

Classification of nonassociative Moufang loops of odd order pq^3 , $p \neq 3$

Wing Loon Chee* & Andrew Rajah

School of Mathematical Sciences Universiti Sains Malaysia

Conference Loops '11

Preliminaries

Definitions

• *Moufang loop*: a loop that satisfies any of the following identities:

$$(xy)(zx) = [x(yz)]x,$$

 $(xy)(zx) = x[(yz)x],$
 $x[y(xz)] = [(xy)x]z,$
 $[(zx)y]x = z[x(yx)].$

Research Objective

- For a fixed positive integer n, does there exist a nonassociative Moufang loop of order n?
 - If Yes, find the product rule(s) of that loop.
 - If No, show that all Moufang loops of order n are groups.

Known Results

Results on existence:

Nonassociative Moufang loops of order

- 2*m*, iff a nonabelian group of order *m* exists [Chein & Rajah, 2000];
- 81 [Bol, 1937];
- *p*⁵ for any prime *p* > 3 [Wright, 1965];
- pq^3 for distinct odd primes p and q iff $q \equiv 1 \pmod{p}$ [Rajah, 2001].

Results on classification:

Nonassociative Moufang loops of order

- ≤ 63 [Goodaire, May & Raman, 1999];
- 64 4262 nonisomorphic cases [Nagy & Vojtěchovský, 2007];
- 81 5 nonisomorphic cases [Nagy & Vojtěchovský, 2007];
- p⁵ (p > 3) 4 nonisomorphic cases
 [Nagy & Valsecchi, 2007].

Nonassociative Moufang loops of odd order *pq*³

[Rajah, 2001]: The construction of a nonassociative Moufang loop *L* of order pq^3 for odd primes *p*, *q* with $q \equiv 1 \pmod{p}$, involves the following:

There exist some $x, y, z \in L$ such that

$$\begin{aligned} k &= (x, y, z) \neq 1, \quad x^{-1}kx = k^{\mu}, \quad xyx^{-1} = y^{\mu}, \\ xzx^{-1} &= z^{\mu}, \quad zy = yzk^{\phi}, \end{aligned}$$

where μ and ϕ are integers satisfying $\mu^p \equiv 1 \pmod{q}$ but $\mu \not\equiv 1 \pmod{q}$, ϕ is any integer when p = 3, $\phi(\mu - 1) \equiv -2 \pmod{q}$ when $p \neq 3$.

Then it was shown that every element in *L* can be uniquely expressed in the form $x^{\alpha} \cdot y^{\beta} z^{\gamma} k^{\delta}$ where $\alpha \in \mathbb{Z}_p$ and β , γ , $\delta \in \mathbb{Z}_q$. The product of any two elements is given by

 $(x^{\alpha_1} \cdot y^{\beta_1} z^{\gamma_1} k^{\delta_1}) \cdot (x^{\alpha_2} \cdot y^{\beta_2} z^{\gamma_2} k^{\delta_2}) = x^{\alpha_{(1,2)}} \cdot y^{\beta_{(1,2)}} z^{\gamma_{(1,2)}} k^{\delta_{(1,2)}}$

where

$$\begin{aligned} \alpha_{(1,2)} &\equiv (\alpha_1 + \alpha_2) \pmod{p}; \\ \beta_{(1,2)} &\equiv (\beta_1 \mu^{(p-1)\alpha_2} + \beta_2) \pmod{q}; \\ \gamma_{(1,2)} &\equiv (\gamma_1 \mu^{(p-1)\alpha_2} + \gamma_2) \pmod{q}; \\ \delta_{(1,2)} &\equiv \{\delta_1 \mu^{\alpha_2} + \delta_2 + \phi \beta_2 \gamma_1 \mu^{(p-1)\alpha_2} + [\beta_1 \gamma_1 (\mu^{\alpha_2} - \mu^{(p-2)\alpha_2}) \\ &+ (\beta_1 \gamma_2 - \beta_2 \gamma_1) (\mu^{(\alpha_1 + \alpha_2)} - \mu^{(p-1)\alpha_2})] / (\mu - 1) \} \pmod{q}. \end{aligned}$$

We shall denote this class of Moufang loops by $M_{pq^3}(\mu, \phi)$.

