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I. Definable cardinality
Introduction

According to the usual notion of cardinality, one set is smaller than
another iff there is an injection of the former into the latter.

Much recent work in descriptive set theory has involved the analo-
gous notion in which the injections are required to be definable.

In this first lecture, we will review some of the basic theory behind
these developments.
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I. Definable cardinality
Polish spaces

Definition

A topological space is Polish if it is separable and admits a compat-
ible complete metric.

Definition

A subspace of a topological space is Borel if it is in the σ-algebra
generated by the underlying topology.

Theorem 1

Every uncountable Polish space is Borel isomorphic to R.
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I. Definable cardinality
Polish spaces

Under determinacy, many properties of Borel sets in Polish spaces
generalize to broader families of definable sets.

For simplicity, however, we will focus on Borel sets.
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I. Definable cardinality
Morphisms

Definition

A homomorphism from E to F is a function ϕ : X → Y sending
E -related points to F -related points.

Definition

A reduction of E to F is a homomorphism from E to F sending
E -unrelated points to F -unrelated points.
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I. Definable cardinality
The definable analog of the continuum hypothesis

Theorem 2 (Silver)

Suppose that X is a Polish space and E is a Borel equivalence
relation on X . Then exactly one of the following holds:

1 There is a Borel reduction of E to the equality relation on N.

2 There is a Borel reduction of the equality relation on R to E .
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I. Definable cardinality
The definable analog of the next continuum hypothesis

Definition

The Vitali equivalence relation is the relation EQ on R given by

x EQ y ⇔ x − y ∈ Q.

Theorem 3 (Harrington-Kechris-Louveau)

Suppose that X is a Polish space and E is a Borel equivalence
relation on X . Then exactly one of the following holds:

1 There is a Borel reduction of E to the equality relation on R.

2 There is a Borel reduction of EQ to E .
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I. Definable cardinality
Beyond Vitali equivalence

Definition

An equivalence relation is countable if its classes are all countable.

Theorem 4 (Sullivan-Weiss-Wright, Woodin, Kechris-Hjorth)

Every countable Borel equivalence relation on a Polish space admits
a Baire measurable reduction to the Vitali equivalence relation.
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I. Definable cardinality
Beyond Vitali equivalence

Definition

The orbit equivalence relation associated with a group action Γ y X
is the relation EX

Γ on X given by x EX
Γ y ⇔ ∃γ ∈ Γ γ · x = y .

Definition

A measure µ is Γ-invariant if ∀B ⊆ X∀γ ∈ Γ µ(B) = µ(γ(B)).
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I. Definable cardinality
Beyond Vitali equivalence

Theorem 5 (Ornstein-Weiss)

Suppose that X is a Polish space, Γ y X is a free Borel action of
a countable group, and µ is a Γ-invariant Borel probability measure
on X . Then Γ is amenable iff EX

Γ is µ-hyperfinite.

Question

Suppose that X is a Polish space and E is a countable Borel equiva-
lence relation on X which is not Borel reducible to the Vitali equiva-
lence relation. Is there a Borel probability measure µ on X for which
there is no µ-measurable reduction?
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I. Definable cardinality
Global structure

Theorem 6 (Woodin, Louveau-Velickovic)

There is a family of uncountably many Borel equivalence relations
on Polish spaces which are pairwise incomparable under Baire mea-
surable (and therefore Borel) reducibility.
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I. Definable cardinality
Global structure

Theorem 7 (Adams-Kechris)

There is a family of continuum-many countable Borel equivalence
relations on Polish spaces which are pairwise incomparable under
Borel reducibility.

Theorem 8 (Adams-Kechris, Gao)

There is a Borel reduction of every analytic quasi-order on a Polish
space into (codes for) the Borel reducibility quasi-order on the space
of countable Borel equivalence relations.
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I. Definable cardinality
Global structure

Definition

A Borel equivalence relation E is treeable if there is an acyclic Borel
graph whose connected components are exactly the classes of E .

Theorem 9 (Hjorth)

There is a family of continuum-many countable Borel equivalence
relations on Polish spaces which are pairwise incomparable under
Borel reducibility.
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I. Definable cardinality
Pathology

Theorem 10 (Thomas)

There is a countable Borel equivalence relation E on a Polish space
with the property that the disjoint union of two copies of E is not
Borel reducible to E .

Theorem 11 (Adams, Hjorth)

There are countable treeable Borel equivalence relations E ⊆ F on
a Polish space which are incomparable under Borel reducibility.
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I. Definable cardinality
Method

Lurking beneath the results for countable Borel equivalence rela-
tions are sophisticated rigidity theorems originating in the ergodic-
theoretic study of actions of linear algebraic groups.

