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Automorphic loops

For a loop Q define

Lx(y) = xy, Rx(y) = yx
Ly = Ly'lxly, Rxy =Rg'RyRy, Tx =R 'Ly
MIt(Q) = <LX7 Ry; X € Q>
Inn(Q) = (Mlt(Q))l = <LX,Y7 Rx,y,Tx§ X,y € Q>
Aut(Q) = the automorphism group of Q

Definition (Automorphic loops)

A loop Q is automorphic if Inn(Q) < Aut(Q).

Groups and commutative Moufang loops are automorphic. J
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The following definitions are equivalent:
© Q is automorphic
Q Foreveryx,y,u,veQ

Oy (yu)) - (y)\(x(yv)) = (y)\(x(y (uv)))
((ux)y)/(xy) - ((vx)y)/(xy) = (((uv)x)y)/(xy)
(xu)/x - (xv)/x = (x(uv))/x

© Forevery x € Q, h € Inn(Q)
hLXh_l = I—h(x)

(because h(xh~1(y)) = h(x)y iff h(xy) = h(x)h(y))
Q 1Inn(Q) € Nuiyo)({Lx; x € Q})
Q (Lxy, Tx: x,y € Q) < Aut(Q)
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Chronology of results

© 1956 Bruck and Paige
basic properties
© 1958 Osborn
diassociative commutative A-loops are Moufang
© 1988 Shchukin
on nilpotency class of Q and MIt(Q)
© 2002 Kinyon, Kunen, Phillips
diassociative A-loops are Moufang
© 2008 Drapal
examples of order pq
© 2010 Jedlicka, Kinyon, V
basic structure of commutative A-loops
@ 2011 Csorgb, Grishkov, Jedlicka, Johnson, Kinyon, Kunen,
Nagy, V
solvability, nilpotency, toward classification
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Basic properties

Let Q be an automorphic loop. Then:

@ Q is power-associative [BrPa]

© nuclei are normal in Q [BrPa]

© Nuc(Q) < Nucm(Q), Nuc(Q) < Nucm(Q) [BrPa]
© Qhasthe AAIP,i.e., (xy) ! =y~ Ix~!

@ ifAcharQthenA<Q

Q ifAcharB<QthenA<Q
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Recent techniques

In recent works on A-loops, the following techniques were
used:

© associated operations (imitating Glauberman)

@ Lie algebras constructed from loops (imitating Wright)
© automated deduction (with McCune’s Prover9)

© classification of primitive groups of small degrees

@ explicit calculations within MIt(Q) (using Drapal+Nagy’s
algorithm in LOOPS)

Q@ Z,-modules (for p-loops)
@ anisotropic subspaces over Fj, (for p-loops)
@ group transversals (by Csorgd)



A-loops
o

Unique 2-divisibility and odd order

Definition
A groupoid Q is uniquely 2-divisible, if x — x? is a bijection of
Q. The unique solution y to y2 = x will be denoted by y = x1/2.




A-loops
o

Unique 2-divisibility and odd order

Definition
A groupoid Q is uniquely 2-divisible, if x — x? is a bijection of
Q. The unique solution y to y2 = x will be denoted by y = x1/2.

Let Q be a finite commutative loop. Then |Q] is odd iff Q is
uniquely 2-divisible.




A-loops
o

Unique 2-divisibility and odd order

Definition

A groupoid Q is uniquely 2-divisible, if x — x? is a bijection of
Q. The unique solution y to y2 = x will be denoted by y = x1/2.

Theorem

Let Q be a finite commutative loop. Then |Q] is odd iff Q is
uniquely 2-divisible.

Theorem

A finite automorphic (or Moufang) loop has odd order iff it is
uniquely 2-divisible.

| \

N
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Bruck loops

Definition (Bruck loops, K-loops)

A loop satisfying x(y(xz)) = (x(yx))z and (xy)~! =x"1ly~tis
a Bruck loop.

Bruck loops are nearly automorphic-loops:

Theorem (Funk, P. Nagy, Kreuzer, Goodaire, Robinson)
Every Bruck loop Q satisfies (Lxy; X,y € Q) < Aut(Q).

Commutative Bruck loops (i.e., commutative Moufang loops)
are A-loops.
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Bruck loops of odd order

Definition

A loop Q is solvable if there is a series

1=0Q0<9Q; <---<Qmn = Q such that Q;;1/Q; is an abelian
group for every i.