Classification of nonassociative Moufang loops of odd order pq^3 , $p \neq 3$

- Let 3 (mod p).
- The number of solutions satisfying $\mu^p \equiv 1$ (mod q) and $\mu \not\equiv 1 \pmod{q}$ = gcd(p, q - 1) - 1 = p - 1.
- Suppose we have one solution μ_0 , then we have all the solutions, namely

$$\{\mu_0, \mu_0^2, \dots, \mu_0^{p-1}\}.$$

• For a fixed
$$\mu$$
, there exists a unique ϕ satisfying
 $\phi(\mu - 1) \equiv -2 \pmod{q}$.
• Proof: Suppose $\exists \phi = \frac{mq-2}{\mu-1}$ and $\phi' = \frac{m'q-2}{\mu-1}$.
 $\Rightarrow \phi = \phi' + r$
 $\Rightarrow \frac{mq-2}{\mu-1} = \frac{m'q-2}{\mu-1} + r$
 $\Rightarrow (m-m')q = r(\mu-1)$
 $\Rightarrow q \mid r(\mu-1)$
 $\Rightarrow \phi \equiv \phi' \pmod{q}$

_

- Let *L* be a nonassociative Moufang loop of order *pq*³.
- There exist some $x, y, z \in L$ such that

$$k = (x, y, z) \neq 1,$$

$$x^{-1}kx = k^{\mu_0^n},$$

$$xyx^{-1} = y^{\mu_0^n},$$

$$xzx^{-1} = z^{\mu_0^n},$$

$$zy = yzk^{\phi_n}$$

for some
$$n \in \{1, 2, ..., p-1\}$$
.

• Let θ_n be an integer satisfying $n\theta_n \equiv 1$ (mod p).

• Let
$$x_0 = x^{\theta_n}$$
, $y_0 = y$, $z_0 = z$ and
 $k_0 = k^{\mu_0^{n(\theta_n - 1)} + \mu_0^{n(\theta_n - 2)} + \dots + 1}$.
 $\Rightarrow k_0 = (x_0, y_0, z_0) \neq 1$,
 $x_0^{-1} k_0 x_0 = k_0^{\mu_0}$,
 $x_0 y_0 x_0^{-1} = y_0^{\mu_0}$,
 $x_0 z_0 x_0^{-1} = z_0^{\mu_0}$.

•
$$zy = yzk^{\phi_n}$$
 where $\phi_n(\mu_0^n - 1) \equiv -2 \pmod{q}$.
 $\Rightarrow z_0y_0 = zy = yzk^{\phi_n} = y_0z_0k_0^{\phi_n\tau_n}$ where
 $\tau_n(\mu_0^{n(\theta_n-1)} + \mu_0^{n(\theta_n-2)} + \dots + 1) \equiv 1 \pmod{q}$.
So $\phi_n\tau_n = \left(\frac{s_nq-2}{\mu_0^n - 1}\right) \left(\frac{t_nq+1}{\mu_0^{n(\theta_n-1)} + \mu_0^{n(\theta_n-2)} + \dots + 1}\right)$
for some $s_n, t_n \in \mathbb{Z}$
 $= \frac{(s_nt_nq+s_n-2t_n)q-2}{\mu_0 - 1}$.
Hence $\phi_1 = \phi_n\tau_n$ is an integer satisfying
 $\phi_1(\mu_0 - 1) \equiv -2 \pmod{q}$.

Chee & Rajah (USM)

UGM

• Therefore, by using the substitutions

$$x_0 = x^{\theta_n}$$
, $y_0 = y$, $z_0 = z$ and
 $k_0 = k^{\mu_0^{n(\theta_n - 1)} + \mu_0^{n(\theta_n - 2)} + \dots + 1}$,

we prove that $M_{pq^3}(\mu_0^n, \phi_n) \cong M_{pq^3}(\mu_0, \phi_1)$ for any $n \in \{2, 3, ..., p-1\}$

Conclusion

- There is only one nonassociative Moufang loop of order pq³ where 3 < p
 < q are odd primes satisfying q ≡ 1 (mod p).
- It is a semidirect product of C_p and a nonabelian group of order q³ and exponent q.

Direction for future research

Nonassociative Moufang loops of odd order $3q^3$

• Main obstacle: For a fixed μ , the value for ϕ is not unique:

 $\phi \in \{0, 1, \dots, q-1\}.$

