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Automorphic loops

For a loop Q define

Lx(y) = xy , Rx(y) = yx

Lx,y = L−1
xy LxLy , Rx,y = R−1

xy RyRx , Tx = R−1
x Lx

Mlt(Q) = 〈Lx ,Rx ; x ∈ Q〉

Inn(Q) = (Mlt(Q))1 = 〈Lx,y ,Rx,y ,Tx ; x , y ∈ Q〉

Aut(Q) = the automorphism group of Q
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Automorphic loops

For a loop Q define

Lx(y) = xy , Rx(y) = yx

Lx,y = L−1
xy LxLy , Rx,y = R−1

xy RyRx , Tx = R−1
x Lx

Mlt(Q) = 〈Lx ,Rx ; x ∈ Q〉

Inn(Q) = (Mlt(Q))1 = 〈Lx,y ,Rx,y ,Tx ; x , y ∈ Q〉

Aut(Q) = the automorphism group of Q

Definition (Automorphic loops)

A loop Q is automorphic if Inn(Q) ≤ Aut(Q).

Groups and commutative Moufang loops are automorphic.
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Equivalent definitions

The following definitions are equivalent:
1 Q is automorphic
2 For every x , y , u, v ∈ Q

(xy)\(x(yu)) · (xy)\(x(yv)) = (xy)\(x(y(uv)))

((ux)y)/(xy) · ((vx)y)/(xy) = (((uv)x)y)/(xy)

(xu)/x · (xv)/x = (x(uv))/x

3 For every x ∈ Q, h ∈ Inn(Q)

hLxh−1 = Lh(x)

(because h(xh−1(y)) = h(x)y iff h(xy) = h(x)h(y))
4 Inn(Q) ⊆ NMlt(Q)({Lx ; x ∈ Q})

5 〈Lx,y ,Tx ; x , y ∈ Q〉 ≤ Aut(Q)
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Chronology of results

1 1956 Bruck and Paige
basic properties

2 1958 Osborn
diassociative commutative A-loops are Moufang

3 1988 Shchukin
on nilpotency class of Q and Mlt(Q)

4 2002 Kinyon, Kunen, Phillips
diassociative A-loops are Moufang

5 2008 Drápal
examples of order pq

6 2010 Jedlička, Kinyon, V
basic structure of commutative A-loops

7 2011 Csörgő, Grishkov, Jedlička, Johnson, Kinyon, Kunen,
Nagy, V
solvability, nilpotency, toward classification
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Basic properties

Let Q be an automorphic loop. Then:
1 Q is power-associative [BrPa]
2 nuclei are normal in Q [BrPa]
3 Nucℓ(Q) ≤ Nucm(Q), Nucr (Q) ≤ Nucm(Q) [BrPa]
4 Q has the AAIP, i.e., (xy)−1 = y−1x−1

5 if A char Q then A E Q
6 if A char B E Q then A E Q
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Recent techniques

In recent works on A-loops, the following techniques were
used:

1 associated operations (imitating Glauberman)
2 Lie algebras constructed from loops (imitating Wright)
3 automated deduction (with McCune’s Prover9)
4 classification of primitive groups of small degrees
5 explicit calculations within Mlt(Q) (using Drápal+Nagy’s

algorithm in LOOPS)
6 Zp-modules (for p-loops)
7 anisotropic subspaces over Fp (for p-loops)
8 group transversals (by Csörgő)



Introduction A-loops Odd Order theorem Commutative A-loops Primitive groups p-loops Open problems

Unique 2-divisibility and odd order

Definition

A groupoid Q is uniquely 2-divisible, if x 7→ x2 is a bijection of
Q. The unique solution y to y2 = x will be denoted by y = x1/2.
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Let Q be a finite commutative loop. Then |Q| is odd iff Q is
uniquely 2-divisible.
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Unique 2-divisibility and odd order

Definition

A groupoid Q is uniquely 2-divisible, if x 7→ x2 is a bijection of
Q. The unique solution y to y2 = x will be denoted by y = x1/2.

Theorem

Let Q be a finite commutative loop. Then |Q| is odd iff Q is
uniquely 2-divisible.

Theorem

A finite automorphic (or Moufang) loop has odd order iff it is
uniquely 2-divisible.



Introduction A-loops Odd Order theorem Commutative A-loops Primitive groups p-loops Open problems

Bruck loops

Definition (Bruck loops, K-loops)

A loop satisfying x(y(xz)) = (x(yx))z and (xy)−1 = x−1y−1 is
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Bruck loops

Definition (Bruck loops, K-loops)

A loop satisfying x(y(xz)) = (x(yx))z and (xy)−1 = x−1y−1 is
a Bruck loop.

Bruck loops are nearly automorphic-loops:

Theorem (Funk, P. Nagy, Kreuzer, Goodaire, Robinson)

Every Bruck loop Q satisfies 〈Lx,y ; x , y ∈ Q〉 ≤ Aut(Q).

Corollary

Commutative Bruck loops (i.e., commutative Moufang loops)
are A-loops.
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Bruck loops of odd order

Definition

A loop Q is solvable if there is a series
1 = Q0 E Q1 E · · ·E Qm = Q such that Qi+1/Qi is an abelian
group for every i .