In the remaining lectures, we will sketch significantly simpler proofs
of strengthenings of many of these results.
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I. Definable cardinality
Method

We will first establish a simple purely Borel rigidity theorem.

From this, we will obtain separability of certain spaces of measurable
homomorphisms connected with equivalence relations.

Finally, we will use this separability to establish the main results.

15



I. Definable cardinality
Method

We will first establish a simple purely Borel rigidity theorem.

From this, we will obtain separability of certain spaces of measurable
homomorphisms connected with equivalence relations.

Finally, we will use this separability to establish the main results.

15



I. Definable cardinality
Method

We will first establish a simple purely Borel rigidity theorem.

From this, we will obtain separability of certain spaces of measurable
homomorphisms connected with equivalence relations.

Finally, we will use this separability to establish the main results.

15



Definable cardinals just beyond R/Q

Winter school in abstract analysis
Sporthotel Kácov
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I. Local rigidity
Basic definitions

Definition

The difference set associated with functions ϕ : X → Y and
ψ : X → Y is the set D(ϕ,ψ) given by

D(ϕ,ψ) = {x ∈ X | ϕ(x) 6= ψ(x)}.

Definition

Given Γ y Y , we say that a homomorphism ϕ : X → Y from E to
EY

Γ is ρ-invariant if ϕ(x1) = ρ(x1, x2) · ϕ(x2) for all x1, x2 ∈ X .

1



I. Local rigidity
Basic definitions

Definition

The difference set associated with functions ϕ : X → Y and
ψ : X → Y is the set D(ϕ,ψ) given by

D(ϕ,ψ) = {x ∈ X | ϕ(x) 6= ψ(x)}.

Definition

Given Γ y Y , we say that a homomorphism ϕ : X → Y from E to
EY

Γ is ρ-invariant if ϕ(x1) = ρ(x1, x2) · ϕ(x2) for all x1, x2 ∈ X .

1



I. Local rigidity
Basic definitions

Definition

We say that Γ y Y is locally rigid if whenever X is a Polish space,
E is a countable Borel equivalence relation on X , ρ : E → Γ is
a Borel function, and ϕ,ψ are ρ-invariant countable-to-one Borel
homomorphisms from E to EY

Γ , the equivalence relation E � D(ϕ,ψ)
is Borel reducible to EQ.

Today we will prove that Z2 o SL2(Z) y R2 is locally rigid.
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I. Local rigidity
Robustness of R/Q

Definition

An equivalence relation is finite if its classes are all finite.

Definition

A Borel equivalence relation E is hyperfinite if there are finite Borel
subequivalence relations F0 ⊆ F1 ⊆ · · · such that E =

⋃
n∈N Fn.

3



I. Local rigidity
Robustness of R/Q

Definition

An equivalence relation is finite if its classes are all finite.

Definition

A Borel equivalence relation E is hyperfinite if there are finite Borel
subequivalence relations F0 ⊆ F1 ⊆ · · · such that E =

⋃
n∈N Fn.

3



I. Local rigidity
Robustness of R/Q

Definition

A Borel equivalence relation is smooth if it is Borel reducible to the
equality relation on R.

Definition

A Borel equivalence relation is hypersmooth if there are smooth Bor-
el equivalence relations F0 ⊆ F1 ⊆ · · · such that E =

⋃
n∈N Fn.
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I. Local rigidity
Robustness of R/Q

Theorem 1 (Dougherty-Jackson-Kechris, Slaman-Steel, Weiss)

Suppose that X is a Polish space and E is a countable Borel equiv-
alence relation on X . Then the following are equivalent:

1 There is a Borel reduction of E to EQ.

2 The equivalence relation E is hyperfinite.

3 The equivalence relation E is hypersmooth.

4 There is a Borel action Z y X such that E = EX
Z .
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I. Local rigidity
Robustness of R/Q

Proposition 2 (Dougherty-Jackson-Kechris)

Suppose that X is a Polish space and E is a Borel equivalence
relation on X . Then the family of Borel sets on which E is hyperfinite
is closed under countable unions.

Proposition 3 (Dougherty-Jackson-Kechris)

Suppose that X and Y are Polish spaces, E and F are countable
Borel equivalence relations, F is hyperfinite, and there is a countable-
to-one Borel homomorphism from E to F . Then E is hyperfinite.
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I. Local rigidity
The action SL2(Z) y T

Definition

We identify T with the set of rays through R2 rooted at the origin.

Definition

Let SL2(Z) y T denote the action induced by SL2(Z) y R2.
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I. Local rigidity
The action SL2(Z) y T

Proposition 4 (Jackson-Kechris-Louveau)

There is a Borel reduction of ET
SL2(Z) to EQ.
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I. Local rigidity
The action SL2(Z) y T

Proposition 5 (Conley-M)

Only countably many points of T have non-trivial stabilizers under
SL2(Z) y T, and they are all infinite cyclic.

