseteq Q$, generated by $N(\pi)$.

Let L_m be the set of all distributions with length m (for some fixed π).

$$N_m^L = \bigcup_{u \in L_m} N(u).$$

Theorem

There exist r and m' such that for every $m \ge m'$ the sets

$$N_m^L, N_{m+1}^L, \ldots, N_{m+r-1}^L$$

are pairwise disjoint, while $N_{m+r}^L = N_m^L$. $N_m^L \cup N_{m+1}^L \cup \ldots \cup N_{m+r-1}^L$ is a subquasigroup $Q' \subseteq Q$, generated by $N(\pi)$.

If r > 1 there is *periodicity* in the supports.

Let L_m be the set of all distributions with length m (for some fixed π).

$$N_m^L = \bigcup_{u \in L_m} N(u).$$

Theorem

There exist r and m' such that for every $m \ge m'$ the sets

$$N_m^L, N_{m+1}^L, \ldots, N_{m+r-1}^L$$

are pairwise disjoint, while $N_{m+r}^L = N_m^L$. $N_m^L \cup N_{m+1}^L \cup \ldots \cup N_{m+r-1}^L$ is a subquasigroup $Q' \subseteq Q$, generated by $N(\pi)$.

If r > 1 there is *periodicity* in the supports. Again, without loss of generality: Q' = Q.

	1	2	3	4	5	6	т
1	3	4	6	5	2	1	
2	4	3	5	6	1	2	
3	5	6	1	2	4	3	
4	6	5	2	1	3	4	
5	2	1	3	4	5	6	
6	1	2	4	3	6	5	

 6
 m
 Lm
 N^L_m

 1
 2
 3
 4
 5

	1	2	3	4	5	6	т	L_m N_m^L
1	3	4	6	5	2	1	0	π {1,2}
2	4	3	5	6	1	2		
3	5	6	1	2	4	3		
4	6	5	2	1	3	4		
5	2	1	3	4	5	6		
6	1	2	4	3	6	5		

	1	2	3	4	5	6	т	L _m	N_m^L
1	3	4	6	5	2	1	0	π	$\{1,2\}$
2	4	3	5	6	1	2	1	$\pi * \pi$	{3,4}
3	5	6	1	2	4	3			
4	6	5	2	1	3	4			
5	2	1	3	4	5	6			
6	1	2	4	3	6	5			

	1	2	3	4	5	6
1	3	4	6	5	2	1
2	4	3	5	6	1	2
3	5	6	1	2	4	3
4	6	5	2	1	3	4
5	2	1	3	4	5	6
6	1	2	4	3	6	5

т	L _m	N_m^L
0	π	$\{1, 2\}$
1	$\pi * \pi$	{3,4}
2	$(\pi * \pi) * \pi, \pi * (\pi * \pi)$	{5,6}

	1	2	3	4	5	6
1	3	4	6	5	2	1
2	4	3	5	6	1	2
3	5	6	1	2	4	3
4	6	5	2	1	3	4
5	2	1	3	4	5	6
6	1	2	4	3	6	5

т	L _m	N_m^L
0	π	$\{1, 2\}$
1	$\pi * \pi$	{3,4}
2	$(\pi * \pi) * \pi, \pi * (\pi * \pi)$	{5,6}

	1	2	3	4	5	6	т	L _m	N_m^L
1	3	4	6	5	2	1	0	π	{1,2}
2	4	3	5	6	1	2	1	$\pi * \pi$	{3,4}
3	5	6	1	2	4	3	2	$(\pi * \pi) * \pi, \pi * (\pi * \pi)$	{5,6}
4	6	5	2	1	3	4		$((\pi * \pi) * \pi) * \pi, (\pi * (\pi * \pi)) * \pi,$	
5	2	1	3	4	5	6	3	$\pi \ast ((\pi \ast \pi) \ast \pi), \pi \ast (\pi \ast (\pi \ast \pi)),$	{1,2}
6	1	2	4	3	6	5		$(\pi * \pi) * (\pi * \pi)$	