Glauberman proved many structural results for Bruck loops Q
of odd order:
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Bruck loops of odd order

Definition

A loop Q is solvable if there is a series
1 = Q0 E Q1 E · · ·E Qm = Q such that Qi+1/Qi is an abelian
group for every i .

Glauberman proved many structural results for Bruck loops Q
of odd order:

1 Q is uniquely 2-divisible
2 Cauchy Theorem, Lagrange Theorem, Sylow p-Theorem

and Hall π-Theorem hold for Q
3 Q is solvable (the Odd Order Theorem)

He then transferred these results to Moufang loops of odd order
as follows:
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Moufang loops of odd order

Let Q be a Moufang loop of odd order. For x , y ∈ Q define

x ◦ y = (xy2x)1/2.

Then (Q, ◦) is a Bruck loop, and the orders of elements in
(Q, ·), (Q, ◦) coincide.

We call ◦ and similar constructions the associated operations.
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Twisted subgroups

Glauberman’s idea works more generally.

Definition (Twisted subgroup)

Let G be a group and T ⊆ G be such that 1 ∈ T , T−1 = T ,
xTx ⊆ T for every x ∈ T .
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Twisted subgroups

Glauberman’s idea works more generally.

Definition (Twisted subgroup)

Let G be a group and T ⊆ G be such that 1 ∈ T , T−1 = T ,
xTx ⊆ T for every x ∈ T .

Theorem (Aschbacher, Foguel, Kinyon)

Let T be a uniquely 2-divisible twisted subgroup. Define

x ◦ y = (xy2x)1/2.

Then (T , ◦) is a Bruck loop and powers of elements of T
coincide in the two operations.
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Twisted subgroups in A-loops

For x ∈ Q define

Px = L−1
x−1Rx ∈ Mlt(Q),

PQ = {Px ; x ∈ Q}.

Theorem

Let Q be an automorphic loop. Then PQ is a twisted subgroup
of Mlt(Q), Pxn = (Px )

n, and

PxPyPx = PPx(y) = Px−1\(yx).

If Q is also uniquely 2-divisible then

Px ◦ Py = (PxP2
y Px)

1/2 = P(x−1\(y2x))1/2 .
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Lagrange and Cauchy Theorems for A-loops

Theorem

Let Q be a uniquely 2-divisible A-loop. Then x 7→ Px is a
bijection Q → PQ, so

(Q, ◦), x ◦ y = (x−1\(y2x))1/2

is a uniquely 2-divisible Bruck loop. Moreover, if A ≤ Q then
A ≤ (Q, ◦).
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Lagrange and Cauchy Theorems for A-loops

Theorem

Let Q be a uniquely 2-divisible A-loop. Then x 7→ Px is a
bijection Q → PQ, so

(Q, ◦), x ◦ y = (x−1\(y2x))1/2

is a uniquely 2-divisible Bruck loop. Moreover, if A ≤ Q then
A ≤ (Q, ◦).

Corollary

Lagrange and Cauchy Theorems hold for automorphic loops of
odd order.
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Partial subloop correspondence

The trouble is that there is no correspondence between
subloops of Q and subloops of (Q, ◦).

Theorem

Let Q be an A-loop of odd order. Then:
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Partial subloop correspondence

The trouble is that there is no correspondence between
subloops of Q and subloops of (Q, ◦).

Theorem

Let Q be an A-loop of odd order. Then:
1 if A ≤ Q then A ≤ (Q, ◦),
2 Inn(Q) ≤ Aut(Q) ≤ Aut(Q, ◦),
3 if A ≤ (Q, ◦) then

A ≤ Q iff h(A) = A for every h ∈ Inn(Q;A),

4 if A char (Q, ◦) then A E Q.
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Linear loops

In 1967, C. R. B. Wright investigated the following construction:

Theorem

Let (A,+, ·) be an algebra. Define (A, •) by

x • y = x + y − x · y .

Then (A, •) is a loop iff

y 7→ y − xy, y 7→ y − yx are bijections of A. (I)
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Linear loops

In 1967, C. R. B. Wright investigated the following construction:

Theorem

Let (A,+, ·) be an algebra. Define (A, •) by

x • y = x + y − x · y .

Then (A, •) is a loop iff

y 7→ y − xy, y 7→ y − yx are bijections of A. (I)

Definition (Linear loops)

A loop (A, •) obtained from (A,+, ·) satisfying (I) is called linear.
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Lie rings

Definition (Lie rings)

Let (L,+) be an abelian group, and [., .] : L × L → L a binary
operation such that

Then (L,+, [., .]) is a Lie ring.

Let (L,+, [., .]) be a Lie ring. Then:
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Lie rings

Definition (Lie rings)

Let (L,+) be an abelian group, and [., .] : L × L → L a binary
operation such that

1 [x , y ] = −[y , x ] (alternating),

Then (L,+, [., .]) is a Lie ring.

Let (L,+, [., .]) be a Lie ring. Then:



Introduction A-loops Odd Order theorem Commutative A-loops Primitive groups p-loops Open problems

Lie rings

Definition (Lie rings)

Let (L,+) be an abelian group, and [., .] : L × L → L a binary
operation such that

1 [x , y ] = −[y , x ] (alternating),
2 [x + y , z] = [x , z] + [y , z] (biadditive),

Then (L,+, [., .]) is a Lie ring.

