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Drápal’s Construction

0-bijections

Definition

Let R be a ring. A partial mapping f : R→ R is called a 0-bijection
if twe following conditions hold;

f i(0) is defined for every i ∈ N;

for each i ∈ N there exists a unique x ∈ R such that f i(x) = 0:
such an element is denoted by f−i(0);

f(0) ∈ R∗.

If there exists k ∈ N such that fk(0) = 0 then such k is called the
0-order of f .
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Drápal’s Construction

Drápal’s Construction

Theorem (Aleš Drápal)

Let M be a faithful module over a commutative ring R. Let s ∈ R
and t ∈ R∗ be such that

f(x) =
sx + 1
tx + 1

is a 0-bijection of 0-order k. We define an operation ∗ on the
set Q = M × Zk as follows:

(a, i) ∗ (b, j) =
(

a + b
1 + tf i(0)f j(0)

, i + j
)

.

Then (Q, ∗) is a commutative loop with Inn(Q) metacyclic.
Nλ = Nρ = 0, Nµ = M × {0}.
Q is automorphic if and only if s = 1.
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Drápal’s Construction

Examples of 0-bijection

Example

k = 2 if and only if s = −1 and t + 1 ∈ R∗.

Example

Putting s = 1 and t = −3 we obtain k = 3 for any R where 2 is
invertible.

Simplification

For the sake of simplicity, we shall assume the following:

s = 1;

char(R) 6= 2;

R is a field.
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0-bijections on fields

Translating fractional mappings

Fact
A mapping

f(x) =
x + 1
tx + 1

is a 0-bijection of order k if and only if

the number k is the minimal one satisfying(
1 1
t 1

)k
·
(

0
1

)
=

(
0
a

)
, for some a ∈ R,(

1 1
t 1

)`
·
(

0
1

)
=

(
b
0

)
for no ` ∈ N.
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0-bijections on fields

Eigenvalues of the automorphism

Definition
Denote

F =

(
1 1
t 1

)
,

Its characteristic polynomial is

P(x) = x2 + 2x + 1 − t = (x − λ)(x − µ)

Fact

The eigenvalues are non-zero;

disc(P) = 4t hence λ = µ if and only if t = 0.
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0-bijections on fields

Necessary condition for 0-order

Lemma(
1 1
t 1

)k
·
(

0
1

)
=

(
0
a

)
if and only if

(
λ

µ

)k
= 1,(

1 1
t 1

)`
·
(

0
1

)
=

(
b
0

)
if and only if

(
λ

µ

)`
= −1,

Corollary

The order k must be odd or infinite.



Commutative centerless loops with metacyclic inner mapping groups 8 / 15

0-bijections on fields

Necessary condition for 0-order

Lemma(
1 1
t 1

)k
·
(

0
1

)
=

(
0
a

)
if and only if

(
λ

µ

)k
= 1,(

1 1
t 1

)`
·
(

0
1

)
=

(
b
0

)
if and only if

(
λ

µ

)`
= −1,

Corollary

The order k must be odd or infinite.



Commutative centerless loops with metacyclic inner mapping groups 9 / 15

0-bijections on fields

Necessary and sufficient condition

Proposition

The element ξ =
λ

µ
has to be a primitive k-th root of unity and

if λ,µ lie in the basic field R then ξ lies in R too;

if λ,µ do not lie in the basic field R then ξ lies in the
quadratic extension R[λ] and N(ξ) = 1.

Definition

Let ν lie in a quadratic extension of a field K. Then the norm of ν
is computed as N(ν) = ν · ν̄.
The element ν̄ is called the conjugate of ν. The elements ν and ν̄
share the same minimal quadratic polynomial with coefficients
in K, i.e. the polynomial x2 − (ν+ ν̄)x + νν̄.
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0-bijections on fields

Examples of suitable primitive roots

Examples

Let R = Fq. Then
1

k
√

1 lies in R iff k divides q − 1;
2

k
√

1 is quadratic and of norm 1 iff k divides q + 1.

Let R = Q. Then only 3
√

1 is quadratic.

Let R = R. Then all roots of 1 lie in C and are of norm 1.
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Drápal’s construction revised

Drápal’s Construction, New Point of View

Theorem (A. Drápal; P. J. & D. Simon)

Let R be a field, char(R) 6= 2. Take ξ, a k-th primitive root of
unity, k odd, such that ξ ∈ R or ξ lies in a quadratic extension
of R and N(ξ) = 1. We define an operation ∗ on the
set Q = R× Zk as follows:

(a, i) ∗ (b, j) =
(

(a + b) · (ξ
i + 1) · (ξj + 1)
2 · (ξi+j + 1)

, i + j
)

.

Then (Q, ∗) is a commutative automorphic loop.

Corollary

If k and p are primes then the construction gives the only (up to
isomorphism) non-associative commutative automorphic loop of
order kp.
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Drápal’s construction revised

Construction of Bruck loops of order pq

Theorem (P. J. & D. Simon)

Let R be a field, char(R) 6= 2. Take ξ, a k-th primitive root of
unity, k odd, such that ξ ∈ R or ξ lies in a quadratic extension
of R and N(ξ) = 1. We define an operation ◦ on the
set Q = R× Zk as follows:

(a, i)◦ (b, j) =
(

a · (ξi+2j + 1) · (ξi + 1) + b · ξi · (ξj + 1)2

(ξi+j + 1)2 , i + j
)

.

Then (Q, ◦) is a Bruck loop with Z(Q) = 0.
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Drápal’s construction revised

Different cases

How the considerations differ in other cases:

if R is not a field then we have to construct a projective line
over R;

if R is not a field then we have to understand the primitive
roots of unity;

if R is not a field then we have to compute in quadratic
extensions of R;

if s is general then
(
ξi · (ξ− s) + ξs − 1

)
∈ R∗ for all i ∈ Z;
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Drápal’s construction revised

Enumeration of loops of order k · q

Theorem (P.J.)

Let q be an odd prime and let k > 1. The number of centerless
loops of order k · p, with the middle nucleus equal to Zq, that
arise from the construction, is, up to isomorphism,

• q − 2 if k = 2

• q − k + 2
2

if k is an odd divisor of q + 1
(one of them
automorphic)

• q − k + 1
2

if k is an even divisor of q + 1

• q − k
2

if k is an odd divisor of q − 1
(one of them
automorphic)

• q − k − 1
2

if k is an even divisor of q − 1

• 0 otherwise
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