

On a class of left MQQs with degree invariant to parastrophy

Simona Samardjiska (joint work with Danilo Gligoroski)

Department of Telematics, NTNU, Norway simonas@item.ntnu.no,danilog@item.ntnu.no

LOOPS '11, July 25 - 27, 2011

Introduction - (Left) Multivariate Quasigroups

Every (left) quasigroup (Q, q) of order 2^n :

$$q(x,y) = z \iff q(x_1, \dots, x_n, y_1, \dots, y_n) = = (q^{(1)}(x_1, \dots, x_n, y_1, \dots, y_n), \dots, q^{(n)}(x_1, \dots, x_n, y_1, \dots, y_n)).$$

Each of the $q^{(s)}$ has a unique ANF form over GF(2).

$$q^{(s)}(x_1, ..., x_n, y_1, ..., y_n) = \bigoplus_{\substack{j = (j_1, ..., j_n) \in \mathbb{Z}_2^n \\ k = (k_1, ..., k_n) \in \mathbb{Z}_2^n}} a_{jk} x_1^{j_1} x_2^{j_2} \cdots x_n^{j_n} y_1^{k_1} \cdots y_n^{k_n},$$

where $a_{jk} \in \mathbb{Z}_2$, x^0 is an empty string and $x^1 = x$.

Introduction - (Left) MQQs

If all $q^{(s)}$ are of degree 2 -

(Left) Multivariate Quadratic Quasigroups (MQQ)

- Suitable for symbolic computation
- Can be used in Multivariate Public Key cryptosystems
- Algorithms for construction
 - Gligoroski et al. (2008) introduction of MQQ
 - Christov (2009) characterization and algorithm for quadratic loops
 - Samardjiska et al. (2010) characterization and algorithms for T-Multivariate Quasigroups and permutations of any degree
 - Chen et al. (2010)- algorithm for bilinear quadratic quasigroups

Introduction - (Left) MQQs

If all $q^{(s)}$ are of degree 2 -

(Left) Multivariate Quadratic Quasigroups (MQQ)

- Suitable for symbolic computation
- Can be used in Multivariate Public Key cryptosystems
- Algorithms for construction
 - Gligoroski et al. (2008) introduction of MQQ
 - Christov (2009) characterization and algorithm for quadratic loops
 - Samardjiska et al. (2010) characterization and algorithms for T-Multivariate Quasigroups and permutations of any degree
 - Chen et al. (2010)- algorithm for bilinear quadratic quasigroups

Introduction - (Left) MQQs

If all $q^{(s)}$ are of degree 2 -

(Left) Multivariate Quadratic Quasigroups (MQQ)

- Suitable for symbolic computation
- Can be used in Multivariate Public Key cryptosystems
- Algorithms for construction
 - Gligoroski et al. (2008) introduction of MQQ
 - Christov (2009) characterization and algorithm for quadratic loops
 - Samardjiska et al. (2010) characterization and algorithms for T-Multivariate Quasigroups and permutations of any degree
 - Chen et al. (2010)- algorithm for bilinear quadratic quasigroups

Typical scenario:

- **Encryption**: the (left) quasigroup q
- Decryption: the parastrophe q_{\setminus} :

$$q_{\setminus}(x,y) = z \Leftrightarrow q(x,z) = y.$$

Important:

- In the decryption process: The parastrophes are not in their ANF form
- Why? In general, time and space consuming!
 - Time: Can be difficult to find the ANF of the parastrophe
 - Space: Can have any degree and exponentially many terms

Typical scenario:

- **Encryption**: the (left) quasigroup q
- Decryption: the parastrophe q_{\setminus} :

$$q_{\setminus}(x,y) = z \Leftrightarrow q(x,z) = y.$$

Important:

- In the decryption process: The parastrophes are not in their ANF form
- Why? In general, time and space consuming!
 - Time: Can be difficult to find the ANF of the parastrophe
 - Space: Can have any degree and exponentially many terms

So, is this a problem?

- MQQ-sig: bilinear quasigroups of order 2⁸
- MQQ-enc: left quasigroups of order 2^8

Crucial: The decryption can be made by

- Using lookup tables the Caley table of the quasigroup (i.e. the parastrophe)
- Solving small systems of multivariate quadratic equations

So, is this a problem?

