Classifications of Quasigroups of Order 4 by Parastrophic Quasigroup Transformation

Vesna Dimitrova ¹

joint research with
V. Bakeva¹, A. Popovska-Mitrovikj¹ and
A. Krapež²

 $^1{\rm Faculty}$ of Computer Science and Engineering, UKIM, Skopje, Macedonia $^2{\rm Serbian}$ Academy of Sciences and Arts, Beograd, Serbia

Loops '11Třešť, Czech Republic, 25-27 July 2011

Outline

- Introduction
- Quasigroups and transformations
- Parastrophes and transformations
- Classifications of quasigroups
- Conclusion

Introduction

•000000

Quasigroup and transformations

- Application of quasigroups
 - cryptography
 - coding theory
 - design theory,...
- Properties of quasigroups
 - algebraic structures
 - quasigoup identities
 - number of quasigroups, ...

Quasigroups

Not all quasigroups are suitable for cryptographic purposes!

- Classifications of quasigroups
 - algebraic properties
 - images of sequences obtained by quasigroup transformations:
 - fractal
 - non-fractal

Quasigroup E-transformation

Assuming that (A, *) is a given quasigroup, for a fixed letter $l \in A$ we define transformation $E = E_{*,l} : A^+ \to A^+$

Definition

$$E_{*,l}(x_1 \dots x_k) = y_1 \dots y_k \Leftrightarrow \begin{cases} y_1 &= l * x_1, \\ y_j &= y_{j-1} * x_j, \quad j = 2, \dots, k \end{cases}$$

Example of E-transformation

Quasigroup

E-transformation

	$3\; 4\; 4\; 2\; 2\; 2\; 1\; 2\; 3\; 4\; 1\; 1\; 1\; 1\; 2\; 3\; 3\; 3\; 4\; 1$				
1	$4\; 3\; 4\; 1\; 3\; 2\; 1\; 3\; 1\; 1\; 2\; 1\; 2\; 1\; 3\; 1\; 4\; 2\; 2\; 1$	=	α_1	=	$e_1(\alpha)$
1	$1\; 4\; 3\; 3\; 1\; 3\; 3\; 1\; 2\; 1\; 3\; 3\; 2\; 1\; 4\; 4\; 3\; 2\; 4\; 4$	=	α_2	=	$e_1(\alpha_1)$
1	$2\; 2\; 3\; 1\; 2\; 3\; 1\; 2\; 3\; 1\; 2\; 3\; 3\; 1\; 4\; 1\; 2\; 2\; 2\; 3\; 2\; 2\; 2$	=	α_3	=	$e_1(\alpha_2)$

Fractal Structures

Paper

Dimitrova V., Markovski S.: Classification of quasigroups by image patterns, Proc. of CIIT 2007, Macedonia, pp. 152 - 160.

Proof of the fractal structure of quasigroups

Paper

Markovski S., Dimitrova V., Samardziska S.: *Identities Sieves for Quasigroups*, Quasigroups and Related Systems, vol.18 No. 2, 2010, pp. 149-164

• In this paper using the quasigroup identities the authors give a proof of the fractal structure of quasigroup transformations for the some quasigroups of order 4.

Motivation

Paper

Krapež, A.: An Application Of Quasigroups in Cryptology, Proceeding of the Mathematical Conference 2010 - Dedicated to Professor Gorgi Cupona (2010)

- In this paper using quasigroup parastrophes, the author gives an idea for quasigroup string transformation based on parastrophes which can be applicable in cryptography.
- Here, we propose an improvement of this quasigroup transformation.

Parastrophes

Every quasigroup (Q, *) has a set of five quasigroups, called parastrophes denoted with $/, \setminus, \cdot, //, \setminus$ are defined in the following table.

Parastrophic operation					Name
$x \backslash y = z$	\iff	x * z = y			left division
x/y = z	\iff	z * y = x			right division
$x \cdot y = z$	\iff	y * x = z			opposite multiplication
					opposite right division
$x \setminus y = z$	\iff	$y \backslash x = z$	\iff	y * z = x	opposite left division

Notations for parastrophic operations:

$$f_1(x,y) = x * y$$
, $f_2(x,y) = x \setminus y$, $f_3(x,y) = x/y$, $f_4(x,y) = x \cdot y$, $f_5(x,y) = x//y$, $f_6(x,y) = x \setminus y$.

