Commutative centerless loops with metacyclic inner mapping groups

Přemysl Jedlička¹, Denis Simon²

¹ Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture), Prague

> ²Laboratoire de Mathématiques Nicolas Oresme Université de Caen

> > Loops '11, Třešť 25 July 2011

Denis Simon

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

0-bijections

Definition

Let *R* be a ring. A partial mapping $f : R \rightarrow R$ is called a 0-*bijection* if twe following conditions hold;

- $f^i(0)$ is defined for every $i \in \mathbb{N}$;
- for each $i \in \mathbb{N}$ there exists a unique $x \in R$ such that $f^i(x) = 0$: such an element is denoted by $f^{-i}(0)$;
- $f(0) \in R^*$.

If there exists $k \in \mathbb{N}$ such that $f^k(0) = 0$ then such k is called the 0-order of f.

(日) (日) (日) (日) (日) (日) (日)

Drápal's Construction

Theorem (Aleš Drápal)

Let *M* be a faithful module over a commutative ring *R*. Let $s \in R$ and $t \in R^*$ be such that

$$f(x) = \frac{sx+1}{tx+1}$$

is a 0-bijection of 0-order k. We define an operation * on the set $Q = M \times \mathbb{Z}_k$ as follows:

$$(a,i)*(b,j) = \left(\frac{a+b}{1+tf^{i}(0)f^{j}(0)}, i+j\right).$$

Then (Q, *) is a commutative loop with Inn(Q) metacyclic. $N_{\lambda} = N_{\rho} = 0, N_{\mu} = M \times \{0\}.$ *Q* is automorphic if and only if s = 1. Drápal's Construction

Examples of 0-bijection

Example

k = 2 if and only if s = -1 and $t + 1 \in R^*$.

Example

Putting s = 1 and t = -3 we obtain k = 3 for any R where 2 is invertible.

Simplification

- s = 1;
- char(R) \neq 2;
- R is a field.

Example

k = 2 if and only if s = -1 and $t + 1 \in R^*$.

Example

Putting s = 1 and t = -3 we obtain k = 3 for any R where 2 is invertible.

Simplification

- s = 1;
- char(R) \neq 2;
- R is a field.

Example

k = 2 if and only if s = -1 and $t + 1 \in R^*$.

Example

Putting s = 1 and t = -3 we obtain k = 3 for any R where 2 is invertible.

Simplification

- *s* = 1;
- char(R) \neq 2;
- R is a field.

Example

k = 2 if and only if s = -1 and $t + 1 \in R^*$.

Example

Putting s = 1 and t = -3 we obtain k = 3 for any R where 2 is invertible.

Simplification

•
$$s = 1;$$

- char(R) \neq 2;
- R is a field.

Example

k = 2 if and only if s = -1 and $t + 1 \in R^*$.

Example

Putting s = 1 and t = -3 we obtain k = 3 for any R where 2 is invertible.

Simplification

- *s* = 1;
- char(R) \neq 2;
- R is a field.

Example

k = 2 if and only if s = -1 and $t + 1 \in R^*$.

Example

Putting s = 1 and t = -3 we obtain k = 3 for any R where 2 is invertible.

Simplification

- *s* = 1;
- char(R) \neq 2;
- R is a field.

Translating fractional mappings

Fact A mapping $f(x) = \frac{x+1}{tx+1}$ is a 0-bijection of order k if and only if • the number k is the minimal one satisfying • $\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{\ell} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$ for no $\ell \in \mathbb{N}$.

(日) (日) (日) (日) (日) (日) (日)

Translating fractional mappings

Fact

A mapping

$$f(x) = \frac{x+1}{tx+1}$$

is a 0-bijection of order k if and only if

• the number k is the minimal one satisfying $\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{k} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ a \end{pmatrix}, \text{ for some } a \in R,$ • $\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{\ell} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix} \text{ for no } \ell \in \mathbb{N}.$

Translating fractional mappings

Fact

A mapping

$$f(x) = \frac{x+1}{tx+1}$$

is a 0-bijection of order k if and only if

• the number k is the minimal one satisfying $\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{k} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ a \end{pmatrix}, \text{ for some } a \in R,$ • $\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{\ell} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix} \text{ for no } \ell \in \mathbb{N}.$

Definition

Denote

$$F = \begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}$$
 ,

Its characteristic polynomial is

$$P(x) = x^{2} + 2x + 1 - t = (x - \lambda)(x - \mu)$$

Fact

- The eigenvalues are non-zero;
- disc(P) = 4t hence $\lambda = \mu$ if and only if t = 0.