- MQQ-sig: bilinear quasigroups of order 2^8
- MQQ-enc: left quasigroups of order 2^8

Crucial: The decryption can be made by

- Using lookup tables the Caley table of the quasigroup (i.e. the parastrophe)
- Solving small systems of multivariate quadratic equations

But... what about other types of public key encryption like

Identity based encryption (IBE)?

Why IBE:

- I. The possibilities of IBE are enormous:
 - No need for public key certificates public key = identity of its owner
 - Revocation of public keys
 - Delegation of decryption keys
 - Generalization to more powerful HIBE, ABE, Functional encryption

But... what about other types of public key encryption like

Identity based encryption (IBE)?

Why IBE?

- I. The possibilities of IBE are enormous:
 - No need for public key certificates public key = identity of its owner
 - Revocation of public keys
 - Delegation of decryption keys
 - Generalization to more powerful HIBE, ABE, Functional encryption

But... what about other types of public key encryption like

Identity based encryption (IBE)?

Why IBE?

1. The possibilities of IBE are enormous:

- No need for public key certificates public key = identity of its owner
- Revocation of public keys
- Delegation of decryption keys
- Generalization to more powerful HIBE, ABE, Functional encryption

Multivariate IBE scheme?

Why is that important?

- 2. So far only Boneh-Franklin and Boneh-Boyen schemes are practical!
 - based on computational and decisional bilinear Diffie-Hellman problem
- 3. A multivariate IBE has not been proposed so far!

Can we use quasigroups to create a

Multivariate IBE scheme?

Why is that important?

- 2. So far only Boneh-Franklin and Boneh-Boyen schemes are practical!
 - based on computational and decisional bilinear Diffie-Hellman problem
- 3. A multivariate IBE has not been proposed so far!

Can we use quasigroups to create a

Multivariate IBE scheme?

Why is that important?

- 2. So far only Boneh-Franklin and Boneh-Boyen schemes are practical!
 - based on computational and decisional bilinear Diffie-Hellman problem
- 3. A multivariate IBE has not been proposed so far!

How does IBE work?

Motivation

- The private key s (for decryption) for user ID should have explicit multivariate form!
- The quasigroups used can be of orders as big as 2^{64} , 2^{128} , 2^{256} !

Natural first step:

To find a class of left MQQs such that:

- The left parastrophe can be easily represented
- The left parastrophe is also a left MQQ, i.e. is of degree 2

Motivation

- The private key s (for decryption) for user ID should have explicit multivariate form!
- The quasigroups used can be of orders as big as 2^{64} , 2^{128} , 2^{256} !

Natural first step:

To find a class of left MQQs such that:

- The left parastrophe can be easily represented
- The left parastrophe is also a left MQQ, i.e. is of degree 2

Construction of left quasigroups (SS 2010)

 $x_1, \ldots, x_n, y_1, \ldots, y_n$ Boolean variables, w > 1.

 $\mathbf{D_1}$, $\mathbf{D_2}$, \mathbf{D} - nonsingular Bool. matrices, \mathbf{c} , $\mathbf{c_1}$, $\mathbf{c_2}$, $\mathbf{c_3}$, - Bool. vectors. **A** and **B** - nonsingular upper triangular matrices of random affine Boolean expressions, such that:

- $\forall i = 1, \ldots, n, f_{ii} = 1 \text{ and } g_{ii} = 1, \text{ and }$
- $\forall i, j, i < j \le n, f_{ij} \text{ and } g_{ij} \text{ depend only on } x_1, \ldots, x_n, y_{i+1}, \ldots, y_n.$

Then

$$q(x_1, \dots, x_n, y_1, \dots, y_n) = \mathbf{A} \cdot (x_1, \dots, x_n) + \mathbf{B} \cdot (y_1, \dots, y_n) + \mathbf{c}$$

$$q_1(x_1, \dots, x_n, y_1, \dots, y_n) =$$

$$= \mathbf{D}(q(\mathbf{D}_1(x_1, \dots, x_n) + \mathbf{c}_1, \mathbf{D}_2(y_1, \dots, y_n) + \mathbf{c}_2)) + \mathbf{c}_3$$

define left MQQs (Q,q) and (Q,q_1) of order 2^n , $Q=\mathbb{Z}_2^n$.