Proof

Suppose that θ ∈ T.

There are now two cases, depending on whether θ ∩ Z2 6= ∅.
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I. Local rigidity
The action SL2(Z) y T

Proof of Proposition 5 (continued)

Suppose first that the set θ ∩ Z2 is non-empty.

Let v = (v1, v2) be the element of this set of minimal magnitude.

Suppose that A is in the stabilizer of θ under SL2(Z) y T.

Then Av = λv for some λ > 0.

Minimality ensures that λ = 1, thus the stabilizers of θ and v under
SL2(Z) y T and SL2(Z) y R2 are one and the same.
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I. Local rigidity
The action SL2(Z) y T

Proof of Proposition 5 (continued)

Minimality also ensures that v1 and v2 are relatively prime.

So there exists a ∈ Z2 such that a · v = 1.

Set B =

[
a1 a2

−v1 v2

]
.

Then B ∈ SL2(Z) and Bv = (1, 0).

So conjugation by B yields an isomorphism of the stabilizer of v
under SL2(Z) y T with that of (1, 0).
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I. Local rigidity
The action SL2(Z) y T

Proof of Proposition 5 (continued)

The latter consists of the upper unitriangular matrices in SL2(Z).

And this group is trivially infinite cyclic.
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I. Local rigidity
The action SL2(Z) y T

Proof of Proposition 5 (continued)

We now handle the case that θ ∩ Z2 is empty.

Fix any v ∈ θ.

Then v1 and v2 are independent over Q.

So the stabilizer of v under SL2(Z) y R2 is trivial.

Let Λ denote the set of eigenvalues of matrices fixing θ.
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I. Local rigidity
The action SL2(Z) y T

Lemma 6

The group Λ is cyclic.

Proof

We need only show that Λ is not dense.

Suppose that v is an eigenvalue of A ∈ SL2(Z) with eigenvalue λ.

Let µ denote the other eigenvalue.
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I. Local rigidity
The action SL2(Z) y T

Proof of Lemma 6 (continued)

Then λµ = det(A) = 1.

So trace(A) = λ+ µ = λ+ 1/λ.

Thus λ+ 1/λ ∈ Z.

And the set of such λ cannot be dense.
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I. Local rigidity
The action SL2(Z) y T

Proof of Proposition 5 (continued)

Fix A in the stabilizer of θ under SL2(Z) y T whose corresponding
eigenvalue λ generates Λ.

If B is also in the stabilizer of θ under SL2(Z) y T, then the
corresponding eigenvalue is λn, for some n ∈ Z.

So AnB−1 is the identity matrix, thus B = An.

Hence the stabilizer of θ under SL2(Z) y T is infinite cyclic.
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I. Local rigidity
The action SL2(Z) y T

Proof of Proposition 5 (continued)

Note that each non-trivial A ∈ SL2(Z) fixes at most two θ ∈ T.

As SL2(Z) is countable, it follows that only countably many θ ∈ T
have non-trivial stabilizers.
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I. Local rigidity
The action SL2(Z) y T

Proposition 7 (Conley-M)

Suppose that X is a Polish space and SL2(Z) y X is Borel. Then
there is a Borel reduction of ET×X

SL2(Z) to EQ.

Proof

Let T′ denote the SL2(Z)-invariant Borel set consisting of all θ ∈ T
whose stabilizers under SL2(Z) y T are trivial.

Any Borel Z-action generating ET′

SL2(Z) induces one for ET′×X
SL2(Z).

So there is a Borel reduction of ET′×X
SL2(Z) to EQ.
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I. Local rigidity
The action SL2(Z) y T

Proof of Proposition 7 (continued)

Suppose now that θ ∈ T \ T′.

Let Z denote the stabilizer of θ under SL2(Z) y T.

Then ET×X
SL2(Z) � ({θ} × X ) = ET×X

Z � ({θ} × X ).

And the latter is Borel reducible to EQ.

So ET×X
SL2(Z) is Borel reducible to EQ.
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I. Local rigidity
The action SL2(Z) y T

Definition

We identify T2 with R2/Z2.

Definition

Let SL2(Z) y T2 denote the action induced by SL2(Z) y R2.

20



I. Local rigidity
The action SL2(Z) y T

Definition

We identify T2 with R2/Z2.

Definition

Let SL2(Z) y T2 denote the action induced by SL2(Z) y R2.