Let (L,+, [., .]) be a Lie ring. Then:
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Lie rings

Definition (Lie rings)

Let (L,+) be an abelian group, and [., .] : L × L → L a binary
operation such that

1 [x , y ] = −[y , x ] (alternating),
2 [x + y , z] = [x , z] + [y , z] (biadditive),
3 [x , [y , z]] + [y , [z, x ]] + [z, [x , y ]] = 0 (Jacobi).

Then (L,+, [., .]) is a Lie ring.

Let (L,+, [., .]) be a Lie ring. Then:
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Lie rings

Definition (Lie rings)

Let (L,+) be an abelian group, and [., .] : L × L → L a binary
operation such that

1 [x , y ] = −[y , x ] (alternating),
2 [x + y , z] = [x , z] + [y , z] (biadditive),
3 [x , [y , z]] + [y , [z, x ]] + [z, [x , y ]] = 0 (Jacobi).

Then (L,+, [., .]) is a Lie ring.

Let (L,+, [., .]) be a Lie ring. Then:
1 A ≤ (L,+) such that [A,L] ⊆ A is an ideal,
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Definition (Lie rings)

Let (L,+) be an abelian group, and [., .] : L × L → L a binary
operation such that

1 [x , y ] = −[y , x ] (alternating),
2 [x + y , z] = [x , z] + [y , z] (biadditive),
3 [x , [y , z]] + [y , [z, x ]] + [z, [x , y ]] = 0 (Jacobi).

Then (L,+, [., .]) is a Lie ring.

Let (L,+, [., .]) be a Lie ring. Then:
1 A ≤ (L,+) such that [A,L] ⊆ A is an ideal,
2 if [L,L] = 0 then L is abelian,
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Lie rings

Definition (Lie rings)

Let (L,+) be an abelian group, and [., .] : L × L → L a binary
operation such that

1 [x , y ] = −[y , x ] (alternating),
2 [x + y , z] = [x , z] + [y , z] (biadditive),
3 [x , [y , z]] + [y , [z, x ]] + [z, [x , y ]] = 0 (Jacobi).

Then (L,+, [., .]) is a Lie ring.

Let (L,+, [., .]) be a Lie ring. Then:
1 A ≤ (L,+) such that [A,L] ⊆ A is an ideal,
2 if [L,L] = 0 then L is abelian,
3 L is simple iff not abelian and no nontrivial ideals.
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Two conditions

Let (L,+, [., .]) be a Lie ring. In addition to the condition (I),
consider

[[x , z], [y , z]] = 0. (II)

Theorem

Let (L,+, [., .]) be a Lie ring satisfying (I) and (II). Then (L, •)
defined by x • y = x + y − [x , y ] is an automorphic loop.
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Two conditions

Let (L,+, [., .]) be a Lie ring. In addition to the condition (I),
consider

[[x , z], [y , z]] = 0. (II)

Theorem

Let (L,+, [., .]) be a Lie ring satisfying (I) and (II). Then (L, •)
defined by x • y = x + y − [x , y ] is an automorphic loop.

Theorem

Let Q be an A-loop of odd order, and suppose that the Bruck
loop (Q, ◦) is an abelian group. Define

[x , y ] = x ◦ y ◦ (xy)−1.

Then L = (Q, ◦, [., .]) is a Lie ring satisfying (I) and (II). Subrings
of L = subloops of Q. Ideals of L = normal subloops of Q.
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Proof of Odd Order Theorem 1

Theorem (Odd Order Theorem for A-loops)

Let Q be an automorphic loop of odd order. Then Q is solvable.

Proof:
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Theorem (Odd Order Theorem for A-loops)

Let Q be an automorphic loop of odd order. Then Q is solvable.

Proof:

Q minimal counterexample, necessarily simple, not a
group

(Q, ◦) solvable (by Glauberman), so A = (Q, ◦)′ 6= Q
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Proof of Odd Order Theorem 1

Theorem (Odd Order Theorem for A-loops)

Let Q be an automorphic loop of odd order. Then Q is solvable.

Proof:

Q minimal counterexample, necessarily simple, not a
group

(Q, ◦) solvable (by Glauberman), so A = (Q, ◦)′ 6= Q

since A char (Q, ◦), we have A E Q, A = 1
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Proof of Odd Order Theorem 1

Theorem (Odd Order Theorem for A-loops)

Let Q be an automorphic loop of odd order. Then Q is solvable.