(日) (日) (日) (日) (日) (日) (日)

Definition

Denote

$$F = \begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}$$
 ,

Its characteristic polynomial is

$$P(x) = x^{2} + 2x + 1 - t = (x - \lambda)(x - \mu)$$

Fact

- The eigenvalues are non-zero;
- disc(*P*) = 4*t* hence $\lambda = \mu$ if and only if t = 0.

Definition

Denote

$$F = \begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}$$
 ,

Its characteristic polynomial is

$$P(x) = x^{2} + 2x + 1 - t = (x - \lambda)(x - \mu)$$

Fact

- The eigenvalues are non-zero;
- disc(*P*) = 4*t* hence $\lambda = \mu$ if and only if t = 0.

Definition

Denote

$$F = \begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}$$
 ,

Its characteristic polynomial is

$$P(x) = x^{2} + 2x + 1 - t = (x - \lambda)(x - \mu)$$

Fact

- The eigenvalues are non-zero;
- disc(*P*) = 4*t* hence $\lambda = \mu$ if and only if t = 0.

Necessary condition for 0-order

Lemma

•
$$\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{k} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ a \end{pmatrix}$$
 if and only if $\begin{pmatrix} \lambda \\ \mu \end{pmatrix}^{k} = 1$,
• $\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{\ell} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$ if and only if $\begin{pmatrix} \lambda \\ \mu \end{pmatrix}^{\ell} = -1$,

Corollary

The order k must be odd or infinite.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Necessary condition for 0-order

Lemma

•
$$\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{k} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ a \end{pmatrix}$$
 if and only if $\begin{pmatrix} \lambda \\ \mu \end{pmatrix}^{k} = 1$,
• $\begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix}^{\ell} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$ if and only if $\begin{pmatrix} \lambda \\ \mu \end{pmatrix}^{\ell} = -1$,

Corollary

The order k must be odd or infinite.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proposition

The element $\xi = \frac{\lambda}{\mu}$ has to be a primitive k-th root of unity and

• if λ , μ lie in the basic field R then ξ lies in R too;

if λ, μ do not lie in the basic field R then ξ lies in the quadratic extension R[λ] and N(ξ) = 1.

Definition

Let v lie in a quadratic extension of a field *K*. Then the *norm* of v is computed as $N(v) = v \cdot \bar{v}$.

Proposition

The element $\xi = \frac{\lambda}{\mu}$ has to be a primitive k-th root of unity and

- if λ,μ lie in the basic field R then ξ lies in R too;
- if λ, μ do not lie in the basic field R then ξ lies in the quadratic extension R[λ] and N(ξ) = 1.

Definition

Let v lie in a quadratic extension of a field *K*. Then the *norm* of v is computed as $N(v) = v \cdot \bar{v}$.

Proposition

The element $\xi = \frac{\lambda}{\mu}$ has to be a primitive k-th root of unity and

- if λ,μ lie in the basic field R then ξ lies in R too;
- if λ, μ do not lie in the basic field R then ξ lies in the quadratic extension R[λ] and N(ξ) = 1.

Definition

Let v lie in a quadratic extension of a field *K*. Then the *norm* of v is computed as $N(v) = v \cdot \bar{v}$.

Proposition

The element $\xi = \frac{\lambda}{\mu}$ has to be a primitive k-th root of unity and

- if λ,μ lie in the basic field R then ξ lies in R too;
- if λ, μ do not lie in the basic field R then ξ lies in the quadratic extension R[λ] and N(ξ) = 1.

Definition

Let v lie in a quadratic extension of a field *K*. Then the *norm* of v is computed as $N(v) = v \cdot \bar{v}$.

Proposition

The element $\xi = \frac{\lambda}{\mu}$ has to be a primitive k-th root of unity and

- if λ,μ lie in the basic field R then ξ lies in R too;
- if λ, μ do not lie in the basic field R then ξ lies in the quadratic extension R[λ] and N(ξ) = 1.