Glauberman proved many structural results for Bruck loops Q
of odd order:

© Q is uniquely 2-divisible

@ Cauchy Theorem, Lagrange Theorem, Sylow p-Theorem
and Hall 7-Theorem hold for Q

© Q is solvable (the Odd Order Theorem)

He then transferred these results to Moufang loops of odd order
as follows: J
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Moufang loops of odd order

Let Q be a Moufang loop of odd order. For x, y € Q define

X oy = (xy?x)¥/2,

Then (Q, o) is a Bruck loop, and the orders of elements in

(Q,-), (Q, o) coincide.

We call o and similar constructions the associated operations. J
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Glauberman’s idea works more generally.

Definition (Twisted subgroup)

LetGbeagroupand T C Gbesuchthatle T, T 1=T,
XTx CT foreveryx € T.
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Twisted subgroups

Glauberman’s idea works more generally.

Definition (Twisted subgroup)

LetGbeagroupand T C Gbesuchthatle T, T 1=T,
XTx CT foreveryx € T.

Theorem (Aschbacher, Foguel, Kinyon)
Let T be a uniquely 2-divisible twisted subgroup. Define

X oy = (xy?x)Y/2,

Then (T, o) is a Bruck loop and powers of elements of T
coincide in the two operations.
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Twisted subgroups in A-loops

For x € Q define

P, = L %Ry € MIt(Q),
Po = {Px; x € Q}.

Theorem

Let Q be an automorphic loop. Then Pg is a twisted subgroup
of MIt(Q), Pxn = (Px)", and

Pxpy PX = pr(y) == Px—l\(yx).

If Q is also uniquely 2-divisible then

Py 0 Py = (PxPyPx)"/% = Piysyyaayrz;
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Lagrange and Cauchy Theorems for A-loops

Theorem

Let Q be a uniquely 2-divisible A-loop. Then x — Py is a
bijection Q — Pq, so

(Q,0), Xoy= (X_l\(yzx))l/Z

is a uniquely 2-divisible Bruck loop. Moreover, if A < Q then

A <(Q,0).
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Lagrange and Cauchy Theorems for A-loops

Theorem

Let Q be a uniquely 2-divisible A-loop. Then x — Py is a
bijection Q — Pq, so

(Q,0), Xoy= (X_l\(yzx))l/Z

is a uniquely 2-divisible Bruck loop. Moreover, if A < Q then

A <(Q,0).

Corollary

Lagrange and Cauchy Theorems hold for automorphic loops of
odd order.
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Partial subloop correspondence

The trouble is that there is no correspondence between
subloops of Q and subloops of (Q, o).
Theorem
Let Q be an A-loop of odd order. Then:
Q ifA<QthenA < (Q,o0),
Q Inn(Q) < Aut(Q) < Aut(Q, o),
Q ifA<(Q,0)then

A < Qiff h(A) = Afor every h € Inn(Q; A),

Q if Achar (Q,0) then A< Q.
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Linear loops

In 1967, C. R. B. Wright investigated the following construction:

Theorem
Let (A, +, ) be an algebra. Define (A, o) by

Xey=X+y—X-Y.

Then (A, e) is a loop iff

y — Yy —Xy, Yy — Yy — yx are bijections of A. 0]
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Linear loops

In 1967, C. R. B. Wright investigated the following construction:

Theorem
Let (A, +, ) be an algebra. Define (A, o) by

Xey=X+y—X-Y.

Then (A, e) is a loop iff

y — Yy —Xy, Yy — Yy — yx are bijections of A. 0]

Definition (Linear loops)
A loop (A, e) obtained from (A, +, -) satisfying (l) is called linear.
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Let (L,+) be an abelian group, and [.,.] : L x L — L a binary
operation such that

Then (L, +,[.,.]) is a Lie ring.

Let (L, +,[.,.]) be a Lie ring. Then:
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Lie rings

Definition (Lie rings)

Let (L,+) be an abelian group, and [.,.] : L x L — L a binary
operation such that

O [x,y] = —[y,x] (alternating),

Q [x +vy,z] =[x,z] + [y, z] (biadditive),

Q [x,[y,z]] + v, [z, x]] + [z, [x,y]] = O (Jacobi).
Then (L, +,][.,.]) is a Lie ring.