The first modification

$$q(\mathbf{x}, \mathbf{y}) = \mathbf{A}(\mathbf{x}, \mathbf{y}) \cdot \mathbf{x} + \mathbf{B}(\mathbf{x}, \mathbf{y}) \cdot \mathbf{y} + \mathbf{c} \qquad (SS2010)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$q(\mathbf{x}, \mathbf{y}) = \mathbf{A}(\mathbf{x}) + \mathbf{B}(\mathbf{x}) \cdot \mathbf{y} + \mathbf{c}$$

- $\mathbf{A}(\mathbf{x})$ vector of random quadratic Boolean expressions
- $\mathbf{B}(\mathbf{x})$ nonsingular upper triangular matrix, such that:
 - $\forall i = 1, ..., n, b_{ii}(\mathbf{x}) = 1, \text{ and }$
 - $\forall i, j, i < j \leq n, b_{ij}(\mathbf{x})$ random affine Boolean expressions of x_1, \ldots, x_n .

The parastrophe is

$$q_{\backslash}(\mathbf{x}, \mathbf{y}) = \mathbf{B}^{-1}(\mathbf{x}) \cdot \mathbf{y} + \mathbf{B}^{-1}(\mathbf{x}) \cdot \mathbf{A}(\mathbf{x}) + \mathbf{B}^{-1}(\mathbf{x}) \cdot \mathbf{c}$$

When is $q_{\setminus}(\mathbf{x}, \mathbf{y})$ quadratic?

$$q_{\backslash}(\mathbf{x}, \mathbf{y}) = \mathbf{B}^{-1}(\mathbf{x}) \cdot \mathbf{y} + \mathbf{B}^{-1}(\mathbf{x}) \cdot \mathbf{A}(\mathbf{x}) + \mathbf{B}^{-1}(\mathbf{x}) \cdot \mathbf{c}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Iff

- $\mathbf{B}^{-1}(\mathbf{x})$ has elements affine expressions, and
- $deg(\mathbf{B}^{-1}(\mathbf{x}) \cdot \mathbf{A}(\mathbf{x})) = 2.$

When are the elements of $B^{-1}(x)$ affine expressions?

Iff

$$\forall i,j,\,i\leq j\leq n$$

$$\sum_{k=i}^{j} (\mathbf{x}^{T} B_{ik} \mathsf{B}_{kj}^{T} \mathbf{x} + \mathbf{x}^{T} B_{ik} \beta_{kj} + b_{ik} \mathsf{B}_{kj}^{T} \mathbf{x} + b_{ik} \beta_{kj}) = 0$$

where

- $\mathbf{B}(\mathbf{x}): b_{ij}(\mathbf{x}) = \mathbf{x}^T \cdot B_{ij} + b_{ij}$, and B_{ij} , \mathbf{x} column vectors,
- $\mathbf{B}^{-1}(\mathbf{x})$: $\beta_{ij}(\mathbf{x}) = \mathbf{x}^T \cdot \mathsf{B}_{ij} + \beta_{ij}$, and B_{ij} column vector,

Construction

- expanded form, and
- backtracking algorithm,

When are the elements of $B^{-1}(x)$ affine expressions?

Iff

$$\forall i,j,\,i\leq j\leq n$$

$$\sum_{k=i}^{j} (\mathbf{x}^{T} B_{ik} \mathsf{B}_{kj}^{T} \mathbf{x} + \mathbf{x}^{T} B_{ik} \beta_{kj} + b_{ik} \mathsf{B}_{kj}^{T} \mathbf{x} + b_{ik} \beta_{kj}) = 0$$

where

- $\mathbf{B}(\mathbf{x}): b_{ij}(\mathbf{x}) = \mathbf{x}^T \cdot B_{ij} + b_{ij}$, and B_{ij} , \mathbf{x} column vectors,
- $\mathbf{B}^{-1}(\mathbf{x})$: $\beta_{ij}(\mathbf{x}) = \mathbf{x}^T \cdot \mathsf{B}_{ij} + \beta_{ij}$, and B_{ij} column vector,

Construction

- expanded form, and
- backtracking algorithm,

When are the elements of $B^{-1}(x)$ affine expressions?