Proof:

Q minimal counterexample, necessarily simple, not a
group

(Q, ◦) solvable (by Glauberman), so A = (Q, ◦)′ 6= Q

since A char (Q, ◦), we have A E Q, A = 1

(Q, ◦) is an abelian group
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Proof of Odd Order Theorem 2

Fix a prime p dividing |Q|. Then:

B = {x ∈ Q; xp = 1} char (Q, ◦), so B E Q
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Proof of Odd Order Theorem 2

Fix a prime p dividing |Q|. Then:

B = {x ∈ Q; xp = 1} char (Q, ◦), so B E Q

by Cauchy, B 6= 1, thus B = Q
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Fix a prime p dividing |Q|. Then:

B = {x ∈ Q; xp = 1} char (Q, ◦), so B E Q

by Cauchy, B 6= 1, thus B = Q

(Q, ◦) is an elementary abelian p-group
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Fix a prime p dividing |Q|. Then:

B = {x ∈ Q; xp = 1} char (Q, ◦), so B E Q

by Cauchy, B 6= 1, thus B = Q

(Q, ◦) is an elementary abelian p-group

define Lie ring L = (Q, ◦, [., .]) as above
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Fix a prime p dividing |Q|. Then:

B = {x ∈ Q; xp = 1} char (Q, ◦), so B E Q

by Cauchy, B 6= 1, thus B = Q

(Q, ◦) is an elementary abelian p-group

define Lie ring L = (Q, ◦, [., .]) as above

L is a finite-dimensional algebra over Fp
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Proof of Odd Order Theorem 2

Fix a prime p dividing |Q|. Then:

B = {x ∈ Q; xp = 1} char (Q, ◦), so B E Q

by Cauchy, B 6= 1, thus B = Q

(Q, ◦) is an elementary abelian p-group

define Lie ring L = (Q, ◦, [., .]) as above

L is a finite-dimensional algebra over Fp

Q is simple, so L has no nontrivial ideals
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Proof of Odd Order Theorem 2

Fix a prime p dividing |Q|. Then:

B = {x ∈ Q; xp = 1} char (Q, ◦), so B E Q

by Cauchy, B 6= 1, thus B = Q

(Q, ◦) is an elementary abelian p-group

define Lie ring L = (Q, ◦, [., .]) as above

L is a finite-dimensional algebra over Fp

Q is simple, so L has no nontrivial ideals

if L is abelian then 0 = [Q,Q], xy = x ◦ y , contradiction
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Proof of Odd Order Theorem 2

Fix a prime p dividing |Q|. Then:

B = {x ∈ Q; xp = 1} char (Q, ◦), so B E Q

by Cauchy, B 6= 1, thus B = Q

(Q, ◦) is an elementary abelian p-group

define Lie ring L = (Q, ◦, [., .]) as above

L is a finite-dimensional algebra over Fp

Q is simple, so L has no nontrivial ideals

if L is abelian then 0 = [Q,Q], xy = x ◦ y , contradiction

else Q = [Q,Q], and we finish as follows:
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Proof of Odd Order Theorem 3

Theorem (“Crust of thin sandwich”, Zelmanov, Kostrikin, 1990)

Let (L,+, [., .]) be a Lie ring generated by finitely many
elements a satisfying

[[x ,a],a] = [[[y ,a], x ],a] = 0 for all x, y.

Then L is nilpotent.

In our case we have Q = [Q,Q], and one can check that each
a = [u, v ] works.
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Products of squares

What to do when |Q| is even?

Theorem (Prover9)

Let Q be a commutative automorphic loop. Then
x2y2 = (x ⋄ y)2, where

x ⋄ y = ((xy)\x · (yx)\y)−1.
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Products of squares

What to do when |Q| is even?

Theorem (Prover9)

Let Q be a commutative automorphic loop. Then
x2y2 = (x ⋄ y)2, where

x ⋄ y = ((xy)\x · (yx)\y)−1.

Theorem

Let Q be a commutative automorphic loop. Then (Q, ⋄) is
power-associative, commutative, with powers as in (Q, ·). If |Q|
is odd then (Q, ⋄) ∼= (Q, ·). If Q is of exponent two then (Q, ⋄) is
an elementary abelian 2-group.
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Decomposition theorem

With the product of squares results at our disposal, we have:

Theorem (Decomposition Theorem)

Let Q be a finite commutative automorphic loop. Then
Q = K × H, where K consists of element of odd order, |K | is
odd, H consists of elements of order a power of 2, and |H| is a
power of two.

Unlike in the case of abelian groups, K does not necessarily
decompose further into p-primary components. Drápal
constructed counterexamples of order pq.
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Consequences

Let Q be a finite commutative automorphic loop. Then we
immediately get:

1 The Lagrange and Cauchy Theorems hold.
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immediately get:

1 The Lagrange and Cauchy Theorems hold.
2 |Q| = pm iff every element of Q has order a power of p.
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Consequences

Let Q be a finite commutative automorphic loop. Then we
immediately get:

1 The Lagrange and Cauchy Theorems hold.
2 |Q| = pm iff every element of Q has order a power of p.
3 If Q is simple and nonassociative then Q has exponent 2

and |Q| = 2m.
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Consequences

Let Q be a finite commutative automorphic loop. Then we
immediately get:

1 The Lagrange and Cauchy Theorems hold.
2 |Q| = pm iff every element of Q has order a power of p.
3 If Q is simple and nonassociative then Q has exponent 2

and |Q| = 2m.

In fact, we will see that all finite commutative A-loops are
solvable. But this will require another approach.
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Definition

A permutation group G is primitive on X if it acts transitively on
X and preserves no nontrivial partition of X (as blocks). The
degree of G is the cardinality of X .
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Definition

A permutation group G is primitive on X if it acts transitively on
X and preserves no nontrivial partition of X (as blocks). The
degree of G is the cardinality of X .