Let (L, +,[.,.]) be a Lie ring. Then:

© A< (L,+)suchthat [A L] C Ais anideal,

Q if [L,L] = O then L is abelian,

© L is simple iff not abelian and no nontrivial ideals.
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Two conditions

Let (L, +,[.,.]) be a Lie ring. In addition to the condition (),
consider

[[X,Z],[y,Z]] = 0. (1

Let (L,+,[.,.]) be a Lie ring satisfying (I) and (Il). Then (L, )
defined by x ¢y = x +y — [X,y] is an automorphic loop.
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Two conditions

Let (L, +,[.,.]) be a Lie ring. In addition to the condition (),
consider
[[x,z].ly,z]] = 0. (In

Theorem
Let (L,+,[.,.]) be a Lie ring satisfying (I) and (Il). Then (L, )
defined by x ¢y = x +y — [X,y] is an automorphic loop.

Theorem

Let Q be an A-loop of odd order, and suppose that the Bruck
loop (Q, o) is an abelian group. Define

[X,y] =xoyo(xy) "

ThenL = (Q,o,[.,.]) is a Lie ring satisfying (I) and (Il). Subrings
of L = subloops of Q. Ideals of L = normal subloops of Q.
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Let Q be an automorphic loop of odd order. Then Q is solvable.

Proof:
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Proof of Odd Order Theorem 1

Theorem (Odd Order Theorem for A-loops)
Let Q be an automorphic loop of odd order. Then Q is solvable.

Proof:
@ Q minimal counterexample, necessarily simple, not a
group
@ (Q, o) solvable (by Glauberman), so A = (Q,0) # Q
@ since Achar (Q,0),wehave AJQ,A=1
@ (Q, o) is an abelian group
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Fix a prime p dividing |Q|. Then:

B={xeQ; xP=1}char(Q,0),soB <Q

by Cauchy, B # 1, thus B = Q

(Q, o) is an elementary abelian p-group

define Liering L = (Q, o, [.,.]) as above

L is a finite-dimensional algebra over [,

Q is simple, so L has no nontrivial ideals
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Proof of Odd Order Theorem 2

Fix a prime p dividing |Q|. Then:

B={xeQ; xP=1}char(Q,0),soB <Q
@ by Cauchy, B #1,thus B =Q

@ (Q, o) is an elementary abelian p-group

@ define Liering L = (Q, o, [.,.]) as above

@ L is a finite-dimensional algebra over Fp
°
°
°

Q is simple, so L has no nontrivial ideals
if L is abelian then 0 = [Q, Q], Xy = x oy, contradiction
else Q = [Q, Q], and we finish as follows:
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Proof of Odd Order Theorem 3

Theorem (“Crust of thin sandwich”, Zelmanov, Kostrikin, 1990)

Let (L,+,[.,.]) be a Lie ring generated by finitely many
elements a satisfying

[[x,a],a] = [[ly,a],x],a] =0 forallx,y.

Then L is nilpotent.

In our case we have Q = [Q, Q], and one can check that each
a = [u,v] works.
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What to do when |Q]| is even?

Theorem (Prover9)

Let Q be a commutative automorphic loop. Then
x2y? = (x oy)?, where

xoy = ((xy)\x - (yx)\y) .
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Products of squares

What to do when |Q]| is even?

Theorem (Prover9)

Let Q be a commutative automorphic loop. Then
x2y? = (x oy)?, where

xoy = ((xy)\x - (yx)\y) .

Theorem

Let Q be a commutative automorphic loop. Then (Q,¢) is
power-associative, commutative, with powers as in (Q, -). If |Q|
is odd then (Q, ¢) = (Q, ). If Q is of exponent two then (Q,¢) is
an elementary abelian 2-group.
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Decomposition theorem

With the product of squares results at our disposal, we have:

Theorem (Decomposition Theorem)

Let Q be a finite commutative automorphic loop. Then

Q =K x H, where K consists of element of odd order, |K| is
odd, H consists of elements of order a power of 2, and [H| is a
power of two.

Unlike in the case of abelian groups, K does not necessarily
decompose further into p-primary components. Drapal
constructed counterexamples of order pq.
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Consequences

Let Q be a finite commutative automorphic loop. Then we
immediately get:

© The Lagrange and Cauchy Theorems hold.
@ |Q| = p™iff every element of Q has order a power of p.

@ If Q is simple and nonassociative then Q has exponent 2
and |Q| = 2™M.

In fact, we will see that all finite commutative A-loops are
solvable. But this will require another approach.
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Definition

A permutation group G is primitive on X if it acts transitively on
X and preserves no nontrivial partition of X (as blocks). The
degree of G is the cardinality of X.