Definition

Let v lie in a quadratic extension of a field *K*. Then the *norm* of v is computed as $N(v) = v \cdot \bar{v}$.

Proposition

The element $\xi = \frac{\lambda}{\mu}$ has to be a primitive k-th root of unity and

- if λ,μ lie in the basic field R then ξ lies in R too;
- if λ, μ do not lie in the basic field R then ξ lies in the quadratic extension R[λ] and N(ξ) = 1.

Definition

Let v lie in a quadratic extension of a field *K*. Then the *norm* of v is computed as $N(v) = v \cdot \bar{v}$.

- Let $R = \mathbb{F}_q$. Then
 - $\sqrt[6]{1}$ lies in *R* iff *k* divides q 1;
 -) $\sqrt[4]{1}$ is quadratic and of norm 1 iff k divides q+1.
- Let $R = \mathbb{Q}$. Then only $\sqrt[3]{1}$ is quadratic.
- Let $R = \mathbb{R}$. Then all roots of 1 lie in \mathbb{C} and are of norm 1.

Examples

Let R = F_q. Then
^k√1 lies in *R* iff *k* divides *q* − 1;
^k√1 is quadratic and of norm 1 iff *k* divides *q* + 1.
Let R = Q. Then only ³√1 is quadratic.
Let R = ℝ. Then all roots of 1 lie in C and are of norm 1.

(日) (日) (日) (日) (日) (日) (日)

Examples

Let R = F_q. Then
^k√1 lies in R iff k divides q - 1;
^k√1 is quadratic and of norm 1 iff k divides q + 1.
Let R = Q. Then only ³√1 is quadratic.
Let R = ℝ. Then all roots of 1 lie in C and are of norm 1.

10/15

(日) (日) (日) (日) (日) (日) (日)

- Let $R = \mathbb{F}_q$. Then
 - $\sqrt[k]{1}$ lies in *R* iff *k* divides q 1;
 - **2** $\sqrt[k]{1}$ is quadratic and of norm 1 iff *k* divides q + 1.
- Let $R = \mathbb{Q}$. Then only $\sqrt[3]{1}$ is quadratic.
- Let $R = \mathbb{R}$. Then all roots of 1 lie in \mathbb{C} and are of norm 1.

- Let $R = \mathbb{F}_q$. Then
 - $\sqrt[k]{1}$ lies in *R* iff *k* divides q 1;
 - **2** $\sqrt[k]{1}$ is quadratic and of norm 1 iff *k* divides q + 1.
- Let $R = \mathbb{Q}$. Then only $\sqrt[3]{1}$ is quadratic.
- Let $R = \mathbb{R}$. Then all roots of 1 lie in \mathbb{C} and are of norm 1.

- Let $R = \mathbb{F}_q$. Then
 - $\sqrt[k]{1}$ lies in *R* iff *k* divides q 1;
 - **2** $\sqrt[k]{1}$ is quadratic and of norm 1 iff *k* divides q + 1.
- Let $R = \mathbb{Q}$. Then only $\sqrt[3]{1}$ is quadratic.
- Let $R = \mathbb{R}$. Then all roots of 1 lie in \mathbb{C} and are of norm 1.

Drápal's Construction, New Point of View

Theorem (A. Drápal; P. J. & D. Simon)

Let R be a field, char(R) $\neq 2$. Take ξ , a k-th primitive root of unity, k odd, such that $\xi \in R$ or ξ lies in a quadratic extension of R and $N(\xi) = 1$. We define an operation * on the set $Q = R \times \mathbb{Z}_k$ as follows:

$$(a,i)*(b,j) = \left((a+b) \cdot \frac{(\xi^i+1) \cdot (\xi^j+1)}{2 \cdot (\xi^{i+j}+1)}, i+j \right).$$

Then (Q, *) is a commutative automorphic loop.

Corollary

If k and p are primes then the construction gives the only (up to isomorphism) non-associative commutative automorphic loop of order kp.

