

MORE PROPERTIES OF MINIMALLY NONASSOCIATIVE MOUFANG LOOPS

Andrew Rajah* & Wing Loon Chee

School of Mathematical Sciences
Universiti Sains Malaysia

Conference Loops '11

*Speaker

Preliminaries

Definitions

 Moufang loop: a loop that satisfies any of the following identities:

$$(xy)(zx) = [x(yz)]x,$$

$$(xy)(zx) = x[(yz)x],$$

$$x[y(xz)] = [(xy)x]z,$$

$$[(zx)y]x = z[x(yx)].$$

 Minimal nonassociativity: the property that a structure is not associative but all its proper substructures and proper quotient structures are associative.

* Note: As opposed to standard convention, the associativity of quotient structures is imposed.

Notations

• L : Minimally nonassociative

Moufang loop

• M : Maximal normal subloop

• (x, y, z): Associator of x, y and z

• L_a : Associator subloop

• N(L) : Nucleus

Motivation

 Every minimally nonassociative Moufang loop is not a direct product of a nonassociative Moufang loop and a group.

Some Results on Minimally Nonassociative Moufang Loops

Theorem

If L is of odd order, then L_a is an elementary abelian group and the unique minimal normal subloop of L.

Theorems

- a) $|L|/|N(L)| \neq 1$, p or pq where p and q are (not necessarily distinct) primes.
- b) Suppose $|L| = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n}$ where p_1 , p_2 , ..., p_n are distinct odd primes and $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{Z}^+$. Then
 - i. $|L_a| = p_i^{\beta_i}$ for some i and β_i such that $\alpha_i \ge 2$ and $0 < \beta_i < \alpha_i$;
 - ii. $p_i^{\alpha_i} \nmid |N(L)|$ for all i.
 - iii. $\alpha_k \ge 3$ for some k.

Examples

• Suppose $|L| = pq^2r^3$.

$$\Rightarrow |L_a| = q$$
, r or r^2 ; and $|N(L)| = 1$, q , r , r^2 , qr or qr^2 .

• Suppose $|L| = p^2q^4$.

$$\Rightarrow |L_a| = p, q, q^2 \text{ or } q^3; \text{ and}$$

 $|N(L)| = 1, p, q, q^2, q^3, pq \text{ or } pq^2.$

Phillips' problem:

Does there exist a Moufang loop of odd order with trivial nucleus?

Even order case: Solved!

Existence of $M(S_3, 2)$, the nonassociative Moufang loop of order 12 with trivial nucleus.

Relevant results towards solving Phillips' problem for the odd order case.

The following statements are equivalent:

1.
$$N(L) \neq \{1\}$$
.

2.
$$L_a \leq N(L) < M < L$$
.

3.
$$(L_a, M, L) = \{1\}.$$

Corollary: $N(L) = \{1\} \Leftrightarrow L = \langle k, w, \ell \rangle$ for some $k \in L_a$, $w \in M - L_a$ and $\ell \in L - M$.

Proof of $(L_a, M, L) = \{1\} \Rightarrow L_a \subseteq N(L)'$:

- Take $k \in L_a$, $x \in L M$ and $\ell \in L$.
- Write $\ell = wx^{\alpha}$ for some $w \in M$ and $\alpha \in \mathbb{Z}^+$.
- $(k, x, \ell) = (k, x, wx^{\alpha}) = (k, x, w) = 1.$
- Since $(L_a, M, L) = (L_a, L M, L) = \{1\}$, we have $(L_a, L, L) = \{1\}$.
- $\therefore L_a \subseteq N(L).$

More Results

- L_a is a Sylow subloop of $N(L) \Leftrightarrow L_a = N(L)$.
- L_a is cyclic $\Rightarrow L_a \subseteq N(L) \Rightarrow N(L) \neq \{1\}$.
- $(k, M, x) = [k, M] = \{1\}$ for some $k \in L_a \{1\}$ and $x \in L M \Rightarrow L_a \subseteq N(L) \Rightarrow N(L) \neq \{1\}$.

Proof of L_a is a Sylow subloop of N(L) $\Rightarrow L_a = N(L)'$:

- Suppose $L_a \neq N$.
- $\exists H < N \text{ such that } |H| = |N|/|L_a|.$
- Since $L_a \triangleright N$, it follows that $HL_a \leq N$ and $|HL_a| = |H| |L_a| / |H \cap L_a| = |H| |L_a| = |N|$.
- $N = HL_a$.

- Take $h \in H$ and $n \in N$.
- $N = HL_a \Rightarrow n = h_1 k$ for some $h_1 \in H$ and $k \in L_a$.
- $n^{-1}hn = (h_1k)^{-1}h(h_1k) = k^{-1}(h_1^{-1}hh_1)k = h_1^{-1}hh_1$ $\in H \text{ since } L_a \subseteq C_l(N).$
- $H \triangleleft N \triangleleft L$ and H is a Hall subloop of $N \Rightarrow H \triangleleft L$.
- L/H is associative $\Rightarrow L_a \subseteq H$.
- $gcd(|L_a|, |H|) = 1 \Rightarrow |L_a| = 1 \Rightarrow \Leftarrow$

$$\therefore L_a = N$$

Future Direction of Research

- Eliminate the condition "all proper quotient loops are associative" and get similar results.
- Solve Phillips' problem for minimally nonassociative Moufang loops.

Thank You WINIVERSITI SAINS MALAYSIA