Theorem (Albert)

A loop Q is simple iff MIt(Q) is primitive on Q.

© Primitive groups of degree d < 2500 (perhaps d < 4096)
have been classified by Roney-Dougal and Holt.

© Let Soc(G) be the normal subgroup generated by all
minimal normal subgroups. If Soc(G) is abelian then G is a
subgroup of an affine group - so called affine type.

© Some structural info is available for primitive groups of
non-affine type, on specific degrees.
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Reduction to affine type

Let Q be a simple automorphic 2-loop. Then MIt(Q) is of affine
type and Q is commutative.

\

Proof.
Reduction to affine case requires:
© Guralnick and Saxl's classification of primitive permutation
groups of degree 24
@ Dréapal's result: If MIt(Q) < PTL(2,F), F finite, |[F| # 3, 4,
then MIt(Q) = Q is cyclic.
Commutativity in the affine case is relatively straightforward
with AAIP. O

>
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Solvability of commutative A-loops

Let Q be a nonassociative finite simple commutative A-loop.
We need an analog of the Bruck loop (Q, o) in the general
case.

© By earlier results, Q is of order 2" and exponent 2.

© By the above, (U, +) = Soc(MIt(Q)) is an elementary
abelian 2-group, regular.

© For x € Q, factor uniquely Ry = uyxhy, ux € U, hy € Inn(Q).

@ Note (U,-) = Q,u-v =uMo tv.

@ Define (U, +,[.,.]) by [.,.] =u+Vv —u-v, aLie algebra
again.

@ Finish as in the odd case.

Finite commutative automorphic loops are solvable.
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Searching for simple automorphic loops

If Q is simple then MIt(Q) is primitive. Identify Q with
Lo = {Lx; x € Q} C MIt(Q).

How to find Lq in a primitive group G acting on a set Q? J
Theorem
Let Q be an automorphic loop, G = MIt(Q), H = Inn(Q). Then:
© hLyh™ =Ly forevery h e H,
©Q L« € C(Hy). Proof:
hLx(y) = h(xy) = h(x)h(y) = xh(y) = Lch(y)

© MIt(Q) is not 4-transitive,
Q If Q is simple, MIt(Q) is not solvable [Vesanen].
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Vainly searching for simple A-loops

This greatly speeds up the general purpose algorithm of Drapal
and Nagy in the LOOPS package:

Let G be a transitive group on Q, H = G;. Is there a loop Q
such that MIt(Q) < G, MIt,(Q) < G? (In the automorphic case,

we also want H < Aut(Q).)

The outcome:
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Vainly searching for simple A-loops

This greatly speeds up the general purpose algorithm of Drapal
and Nagy in the LOOPS package:

Let G be a transitive group on Q, H = G;. Is there a loop Q
such that MIt(Q) < G, MIt,(Q) < G? (In the automorphic case,

we also want H < Aut(Q).)

The outcome:

There is no nonassociative simple A-loop of order < 2500.
There are many small nonassocitive simple loops Q with

Inn,(Q) < Aut(Q).
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A consequence of the Cauchy and Lagrange Theorems:

Let Q be a finite commutative automorphic loop and p a prime.
Then |Q| = pX iff all elements of Q are p-elements.

So the concept of a p-loop is unambiguous, except possibly for
p = 2 in the general case.
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Automorphic p-loops

A consequence of the Cauchy and Lagrange Theorems:

Let Q be a finite commutative automorphic loop and p a prime.
Then |Q| = pX iff all elements of Q are p-elements.

Let Q be a finite automorphic loop and p an odd prime. Then
|Q| = pk iff all elements of Q are p-elements.

So the concept of a p-loop is unambiguous, except possibly for
p = 2 in the general case.
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Automorphic loops of order p?

Theorem (Csorg6)

Let p be a prime. An A-loop of order p? is a group.

'

Original proof uses transversals and Odd Order Theorem. A
quick proof:

© enough to consider p odd

@ (Q,0) is a Bruck loop of order p?, hence abelian group

© the associated Lie ring is a Lie algebra over F,, of
dimension two

\
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Automorphic loops of order p?

Theorem (Csorg6)

Let p be a prime. An A-loop of order p? is a group.

'

Original proof uses transversals and Odd Order Theorem. A
quick proof:

© enough to consider p odd
@ (Q,0) is a Bruck loop of order p?, hence abelian group

© the associated Lie ring is a Lie algebra over F,, of
dimension two

© the only such algebra (classification) violates (1).