Theorem (Albert)

A loop Q is simple iff Mlt(Q) is primitive on Q.
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X and preserves no nontrivial partition of X (as blocks). The
degree of G is the cardinality of X .

Theorem (Albert)

A loop Q is simple iff Mlt(Q) is primitive on Q.

1 Primitive groups of degree d < 2500 (perhaps d < 4096)
have been classified by Roney-Dougal and Holt.
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Definition

A permutation group G is primitive on X if it acts transitively on
X and preserves no nontrivial partition of X (as blocks). The
degree of G is the cardinality of X .

Theorem (Albert)

A loop Q is simple iff Mlt(Q) is primitive on Q.

1 Primitive groups of degree d < 2500 (perhaps d < 4096)
have been classified by Roney-Dougal and Holt.

2 Let Soc(G) be the normal subgroup generated by all
minimal normal subgroups. If Soc(G) is abelian then G is a
subgroup of an affine group - so called affine type.
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Definition

A permutation group G is primitive on X if it acts transitively on
X and preserves no nontrivial partition of X (as blocks). The
degree of G is the cardinality of X .

Theorem (Albert)

A loop Q is simple iff Mlt(Q) is primitive on Q.

1 Primitive groups of degree d < 2500 (perhaps d < 4096)
have been classified by Roney-Dougal and Holt.

2 Let Soc(G) be the normal subgroup generated by all
minimal normal subgroups. If Soc(G) is abelian then G is a
subgroup of an affine group - so called affine type.

3 Some structural info is available for primitive groups of
non-affine type, on specific degrees.
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Reduction to affine type

Theorem

Let Q be a simple automorphic 2-loop. Then Mlt(Q) is of affine
type and Q is commutative.
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Reduction to affine type

Theorem

Let Q be a simple automorphic 2-loop. Then Mlt(Q) is of affine
type and Q is commutative.

Proof.

Reduction to affine case requires:

Commutativity in the affine case is relatively straightforward
with AAIP.
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Reduction to affine type

Theorem

Let Q be a simple automorphic 2-loop. Then Mlt(Q) is of affine
type and Q is commutative.

Proof.

Reduction to affine case requires:
1 Guralnick and Saxl’s classification of primitive permutation

groups of degree 2d

Commutativity in the affine case is relatively straightforward
with AAIP.
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Reduction to affine type

Theorem

Let Q be a simple automorphic 2-loop. Then Mlt(Q) is of affine
type and Q is commutative.

Proof.

Reduction to affine case requires:
1 Guralnick and Saxl’s classification of primitive permutation

groups of degree 2d

2 Drápal’s result: If Mlt(Q) ≤ PΓL(2,F ), F finite, |F | 6= 3, 4,
then Mlt(Q) ∼= Q is cyclic.

Commutativity in the affine case is relatively straightforward
with AAIP.
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Solvability of commutative A-loops

Let Q be a nonassociative finite simple commutative A-loop.
We need an analog of the Bruck loop (Q, ◦) in the general
case.

1 By earlier results, Q is of order 2n and exponent 2.
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Let Q be a nonassociative finite simple commutative A-loop.
We need an analog of the Bruck loop (Q, ◦) in the general
case.

1 By earlier results, Q is of order 2n and exponent 2.
2 By the above, (U,+) = Soc(Mlt(Q)) is an elementary

abelian 2-group, regular.
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Solvability of commutative A-loops

Let Q be a nonassociative finite simple commutative A-loop.
We need an analog of the Bruck loop (Q, ◦) in the general
case.

1 By earlier results, Q is of order 2n and exponent 2.
2 By the above, (U,+) = Soc(Mlt(Q)) is an elementary

abelian 2-group, regular.
3 For x ∈ Q, factor uniquely Rx = uxhx , ux ∈ U, hx ∈ Inn(Q).
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Solvability of commutative A-loops

Let Q be a nonassociative finite simple commutative A-loop.
We need an analog of the Bruck loop (Q, ◦) in the general
case.

1 By earlier results, Q is of order 2n and exponent 2.
2 By the above, (U,+) = Soc(Mlt(Q)) is an elementary

abelian 2-group, regular.
3 For x ∈ Q, factor uniquely Rx = uxhx , ux ∈ U, hx ∈ Inn(Q).
4 Note (U, ·) ∼= Q, u · v = uhv(1) + v .
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Solvability of commutative A-loops

Let Q be a nonassociative finite simple commutative A-loop.
We need an analog of the Bruck loop (Q, ◦) in the general
case.

1 By earlier results, Q is of order 2n and exponent 2.
2 By the above, (U,+) = Soc(Mlt(Q)) is an elementary

abelian 2-group, regular.
3 For x ∈ Q, factor uniquely Rx = uxhx , ux ∈ U, hx ∈ Inn(Q).
4 Note (U, ·) ∼= Q, u · v = uhv(1) + v .
5 Define (U,+, [., .]) by [., .] = u + v − u · v , a Lie algebra

again.
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Solvability of commutative A-loops

Let Q be a nonassociative finite simple commutative A-loop.
We need an analog of the Bruck loop (Q, ◦) in the general
case.