	1	2	3	4	5	6	т	L _m	N_m^L
1	3	4	6	5	2	1	0	π	{1,2}
2	4	3	5	6	1	2	1	$\pi * \pi$	{3,4}
3	5	6	1	2	4	3	2	$(\pi * \pi) * \pi, \pi * (\pi * \pi)$	{5,6}
4	6	5	2	1	3	4		$((\pi * \pi) * \pi) * \pi, (\pi * (\pi * \pi)) * \pi,$	
5	2	1	3	4	5	6	3	$\pi*((\pi*\pi)*\pi),\pi*(\pi*(\pi*\pi)),$	{1,2}
6	1	2	4	3	6	5		$(\pi * \pi) * (\pi * \pi)$	

	1	2	3	4	5	6	т	Lm	N_m^L
1	3	4	6	5	2	1	0	π	{1,2}
2	4	3	5	6	1	2	1	$\pi * \pi$	{3,4}
3	5	6	1	2	4	3	2	$(\pi * \pi) * \pi, \pi * (\pi * \pi)$	{5,6}
4	6	5	2	1	3	4		$((\pi * \pi) * \pi) * \pi, (\pi * (\pi * \pi)) * \pi,$	
5	2	1	3	4	5	6	3	$\pi * ((\pi * \pi) * \pi), \pi * (\pi * (\pi * \pi)),$	{1,2}
6	1	2	4	3	6	5		$(\pi * \pi) * (\pi * \pi)$	

	1	2	3	4	5	6	т	Lm	N_m^L
1	3	4	6	5	2	1	0	π	{1,2}
2	4	3	5	6	1	2	1	$\pi * \pi$	{3,4}
3	5	6	1	2	4	3	2	$(\pi * \pi) * \pi, \pi * (\pi * \pi)$	{5,6}
4	6	5	2	1	3	4		$((\pi * \pi) * \pi) * \pi, (\pi * (\pi * \pi)) * \pi,$	
5	2	1	3	4	5	6	3	$\pi * ((\pi * \pi) * \pi), \pi * (\pi * (\pi * \pi)),$	{1,2}
6	1	2	4	3	6	5		$(\pi * \pi) * (\pi * \pi)$	

	1	2	3	4	5	6	т	L _m	N_m^L
1	3	4	6	5	2	1	0	π	$\{1,2\}$
2	4	3	5	6	1	2	1	$\pi * \pi$	{3,4}
3	5	6	1	2	4	3	2	$(\pi * \pi) * \pi, \pi * (\pi * \pi)$	{5,6}
4	6	5	2	1	3	4		$((\pi * \pi) * \pi) * \pi, (\pi * (\pi * \pi)) * \pi,$	
5	2	1	3	4	5	6	3	$\pi * ((\pi * \pi) * \pi), \pi * (\pi * (\pi * \pi)),$	{1,2}
6	1	2	4	3	6	5		$(\pi * \pi) * (\pi * \pi)$	

	1	2	3	4	5	6	т	L _m	N_m^L
1	3	4	6	5	2	1	0	π	{1,2}
2	4	3	5	6	1	2	1	$\pi * \pi$	{3,4}
3	5	6	1	2	4	3	2	$(\pi * \pi) * \pi, \pi * (\pi * \pi)$	{5,6}
4	6	5	2	1	3	4		$((\pi * \pi) * \pi) * \pi, (\pi * (\pi * \pi)) * \pi,$	
5	2	1	3	4	5	6	3	$\pi*((\pi*\pi)*\pi),\pi*(\pi*(\pi*\pi)),$	{1,2}
6	1	2	4	3	6	5		$(\pi * \pi) * (\pi * \pi)$	

Supports are periodic (r > 1) iff there exists a homomorphism $\varphi : Q \to \mathbb{Z}_r$ such that $\varphi(N(\pi)) = 1 \in \mathbb{Z}_r$.