\
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Nilpotency in commutative automorphic p-loops

Definition

A loop Q is (centrally) nilpotent if Q, Q/Z(Q),
(Q/Z2(Q))/Z2(Q/Z(Q)), ..., terminates with 1 in finitely many
steps.

Recall that, for instance, Moufang p-loops are nilpotent. Using
associated Bruck loops, we showed:

There is a commutative A-loop of order 8 with trivial center.
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Nilpotency in commutative automorphic p-loops

Definition
A loop Q is (centrally) nilpotent if Q, Q/Z(Q),

(Q/Z2(Q))/Z2(Q/Z(Q)), ..., terminates with 1 in finitely many
steps.

Recall that, for instance, Moufang p-loops are nilpotent. Using
associated Bruck loops, we showed:

Let Q be a finite commutative automorphic p-loop, p odd. Then
Q is nilpotent.

There is a commutative A-loop of order 8 with trivial center.
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Commutative A-loops of order p?

For a prime p, there are precisely 7 commutative automorphic
loops of order p2 up to isomorphism.

@ p = 2 by brute force, for p > 2 they are nilpotent

@ describe free 2-generated nilpotent class two automorphic
p-loop Fp, on (Zp)®

© GL(2,p) acts on Fp

© orbits of the action on the Grassmannian of 3-dimensional
subspaces of F, = isom. classes of automorphic loops Q
of order p? with Z < Z(Q), Z 2 Zp, Q/Z = Zp x Zp

@ determine the orbits (different for p = 3)
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Anisotropic planes

Let F be a field and V a finite-dimensional vector space over F.
Then g :V — F is a quadratic form if

g(Au) = Nq(u),
f(u,v) =q(u+v)—q(u) —q(v) is bilinear.
CallU < (V,q) anisotropic if q(u) # 0 forall 0 £ u € U.

Theorem (see Scharlau for odd characteristic)

If F is finite and (V, q) is anisotropic, then dim(V) < 2. All such
subspaces of dimension two are isometric.
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Anisotropic planes

Let F be a field and V a finite-dimensional vector space over F.
Then g :V — F is a quadratic form if

g(Au) = Nq(u),
f(u,v) =q(u+v)—q(u) —q(v) is bilinear.
CallU < (V,q) anisotropic if q(u) # 0 forall 0 £ u € U.

Theorem (see Scharlau for odd characteristic)

If F is finite and (V, q) is anisotropic, then dim(V) < 2. All such
subspaces of dimension two are isometric.

Theorem
For A € GL(2,F), q = det, the plane FI @ FA is anisotropic iff

| A\

det(A — Al) = A% — tr(A)\ + det(A)

has no roots.

N
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A-loops from anisotropic planes

Theorem

Let F = Fp, A € GL(2,p) be such that FI @ FA is anisotropic.
Define Q = Q(A)on F x (F x F) by

(a,x)(b,y) = (a+b,x(I +bA) +y(l —aA)).

Then Q is an A-loop of order p2, exponent p, and

Nuc,(Q) = Nuc, (Q) = Nuc(Q) =Z(Q) = 1.
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A-loops from anisotropic planes

Theorem

Let F = Fp, A € GL(2,p) be such that FI @ FA is anisotropic.
Define Q = Q(A)on F x (F x F) by

(a,x)(b,y) = (a+b,x(I +bA) +y(l —aA)).

Then Q is an A-loop of order p2, exponent p, and

Nuc,(Q) = Nuc, (Q) = Nuc(Q) =Z(Q) = 1.

@ The condition “FI & FA anisotropic” is needed to get a
guasigroup.

@ Can we find suitable A for every p?
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Definition (Types)

Call A € GL(2, p) with FI & FA anisotropic of:
O type 1iftr(A) =0,
Q type 2if tr(A) # 0 and det(A) is a quadratic residue,
© type 3if tr(A) # 0 and det(A) is a quadratic nonresidue.
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For every p there is A € GL(2,p) such that Fl & FA is
anisotropic.

Definition (Types)
Call A € GL(2, p) with FI & FA anisotropic of:
O type 1iftr(A) =0,
Q type 2if tr(A) # 0 and det(A) is a quadratic residue,
© type 3if tr(A) # 0 and det(A) is a quadratic nonresidue.

o

It appears that the isomorphism type of Q = Q(A) corresponds
to the type of A. (Checked computationally for p < 5.)

i
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Open problems

© Is there a finite simple nonassociative A-loop?
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