Iff

 $\forall i,j,\,i\leq j\leq n$

$$\sum_{k=i}^{j} (\mathbf{x}^{T} B_{ik} \mathsf{B}_{kj}^{T} \mathbf{x} + \mathbf{x}^{T} B_{ik} \beta_{kj} + b_{ik} \mathsf{B}_{kj}^{T} \mathbf{x} + b_{ik} \beta_{kj}) = 0$$

where

- $\mathbf{B}(\mathbf{x}): b_{ij}(\mathbf{x}) = \mathbf{x}^T \cdot B_{ij} + b_{ij}$, and B_{ij} , \mathbf{x} column vectors,
- $\mathbf{B}^{-1}(\mathbf{x})$: $\beta_{ij}(\mathbf{x}) = \mathbf{x}^T \cdot \mathsf{B}_{ij} + \beta_{ij}$, and B_{ij} column vector,

Construction

- expanded form, and
- backtracking algorithm,

Sufficient conditions

If
$$\forall i, j, i \leq j \leq n$$

$$\mathbf{1} \sum_{k=i}^{j} B_{ik} \mathsf{B}_{kj}^{T} = \mathbf{0}$$

$$\sum_{k=i}^{j} B_{ik} \beta_{kj} + b_{ik} \mathsf{B}_{kj}^{T} = \mathbf{0}$$

$$\sum_{k=i}^{J} b_{ik} \beta_{kj} = \mathbf{0}$$

then the elements of $\mathbf{B}^{-1}(\mathbf{x})$ are affine expressions.

Still not good enough for construction!

Sufficient conditions

If
$$\forall i, j, i \leq j \leq n$$

$$\mathbf{1} \sum_{k=i}^{j} B_{ik} \mathsf{B}_{kj}^{T} = \mathbf{0}$$

$$\sum_{k=i}^{j} B_{ik} \beta_{kj} + b_{ik} \mathsf{B}_{kj}^{T} = \mathbf{0}$$

$$\sum_{k=i}^{j} b_{ik} \beta_{kj} = \mathbf{0}$$

then the elements of $\mathbf{B}^{-1}(\mathbf{x})$ are affine expressions.

Still not good enough for construction!

Lemma

If $\forall i, j, i \leq j \leq n$

$$\beta_{ij} = b_{ij} + \sum_{m=1}^{j-i} \sum_{i < r_1 < \dots < r_m < j} b_{ir_1} b_{r_1 r_2} \dots b_{r_m j}$$

$$B_{ij} = B_{ij} + \sum_{m=1}^{j-1} \sum_{\substack{i < r_1 < \dots < r_m < j \\ t \in \{1, \dots, m\}}} b_{ir_1} \dots B_{r_t r_{t+1}} \dots b_{r_m j}$$

$$\sum_{m=1}^{J-i} \sum_{i < r_1 < \dots < r_m < j} B_{ir_1} b_{r_1 r_2} \dots b_{r_{m-1} r_m} B_{r_m j}^T = \mathbf{0}$$

then the elements of $\mathbf{B}^{-1}(\mathbf{x})$ are affine expressions.

Theorem for construction

Let
$$q(\mathbf{x}, \mathbf{y}) = \mathbf{A}(\mathbf{x}) + \mathbf{B}(\mathbf{x}) \cdot \mathbf{y} + \mathbf{c}$$
 where

- $\mathbf{B}(\mathbf{x}): b_{ij}(\mathbf{x}) = \mathbf{x}^T \cdot B_{ij} + b_{ij}$, where B_{ij} , \mathbf{x} column vectors,
- $\mathbf{A}(\mathbf{x}) : a_i(\mathbf{x})$ Boolean expressions.