Drápal's Construction, New Point of View

Theorem (A. Drápal; P. J. & D. Simon)

Let *R* be a field, char(*R*) \neq 2. Take ξ , a *k*-th primitive root of unity, *k* odd, such that $\xi \in R$ or ξ lies in a quadratic extension of *R* and $N(\xi) = 1$. We define an operation * on the set $Q = R \times \mathbb{Z}_k$ as follows:

$$(a,i)*(b,j) = \left((a+b) \cdot \frac{(\xi^i+1) \cdot (\xi^j+1)}{2 \cdot (\xi^{i+j}+1)}, i+j \right).$$

Then (Q, *) is a commutative automorphic loop.

Corollary

If k and p are primes then the construction gives the only (up to isomorphism) non-associative commutative automorphic loop of order kp.

Drápal's construction revised

Construction of Bruck loops of order *pq*

Theorem (P.J. & D. Simon)

Let *R* be a field, char(*R*) \neq 2. Take ξ , a *k*-th primitive root of unity, *k* odd, such that $\xi \in R$ or ξ lies in a quadratic extension of *R* and $N(\xi) = 1$. We define an operation \circ on the set $Q = R \times \mathbb{Z}_k$ as follows:

$$(a,i) \circ (b,j) = \left(\frac{a \cdot (\xi^{i+2j}+1) \cdot (\xi^i+1) + b \cdot \xi^i \cdot (\xi^j+1)^2}{(\xi^{i+j}+1)^2}, i+j\right).$$

Then (Q, \circ) is a Bruck loop with Z(Q) = 0.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

How the considerations differ in other cases:

- if *R* is not a field then we have to construct a projective line over *R*;
- if *R* is not a field then we have to understand the primitive roots of unity;
- if *R* is not a field then we have to compute in quadratic extensions of *R*;
- if *s* is general then $(\xi^i \cdot (\xi s) + \xi s 1) \in R^*$ for all $i \in \mathbb{Z}$;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

How the considerations differ in other cases:

- if *R* is not a field then we have to construct a projective line over *R*;
- if *R* is not a field then we have to understand the primitive roots of unity;
- if *R* is not a field then we have to compute in quadratic extensions of *R*;

• if *s* is general then $(\xi^i \cdot (\xi - s) + \xi s - 1) \in R^*$ for all $i \in \mathbb{Z}$;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

How the considerations differ in other cases:

- if *R* is not a field then we have to construct a projective line over *R*;
- if *R* is not a field then we have to understand the primitive roots of unity;
- if *R* is not a field then we have to compute in quadratic extensions of *R*;

• if *s* is general then $(\xi^i \cdot (\xi - s) + \xi s - 1) \in \mathbb{R}^*$ for all $i \in \mathbb{Z}$;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

How the considerations differ in other cases:

- if *R* is not a field then we have to construct a projective line over *R*;
- if *R* is not a field then we have to understand the primitive roots of unity;
- if *R* is not a field then we have to compute in quadratic extensions of *R*;
- if *s* is general then $(\xi^i \cdot (\xi s) + \xi s 1) \in R^*$ for all $i \in \mathbb{Z}$;

Drápal's construction revised

Enumeration of loops of order $k \cdot q$

Theorem (P.J.)

Let q be an odd prime and let k > 1. The number of centerless loops of order $k \cdot p$, with the middle nucleus equal to \mathbb{Z}_q , that arise from the construction, is, up to isomorphism,

•
$$q-2$$
 if $k = 2$
• $\frac{q-k+2}{2}$ if k is an odd divisor of $q+1$ (one of them automorphic)
• $\frac{q-k+1}{2}$ if k is an even divisor of $q+1$
• $\frac{q-k}{2}$ if k is an odd divisor of $q-1$ (one of them automorphic)
• $\frac{q-k-1}{2}$ if k is an even divisor of $q-1$
• 0 otherwise

Bibliography

A. Drápal:

A class of commutative loops with metacyclic inner mapping groups

Comment. Math. Univ. Carolin. 49,3 (2008) 357-382.

P. Jedlička, D. Simon:

Commutative automorphic loops of order pq (preprint)

P. Jedlička

On commutative loops of order *pq* with metacyclic inner mapping group and trivial center

Comment. Math. Univ. Carolin. 51 (2010), no. 2, 253-261