1 By earlier results, Q is of order 2n and exponent 2.
2 By the above, (U,+) = Soc(Mlt(Q)) is an elementary

abelian 2-group, regular.
3 For x ∈ Q, factor uniquely Rx = uxhx , ux ∈ U, hx ∈ Inn(Q).
4 Note (U, ·) ∼= Q, u · v = uhv(1) + v .
5 Define (U,+, [., .]) by [., .] = u + v − u · v , a Lie algebra

again.
6 Finish as in the odd case.
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Solvability of commutative A-loops

Let Q be a nonassociative finite simple commutative A-loop.
We need an analog of the Bruck loop (Q, ◦) in the general
case.

1 By earlier results, Q is of order 2n and exponent 2.
2 By the above, (U,+) = Soc(Mlt(Q)) is an elementary

abelian 2-group, regular.
3 For x ∈ Q, factor uniquely Rx = uxhx , ux ∈ U, hx ∈ Inn(Q).
4 Note (U, ·) ∼= Q, u · v = uhv(1) + v .
5 Define (U,+, [., .]) by [., .] = u + v − u · v , a Lie algebra

again.
6 Finish as in the odd case.

Theorem
Finite commutative automorphic loops are solvable.
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Searching for simple automorphic loops

If Q is simple then Mlt(Q) is primitive. Identify Q with
LQ = {Lx ; x ∈ Q} ⊆ Mlt(Q).

How to find LQ in a primitive group G acting on a set Q?
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Searching for simple automorphic loops

If Q is simple then Mlt(Q) is primitive. Identify Q with
LQ = {Lx ; x ∈ Q} ⊆ Mlt(Q).

How to find LQ in a primitive group G acting on a set Q?

Theorem

Let Q be an automorphic loop, G = Mlt(Q), H = Inn(Q). Then:
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How to find LQ in a primitive group G acting on a set Q?

Theorem

Let Q be an automorphic loop, G = Mlt(Q), H = Inn(Q). Then:
1 hLxh−1 = Lh(x) for every h ∈ H,
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Searching for simple automorphic loops

If Q is simple then Mlt(Q) is primitive. Identify Q with
LQ = {Lx ; x ∈ Q} ⊆ Mlt(Q).

How to find LQ in a primitive group G acting on a set Q?

Theorem

Let Q be an automorphic loop, G = Mlt(Q), H = Inn(Q). Then:
1 hLxh−1 = Lh(x) for every h ∈ H,
2 Lx ∈ C(Hx ). Proof:

hLx(y) = h(xy) = h(x)h(y) = xh(y) = Lxh(y)
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Searching for simple automorphic loops

If Q is simple then Mlt(Q) is primitive. Identify Q with
LQ = {Lx ; x ∈ Q} ⊆ Mlt(Q).

How to find LQ in a primitive group G acting on a set Q?

Theorem

Let Q be an automorphic loop, G = Mlt(Q), H = Inn(Q). Then:
1 hLxh−1 = Lh(x) for every h ∈ H,
2 Lx ∈ C(Hx ). Proof:

hLx(y) = h(xy) = h(x)h(y) = xh(y) = Lxh(y)

3 Mlt(Q) is not 4-transitive,
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Searching for simple automorphic loops

If Q is simple then Mlt(Q) is primitive. Identify Q with
LQ = {Lx ; x ∈ Q} ⊆ Mlt(Q).

How to find LQ in a primitive group G acting on a set Q?

Theorem

Let Q be an automorphic loop, G = Mlt(Q), H = Inn(Q). Then:
1 hLxh−1 = Lh(x) for every h ∈ H,
2 Lx ∈ C(Hx ). Proof:

hLx(y) = h(xy) = h(x)h(y) = xh(y) = Lxh(y)

3 Mlt(Q) is not 4-transitive,
4 If Q is simple, Mlt(Q) is not solvable [Vesanen].
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Vainly searching for simple A-loops

This greatly speeds up the general purpose algorithm of Drápal
and Nagy in the LOOPS package:

Algorithm

Let G be a transitive group on Q, H = G1. Is there a loop Q
such that Mlt(Q) ≤ G, Mltℓ(Q) ≤ G? (In the automorphic case,
we also want H ≤ Aut(Q).)

The outcome:
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Vainly searching for simple A-loops

This greatly speeds up the general purpose algorithm of Drápal
and Nagy in the LOOPS package:

Algorithm

Let G be a transitive group on Q, H = G1. Is there a loop Q
such that Mlt(Q) ≤ G, Mltℓ(Q) ≤ G? (In the automorphic case,
we also want H ≤ Aut(Q).)

The outcome:

Theorem

There is no nonassociative simple A-loop of order < 2500.
There are many small nonassocitive simple loops Q with
Innℓ(Q) ≤ Aut(Q).



Introduction A-loops Odd Order theorem Commutative A-loops Primitive groups p-loops Open problems

Automorphic p-loops

A consequence of the Cauchy and Lagrange Theorems:

Theorem

Let Q be a finite commutative automorphic loop and p a prime.
Then |Q| = pk iff all elements of Q are p-elements.

So the concept of a p-loop is unambiguous, except possibly for
p = 2 in the general case.