- Let p be a positive integer and $x_1x_2...x_n$ be an input message.
- Using E-transformation we define a parastrophic transformation $PE = PE_{l,p} : A^+ \to A^+$ as follows.
- At first, let $d_1 = p$, $q_1 = d_1$, $s_1 = (d_1 \mod 6) + 1$ and $A_1 = x_1 x_2 \dots x_{q_1}$.
- Applying the transformation $E_{f_{s_1},l}$ on the block A_1 , we obtain the encrypted block

$$B_1 = y_1 y_2 \dots y_{q_1 - 2} y_{q_1 - 1} y_{q_1} = E_{f_{s_1}, l}(x_1 x_2 \dots x_{q_1}).$$

- Further on, using last two symbols in B_1 we calculate the number $d_2 = 4y_{q_1-1} + y_{q_1}$ which determines the length of the next block.
- Let $q_2 = q_1 + d_2$, $s_2 = (d_2 \mod 6) + 1$ and $A_2 = x_{q_1+1} \dots x_{q_2-1} x_{q_2}$.
- After applying $E_{f_{s_2},y_{q_1}}$, the encrypted block B_2 is

$$B_2 = y_{q_1+1} \dots y_{q_2-2} y_{q_2-1} y_{q_2} = E_{f_{s_2}, y_{q_1}} (x_{q_1+1} \dots x_{q_2-2} x_{q_2-1} x_{q_2}).$$

- In general case, for given i, let the encrypted blocks B_1, \ldots, B_{i-1} be obtained and d_i be calculated using the last two symbols in B_{i-1} as previous.
- Let $q_i = q_{i-1} + d_i$, $s_i = (d_i \mod 6) + 1$ and $A_i = x_{q_{i-1}+1} \dots x_{q_i-1} x_{q_i}$.
- We apply the transformation $E_{f_{s_i},y_{q_{i-1}}}$ on the block A_i and obtain the encrypted block

$$B_i = E_{f_{s_i}, y_{q_{i-1}}}(x_{q_{i-1}+1} \dots x_{q_i}).$$

• Now, the parastrophic transformation is defined as

$$PE_{l,p}(x_1x_2...x_n) = B_1||B_2||...||B_r.$$

Parastrophic transformation PE

- For given l_1, \ldots, l_n and p_1, \ldots, p_n , we define mappings PE_1, PE_2, \ldots, PE_n as previous, such that PE_i is corresponding to p_i and l_i .
- Let

$$PE^{(n)} = PE^{(n)}_{(l_n, p_n), \dots, (l_1, p_1)} = PE_n \circ PE_{n-1} \circ \dots \circ PE_1,$$

where \circ is the usual composition of mappings.

Experimentally, we proved the following results:

Let $\alpha \in A^+$ be an arbitrary string and $\beta = PE^{(n)}(\alpha)$. Then m-tuples in β are uniformly distributed for $m \leq n$.

Classifications of quasigroups of order 4

Proposition

The set of all quasigroups (depending on the number of different parastrophes) is divided in 4 classes. The number of elements of each class of quasigroups of order 4 is:

No. parastrophes	No. quasigroups
1	16
2	2
3	240
6	318
Total	576

Classifications of fractal quasigroups of order 4

Proposition

The class of fractal quasigroups of order 4 is divided in 4 subclasses. The number of elements of each class is:

No. parastrophes	No. quasigroups
1	16
2	2
3	96
6	78
Total	192

Proposition

All fractal quasigroups of order 4 have fractal parastrophes.

Classifications of non-fractal quasigroups of order 4

Proposition

The class of non- fractal quasigroups of order 4 is divided in just 2 subclasses. The number of elements of each class is:

No. parastrophes	No. quasigroups
3	144
6	240
Total	384

Parastrophic fractal quasigroups

• Let apply the new transformation $PE^{(n)}$ to the sequence 123412341234... and consider the fractal structure of the obtained image.

Definition

Quasigroups with fractal structure obtained after applying of PE-transformation are called $parastrophic\ fractal\ quasigroups.$

Fractal, but Parastrophic Non-fractal Quasigroup

Fractal Quasigroup

Parastrophic Non-Fractal Q.

Proposition

Some of fractal quasigroups are parastrophic fractal, and some of them are not.

PE - transformation and classifications

Proposition

The set of all 192 fractal quasigroups is divided in 2 subclasses:

	No. parastroph.
No. par.	fractal
1	16
2	0
3	72
6	0
Total	88

	No. parastroph.
No. par.	non-fractal
1	0
2	2
3	24
6	78
Total	104

Properties of Parastrophic Fractal Quasigroups

Each parastrophic fractal quasigroup satisfies the identity

- (I): x(x(x(xy))) = y and belongs to one of the following class:
 - Loops (L)
 - Totally symmetric quasigroups (TS)
 - Left Loops (LL), Right symmetric quasigroups (RS)
 - Right Loops (RL), Left symmetric quasigroups (LS)
 - Left Loops, Skew symmetric quasigroups (SS)
 - Right Loops, Skew symmetric quasigroups
 - Commutative quasigroups (C), Skew symmetric quasigroups

Properties of Parastrophic Fractal Quasigroups

Parastrophic Fractal Quasigroups

Using the previous notations, the set of all parastrophic quasigroups can be presented as:

$$I\cap [L+TS+(LL\cap RS)+(RL\cap LS)+(LL\cap SS)+(RL\cap SS)+(C\cap SS)]$$

Conclusion

The analyses of the obtained results show that:

- Parastrophic fractal quasigroups should not be used for cryptographic primitives, since they have fractal structure, properties of symmetry and shape.
- These parastrophes transformations are more suitable for designing of cryptographic primitives.

Thank you for your attention!