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Introduction

In this talk we will deal with another monotone structures,
c-skeletons and q-skeletons, which also are useful to de-
tect Corson compact spaces inside function spaces.
Let us recall the following.

Definition
A function φ : [X ]≤ω → [Y ]≤ω is ω-monotone if satisfy:
1. A ⊂ B ∈ [X ]≤ω imply φ(A) ⊂ φ(B);
2. if {An}n∈ω ⊂ [X ]≤ω is increasing, then

φ(
⋃

n<ω An) =
⋃

n<ω φ(An).
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Retractional skeletons

Γ will denote an up-directed σ-closed poset.

Definition
An r -skeleton in a space X is a family of retractions {rs}s∈Γ,
satisfying the following conditions:
1. rs(X ) has a countable network for each s ∈ Γ.
2. s ≤ t implies rs = rs ◦ rt = rt ◦ rs.
3. For every x ∈ X , x = lims∈Γ rs(x).
4. Given s0 < s1 < · · · in Γ, if t = supn∈ω sn , then

rt (x) = limn→∞ rsn (x) for every x ∈ X .

Theorem
A compact space is Valdivia (Corson) if and only if it admits
a commutative (full) r -skeleton.



Definition
Given a space X say that {(Fs,Bs)}s∈Γ ⊂ CL(X ) × [τ(X )]≤ω

is a c-skeleton on X if:
1. for each s ∈ Γ, Bs is a base for a topology τs on X and

there exist a Tychonoff space Zs and a continuous
map gs : (X , τs)→ Zs which separates the points of Fs;

2. if s, t ∈ Γ and s ≤ t , then Fs ⊂ Ft ;
3. X =

⋃
s∈Γ Fs;

4. the assignment s → Bs is ω-monotone.
In addition, if X =

⋃
s∈Γ Fs, then we say that the c-skeleton

is full.



c-skeletons

Theorem
If X is countably compact and has a (full) c-skeleton, then
X has a (full) r -skeleton.
Proof. By appliying a closure argument we can find an up-
directed and σ-complete partially ordered set Σ such that
gM (X ) = gM (FM ) for each M ∈ Σ.

FM

gM �FM
��

⊂ X

��

ZM (X , τM )gM
oo

Note that gM �FM is a homeomorphism onto its image. Then
rM = (gM �FM )−1 ◦ gM : X → FM is a retraction.
Then {rM}M∈Σ is an r-skeleton in X .



q-skeletons

In order to get a Cp-dual concept to c-skeleton, we intro-
duce the following notion.

Definition
Let X be a space. Consider a family {(qs,Ds)}s∈Γ, where
qs : X → Xs is an R-quotient map and Ds is a countable
subset of X for each s ∈ Γ. We say that {(qs,Ds)}s∈Γ is a
q-skeleton on X if:
1. the set qs(Ds) is dense in Xs;
2. if s, t ∈ Γ and s ≤ t , then there exists a continuous

onto map pt ,s : Xt → Xs such that qs = pt ,s ◦ qt ;
3. the assignment s → Ds is ω-monotone;
4. Cp(X ) =

⋃
s∈Γ q∗s(Cp(Xs)).

The q-skeleton is full whenever Cp(X ) =
⋃

s∈Γ q∗s(Cp(Xs)).



Duality results

Theorem
If X has a (full) c-skeleton, then Cp(X ) has a (full) q-skeleton.

Proof.
Let {(Fs,Bs)}s∈Γ be a c-skeleton in X and set B =

⋃
{Bs}s∈Γ.

For each W ∈ W(B) fix dW ∈ W . For each s ∈ Γ we set
Xs = πFs (Cp(X )), qs = πFs : Cp(X )→ Xs and Ds = {dN : N ∈
W(Bs)}. Then {(qs,Ds)}s∈Γ is a q-skeleton in Cp(X ).

Cp(X )
π∗Fs // Cp(Fs)

X

OO

⊃ Fs

OO

1

1W(B) consists of all sets {f ∈ Cp(X ) : ∀(i ≤ n)(f (Bi ⊂ Ui ))}, where
Bi ∈ B and Ui ∈ BR.



Duality results

Theorem
If X has a (full) q-skeleton, then Cp(X ) has a (full) c-skeleton.

Proof.
Let {(qs,Ds)}s∈Γ be a q-skeleton in X . Fix s ∈ Γ. The set
Fs = q∗s(Cp(Xs)) is closed in Cp(X ). Besides, let Bs = B(Ds)
the family of all canonical open sets with support in Ds. It
can ve verified that {(Fs,Bs)}s∈Γ is a c-skeleton on Cp(X ).

Cp(X ) Cp(qs(X ))
q∗soo

X

OO

qs
// qs(X )

OO



Generating q-skeletons

Theorem
If X has a (strong) full r -skeleton, then X has a (full) q-
skeleton.

Proof.
Let {rs}s∈Γ be a strong (full) r-skelton in X . Consider the
set Σ = [CL(X )]≤ω. Construct assignments F → sF and
F → DF such that rsF (DF ) is dense in rsF (X ).

F // sF

Let qF = rsF for each F ∈ Σ. Then {(qF ,DF )}F∈Σ is a (full)
q-skeleton in X .

Corollary
If X has a strong r-skeleton, then X has a full c-skeleton.



Generating q-skeletons

Theorem
Every monotonically ω-stable space has a full q-skeleton.

Proof.
Construct an ω-monotone map A : [Cp(X )]≤ω → [Cp(X )]≤ω

such that A(A) is a dense in ∆∗A(A)(Cp(∆A(A)(X ))).

Cp(X ) Cp(∆A(X ))
∆∗Aoo

X

OO

∆A // ∆A(X )

OO

Given A ∈ Γ, the map qA = ∆A(A)
is an R-quotient map. Let

A → DA be an ω-monotone assignment such that qA(DA)
is dense in qA(X ). Then {(qA,DA)}A∈Γ is a full q-skeleton
in X .



Strong r-skeletons

An r-skeleton {rs}s∈Γ in a space X is said to be strong if
whenever s0 ∈ Γ and F is closed in X n , for some n ∈ N,
there exists s ∈ Γ such that s0 ≤ s and rn

s (F ) ⊂ F .

Theorem
If X is has a strong r-skeleton and is monotonically ω-monolithic
(monotonically ω-stable), then X is Sokolov.

Theorem
A space X has a strong r-skeleton if and only if Cp(X ) has
a strong r-skeleton.

Theorem
If X is has a strong r-skeleton and is monotonically ω-monolithic,
then X is a Lindelöf D-space.
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Thank You!