If

- $B_{2k_1+1,2k_2} \neq \mathbf{0}$, $B_{2k_1+1,2k_2+1} = \mathbf{0}$, $B_{2k_1,2k_2+1} = \mathbf{0}$, $B_{2k_1,2k_2} = \mathbf{0}$,
- $b_{2k_1+1,2k_2} \neq 0, \ b_{2k_1+1,2k_2+1} \neq 0, \ b_{2k_1,2k_2} \neq 0, \ b_{2k_1,2k_2+1} = 0,$
- $a_{2k}(\mathbf{x})$ is affine and $a_{2k+1}(\mathbf{x})$ is quadratic,

Then q is a left MQQ with degree invariant to the parastrophe \setminus .

Example

Let $\mathbf{A}(\mathbf{x})$ be a vector of dimension 4 and let $\mathbf{B}(\mathbf{x})$ be 4×4 matrix given by

$$\mathbf{A}(\mathbf{x}) = \begin{bmatrix} 1 + x_3 + x_1x_3 + x_2x_3 + x_4 \\ 1 + x_4 \\ 1 + x_2 + x_4 + x_3x_4 \\ 1 + x_1 + x_4 \end{bmatrix},$$

$$\mathbf{B}(\mathbf{x}) = \begin{bmatrix} 1 & x_1 + x_2 + x_3 & 1 & 1 + x_1 + x_3 + x_4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & x_1 + x_2 + x_4 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

and let

$$q(\mathbf{x}, \mathbf{y}) = \mathbf{D}(\mathbf{A}(\mathbf{D_1} \cdot \mathbf{x} + \mathbf{c_1}) + \mathbf{B}(\mathbf{D_1} \cdot \mathbf{x} + \mathbf{c_1}) \cdot \mathbf{D_2} \cdot \mathbf{y} + \mathbf{c_2} + \mathbf{c}) + \mathbf{c_3}.$$

Example

$$q(x_1, \dots, x_4, y_1, \dots, y_4) =$$

$$\begin{bmatrix}
1 + x_1 + x_2 + x_1x_2 + x_3 + x_1x_3 + x_2x_3 + x_4 + x_1x_4 + x_2x_4 + y_1 + \\
+x_1y_1 + x_4y_1 + y_2 + x_1y_2 + x_2y_2 + x_4y_2 + x_1y_3 + x_4y_3 + x_2y_4
\end{bmatrix}$$

$$1 + x_1x_2 + x_3 + x_1x_3 + x_1x_4 + x_2x_4 + x_3x_4 + y_1 + x_1y_1 + \\
+x_4y_1 + x_4y_2 + x_1y_3 + x_4y_3 + x_1y_4
\end{bmatrix}$$

$$x_1x_2 + x_1x_3 + x_1x_4 + x_2x_4 + x_3x_4 + x_1y_1 + x_4y_1 + y_2 + \\
+x_4y_2 + y_3 + x_1y_3 + x_4y_3 + x_1y_4$$

$$1 + x_1 + x_3 + x_2x_3 + x_4 + x_3x_4 + x_1y_2 + x_2y_2 + y_4 + x_1y_4 + x_2y_4$$

is a Left MQQ of order 2^4 .

Example

$$q_{\backslash}(x_1,\ldots,x_4,y_1,\ldots,y_4) = \\ x_2 + x_1x_3 + x_1x_4 + x_2x_4 + y_1 + x_1y_1 + y_2 + x_4y_2 + y_3 + x_4y_4 \\ x_1 + x_1x_2 + x_3 + x_4 + x_1x_4 + x_2x_4 + x_3x_4 + y_1 + x_2y_1 + x_1y_2 + \\ + x_2y_2 + x_4y_2 + y_4 + x_1y_4 + x_2y_4 + x_4y_4 \\ 1 + x_1 + x_1x_2 + x_1x_3 + x_4 + x_3x_4 + y_1 + x_1y_1 + x_2y_1 + x_1y_2 + \\ + x_2y_2 + y_3 + x_1y_4 + x_2y_4 \\ 1 + x_1 + x_2 + x_1x_2 + x_3 + x_4 + x_1x_4 + x_2x_4 + x_3x_4 + x_2y_1 + x_1y_2 + \\ + x_2y_2 + x_4y_2 + y_4 + x_1y_4 + x_2y_4 + x_4y_4 \end{aligned}$$

is again a Left MQQ of order 2^4 .

Thank you for your attention!