Introduction A-loops Odd Order theorem Commutative A-loops Primitive groups p-loops Open problems

Automorphic p-loops

A consequence of the Cauchy and Lagrange Theorems:

Theorem

Let Q be a finite commutative automorphic loop and p a prime.
Then |Q| = pk iff all elements of Q are p-elements.

Theorem

Let Q be a finite automorphic loop and p an odd prime. Then
|Q| = pk iff all elements of Q are p-elements.

So the concept of a p-loop is unambiguous, except possibly for
p = 2 in the general case.
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Automorphic loops of order p2

Theorem (Csörgő)

Let p be a prime. An A-loop of order p2 is a group.
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Automorphic loops of order p2

Theorem (Csörgő)

Let p be a prime. An A-loop of order p2 is a group.

Proof.

Original proof uses transversals and Odd Order Theorem. A
quick proof:
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Let p be a prime. An A-loop of order p2 is a group.

Proof.

Original proof uses transversals and Odd Order Theorem. A
quick proof:

1 enough to consider p odd
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Automorphic loops of order p2

Theorem (Csörgő)

Let p be a prime. An A-loop of order p2 is a group.

Proof.

Original proof uses transversals and Odd Order Theorem. A
quick proof:

1 enough to consider p odd
2 (Q, ◦) is a Bruck loop of order p2, hence abelian group
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Automorphic loops of order p2

Theorem (Csörgő)

Let p be a prime. An A-loop of order p2 is a group.

Proof.

Original proof uses transversals and Odd Order Theorem. A
quick proof:

1 enough to consider p odd
2 (Q, ◦) is a Bruck loop of order p2, hence abelian group
3 the associated Lie ring is a Lie algebra over Fp of

dimension two
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Automorphic loops of order p2

Theorem (Csörgő)

Let p be a prime. An A-loop of order p2 is a group.

Proof.

Original proof uses transversals and Odd Order Theorem. A
quick proof:

1 enough to consider p odd
2 (Q, ◦) is a Bruck loop of order p2, hence abelian group
3 the associated Lie ring is a Lie algebra over Fp of

dimension two
4 the only such algebra (classification) violates (I).
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Nilpotency in commutative automorphic p-loops

Definition

A loop Q is (centrally) nilpotent if Q, Q/Z (Q),
(Q/Z (Q))/Z (Q/Z (Q)), . . . , terminates with 1 in finitely many
steps.

Recall that, for instance, Moufang p-loops are nilpotent. Using
associated Bruck loops, we showed:

There is a commutative A-loop of order 8 with trivial center.
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Nilpotency in commutative automorphic p-loops

Definition

A loop Q is (centrally) nilpotent if Q, Q/Z (Q),
(Q/Z (Q))/Z (Q/Z (Q)), . . . , terminates with 1 in finitely many
steps.

Recall that, for instance, Moufang p-loops are nilpotent. Using
associated Bruck loops, we showed:

Theorem

Let Q be a finite commutative automorphic p-loop, p odd. Then
Q is nilpotent.

There is a commutative A-loop of order 8 with trivial center.
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Commutative A-loops of order p3

Theorem

For a prime p, there are precisely 7 commutative automorphic
loops of order p3 up to isomorphism.
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Commutative A-loops of order p3

Theorem

For a prime p, there are precisely 7 commutative automorphic
loops of order p3 up to isomorphism.

Proof.
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For a prime p, there are precisely 7 commutative automorphic
loops of order p3 up to isomorphism.
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1 p = 2 by brute force, for p > 2 they are nilpotent
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Theorem

For a prime p, there are precisely 7 commutative automorphic
loops of order p3 up to isomorphism.

Proof.
1 p = 2 by brute force, for p > 2 they are nilpotent
2 describe free 2-generated nilpotent class two automorphic

p-loop Fp, on (Zp)
6
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For a prime p, there are precisely 7 commutative automorphic
loops of order p3 up to isomorphism.

Proof.
1 p = 2 by brute force, for p > 2 they are nilpotent
2 describe free 2-generated nilpotent class two automorphic

p-loop Fp, on (Zp)
6

3 GL(2,p) acts on Fp

4 orbits of the action on the Grassmannian of 3-dimensional
subspaces of Fp = isom. classes of automorphic loops Q
of order p2 with Z ≤ Z (Q), Z ∼= Zp, Q/Z ∼= Zp × Zp
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Commutative A-loops of order p3

Theorem

For a prime p, there are precisely 7 commutative automorphic
loops of order p3 up to isomorphism.

Proof.
1 p = 2 by brute force, for p > 2 they are nilpotent
2 describe free 2-generated nilpotent class two automorphic

p-loop Fp, on (Zp)
6

3 GL(2,p) acts on Fp

4 orbits of the action on the Grassmannian of 3-dimensional
subspaces of Fp = isom. classes of automorphic loops Q
of order p2 with Z ≤ Z (Q), Z ∼= Zp, Q/Z ∼= Zp × Zp

5 determine the orbits (different for p = 3)
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Anisotropic planes

Let F be a field and V a finite-dimensional vector space over F .
Then q : V → F is a quadratic form if

q(λu) = λ2q(u),

f (u, v) = q(u + v)− q(u)− q(v) is bilinear.