	1	2	3	4	5	6	т	L _m	N_m^L
1	3	4	6	5	2	1	0	π	{1,2}
2	4	3	5	6	1	2	1	$\pi * \pi$	{3,4}
3	5	6	1	2	4	3	2	$(\pi * \pi) * \pi, \pi * (\pi * \pi)$	{5,6}
4	6	5	2	1	3	4		$((\pi * \pi) * \pi) * \pi, (\pi * (\pi * \pi)) * \pi,$	
5	2	1	3	4	5	6	3	$\pi*((\pi*\pi)*\pi),\pi*(\pi*(\pi*\pi)),$	{1,2}
6	1	2	4	3	6	5		$(\pi * \pi) * (\pi * \pi)$	

Supports are periodic (r > 1) iff there exists a homomorphism $\varphi : Q \to \mathbb{Z}_r$ such that $\varphi(N(\pi)) = 1 \in \mathbb{Z}_r$. The period r is the biggest value for which such a homomorphism exists.

Averages in length

Define $\ell^{(m)}$ — the average of distributions with length *m*:

$$\ell^{(m)} = \frac{1}{|L_m|} \sum_{u \in L_m} u.$$

Averages in length

Define $\ell^{(m)}$ — the average of distributions with length *m*:

$$\ell^{(m)}=\frac{1}{|L_m|}\sum_{u\in L_m}u.$$

Theorem

Suppose there exists an m' such that $N_m^L = Q$ for every $m \ge m'$. Then there exist $\alpha, \beta > 0$ and m'' > m' such that for $m \ge m''$:

$$\max_{i\in \mathcal{Q}} \left|\ell_i^{(m)} - \frac{1}{|\mathcal{Q}|}\right| \leqslant \frac{\beta}{m^{\alpha}}.$$

 \dots N_{m}^{L} , N_{m+1}^{L} , \dots , N_{m+r-1}^{L} , N_{m+r}^{L} , N_{m+r+1}^{L} , \dots

$$\dots \ N_{m}^{L}, \ N_{m+1}^{L}, \ \dots, \ N_{m+r-1}^{L}, \ N_{m+r}^{L}, \ N_{m+r+1}^{L}, \ \dots \\ \dots \ Q_{0}, \ Q_{1}, \ \dots, \ Q_{r-1}, \ Q_{0}, \ Q_{1}, \ \dots$$

$$\dots \ N_{m}^{L}, \ N_{m+1}^{L}, \ \dots, \ N_{m+r-1}^{L}, \ N_{m+r}^{L}, \ N_{m+r+1}^{L}, \ \dots \\ Q_{0}, \ Q_{1}, \ \dots, \ Q_{r-1}, \ Q_{0}, \ Q_{1}, \ \dots \\ Q_{0} \cup Q_{1} \cup \dots \cup Q_{r-1} = Q$$

$$\dots \quad N_{m}^{L}, \quad N_{m+1}^{L}, \quad \dots, \quad N_{m+r-1}^{L}, \quad N_{m+r}^{L}, \quad N_{m+r+1}^{L}, \quad \dots \\ Q_{0}, \quad Q_{1}, \quad \dots, \quad Q_{r-1}, \quad Q_{0}, \quad Q_{1}, \quad \dots \\ Q_{0} \cup Q_{1} \cup \dots \cup Q_{r-1} = Q \\ |Q_{0}| = |Q_{1}| = \dots = |Q_{r-1}| = \frac{|Q|}{r}$$

$$\dots \quad N_{m}^{L}, \quad N_{m+1}^{L}, \quad \dots, \quad N_{m+r-1}^{L}, \quad N_{m+r}^{L}, \quad N_{m+r+1}^{L}, \quad \dots \\ Q_{0}, \quad Q_{1}, \quad \dots, \quad Q_{r-1}, \quad Q_{0}, \quad Q_{1}, \quad \dots \\ Q_{0} \cup Q_{1} \cup \dots \cup Q_{r-1} = Q \\ |Q_{0}| = |Q_{1}| = \dots = |Q_{r-1}| = \frac{|Q|}{r}$$

Theorem

Suppose there exists an m' and sets Q_b , b = 0, ..., r - 1 such that $N_{rk+b}^L = Q_b$ for every $m \ge m'$. Then there exist $\alpha, \beta > 0$ and m'' > m' such that for $rk + b \ge m''$:

$$\max_{i\in Q_b} \left| \ell_i^{(rk+b)} - \frac{1}{|Q_b|} \right| \leqslant \frac{\beta}{k^{\alpha}}.$$

Alexey Yashunsky (KIAM)

Thank You for Your attention!