Call U ≤ (V ,q) anisotropic if q(u) 6= 0 for all 0 6= u ∈ U.

Theorem (see Scharlau for odd characteristic)

If F is finite and (V ,q) is anisotropic, then dim(V ) ≤ 2. All such
subspaces of dimension two are isometric.
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Anisotropic planes

Let F be a field and V a finite-dimensional vector space over F .
Then q : V → F is a quadratic form if

q(λu) = λ2q(u),

f (u, v) = q(u + v)− q(u)− q(v) is bilinear.

Call U ≤ (V ,q) anisotropic if q(u) 6= 0 for all 0 6= u ∈ U.

Theorem (see Scharlau for odd characteristic)

If F is finite and (V ,q) is anisotropic, then dim(V ) ≤ 2. All such
subspaces of dimension two are isometric.

Theorem

For A ∈ GL(2,F ), q = det, the plane FI ⊕ FA is anisotropic iff

det(A − λI) = λ2 − tr(A)λ+ det(A)

has no roots.



Introduction A-loops Odd Order theorem Commutative A-loops Primitive groups p-loops Open problems

A-loops from anisotropic planes

Theorem

Let F = Fp, A ∈ GL(2,p) be such that FI ⊕ FA is anisotropic.
Define Q = Q(A) on F × (F × F ) by

(a, x)(b, y) = (a + b, x(I + bA) + y(I − aA)).

Then Q is an A-loop of order p3, exponent p, and
Nucℓ(Q) = Nucr (Q) = Nuc(Q) = Z (Q) = 1.
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Theorem

Let F = Fp, A ∈ GL(2,p) be such that FI ⊕ FA is anisotropic.
Define Q = Q(A) on F × (F × F ) by

(a, x)(b, y) = (a + b, x(I + bA) + y(I − aA)).

Then Q is an A-loop of order p3, exponent p, and
Nucℓ(Q) = Nucr (Q) = Nuc(Q) = Z (Q) = 1.

1 The condition “FI ⊕ FA anisotropic” is needed to get a
quasigroup.
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A-loops from anisotropic planes

Theorem

Let F = Fp, A ∈ GL(2,p) be such that FI ⊕ FA is anisotropic.
Define Q = Q(A) on F × (F × F ) by

(a, x)(b, y) = (a + b, x(I + bA) + y(I − aA)).

Then Q is an A-loop of order p3, exponent p, and
Nucℓ(Q) = Nucr (Q) = Nuc(Q) = Z (Q) = 1.

1 The condition “FI ⊕ FA anisotropic” is needed to get a
quasigroup.

2 Can we find suitable A for every p?
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Theorem

For every p there is A ∈ GL(2,p) such that FI ⊕ FA is
anisotropic.
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Theorem

For every p there is A ∈ GL(2,p) such that FI ⊕ FA is
anisotropic.

Definition (Types)

Call A ∈ GL(2,p) with FI ⊕ FA anisotropic of:
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Theorem

For every p there is A ∈ GL(2,p) such that FI ⊕ FA is
anisotropic.

Definition (Types)

Call A ∈ GL(2,p) with FI ⊕ FA anisotropic of:
1 type 1 if tr(A) = 0,
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Theorem

For every p there is A ∈ GL(2,p) such that FI ⊕ FA is
anisotropic.

Definition (Types)

Call A ∈ GL(2,p) with FI ⊕ FA anisotropic of:
1 type 1 if tr(A) = 0,
2 type 2 if tr(A) 6= 0 and det(A) is a quadratic residue,
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Theorem

For every p there is A ∈ GL(2,p) such that FI ⊕ FA is
anisotropic.

Definition (Types)

Call A ∈ GL(2,p) with FI ⊕ FA anisotropic of:
1 type 1 if tr(A) = 0,
2 type 2 if tr(A) 6= 0 and det(A) is a quadratic residue,
3 type 3 if tr(A) 6= 0 and det(A) is a quadratic nonresidue.
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Theorem

For every p there is A ∈ GL(2,p) such that FI ⊕ FA is
anisotropic.

Definition (Types)

Call A ∈ GL(2,p) with FI ⊕ FA anisotropic of:
1 type 1 if tr(A) = 0,
2 type 2 if tr(A) 6= 0 and det(A) is a quadratic residue,
3 type 3 if tr(A) 6= 0 and det(A) is a quadratic nonresidue.

It appears that the isomorphism type of Q = Q(A) corresponds
to the type of A. (Checked computationally for p ≤ 5.)
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Open problems

1 Is there a finite simple nonassociative A-loop?
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2 Does |x | divide |Q| in noncommutative A-loops of even

order?
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3 Does Lagrange Theorem hold in noncommutative A-loops

of even order?
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Open problems

1 Is there a finite simple nonassociative A-loop?
2 Does |x | divide |Q| in noncommutative A-loops of even

order?
3 Does Lagrange Theorem hold in noncommutative A-loops

of even order?
4 Is “2-loop” well-defined for A-loops?
5 Do Sylow p- and Hall π-Theorems hold in (commutative)

A-loops?
6 Classify A-loops of order p3.
7 Classify commutative A-loops of order p4.
8 Classify A-loops of order pq.
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