20



I. Local rigidity
The action SL2(Z) y T

Proposition 8 (Conley-M)

Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , I is a σ-ideal on X , ρ : E → Z2 o SL2(Z) is a Bor-
el function, ϕ and ψ are ρ-invariant Borel homomorphisms from E
to ER2

Z2oSL2(Z), and ϕ is I-to-one. Then there is an I-to-one Borel

homomorphism from E � D(ϕ,ψ) to ET×T2

SL2(Z).
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I. Local rigidity
The action SL2(Z) y T

Proof

Define σ : E � D(ϕ,ψ)→ SL2(Z) by σ(x , y) = projSL2(Z)◦ρ(x , y).

Note that projT2 ◦ ϕ(x) � D(ϕ,ψ) is σ-invariant.

Define π : D(ϕ,ψ)→ T by π(x) = projT(ϕ(x)− ψ(x)).
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I. Local rigidity
The action SL2(Z) y T

Lemma 9

The function π is σ-invariant.

Proof

If x1, x2 ∈ D(ϕ,ψ) are E -related, then

π(x1) = projT(ϕ(x1)− ψ(x1))

= projT(ρ(x1, x2) · ϕ(x2)− ρ(x1, x2) · ψ(x2))

= projT(σ(x1, x2) · ϕ(x2)− σ(x1, x2) · ψ(x2))

= projT(σ(x1, x2) · (ϕ(x2)− ψ(x2)))

= σ(x1, x2) · projT(ϕ(x2)− ψ(x2))

= σ(x1, x2) · π(x2),

thus π is σ-invariant.
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I. Local rigidity
The action SL2(Z) y T

Proof of Proposition 8 (continued)

So both projT2 ◦ ϕ � D(ϕ,ψ) and π are σ-invariant.

Thus their product is a homomorphism to ET×T2

SL2(Z).

As ϕ is I-to-one, so too is the product.
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I. Local rigidity
The action SL2(Z) y T

Theorem 10 (Conley-M)

The action Z2 o SL2(Z) y R2 is locally rigid.

Proof

Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X , ρ : E → Z2 o SL2(Z) is Borel, and ϕ and ψ are
countable-to-one Borel homomorphisms from E to ER2

Z2oSL2(Z).

It then follows that there is a countable-to-one Borel homomorphism
from E � D(ϕ,ψ) to EQ.

So E � D(ϕ,ψ) is Borel reducible to EQ.
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Part III

Separability



III. Separability
A function space

Definition

We use L(X , µ,Y ) to denote the family of all µ-measurable functions
ϕ : D → Y with µ-positive domains D ⊆ X .

Definition

We view L(X , µ,Y ) as a pseudo-metric space, equipped with the
pseudo-metric dµ given by dµ(ϕ,ψ) = µ(D(ϕ,ψ)).
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III. Separability
A function space

Proposition 1

Suppose that X and Y are Polish spaces, µ is a finite Borel measure
on X , and L ⊆ L(X , µ,Y ). Then L is separable iff there is a Borel
set R ⊆ X ×Y , whose vertical sections are all countable, such that

∀ϕ ∈ L µ({x ∈ dom(ϕ) | ¬x R ϕ(x)}) = 0.

Proof

Suppose that R ⊆ X×Y is a Borel set, whose vertical sections are all
countable, such that ∀ϕ ∈ L µ({x ∈ dom(ϕ) | ¬x R ϕ(x)}) = 0.
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III. Separability
A function space

Proof of Proposition 1 (continued)

Fix a countable algebra A of Borel subsets of X such that for all Bor-
el sets B ⊆ X and ε > 0, there exists A ∈ A with µ(A 4 B) ≤ ε.

Fix a countable family F of Borel functions f : D → Y , with Borel
domains D ⊆ X , such that R =

⋃
f ∈F graph(f ).

One obtains a dense set by considering (f1 � A1) ∪ · · · ∪ (fn � An),
where n ∈ N, A1, . . . ,An ∈ A , and f1, . . . , fn ∈ F .
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III. Separability
Closure

Proposition 2

Suppose that X , Y , and Z are Polish spaces, µ is a finite Borel
measure on X , LXY ⊆ L(X , µ,Y ), LXZ ⊆ L(X , µ,Z ), there is a
countable-to-one Borel function f : Y → Z with f ◦LXY ⊆ LXZ ,
and LXZ is separable. Then LXY is separable.

Proof

Fix a Borel set S ⊆ Y ×Z , whose vertical sections are all countable,
such that ∀ϕ ∈ LXZ µ({x ∈ dom(ϕ) | ¬x S ϕ(x)}) = 0.

Set R = {(x , y) ∈ X × Y | x S f (y)}.
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III. Separability
Homomorphisms

Definition

Let Hom≤ℵ0-to-1(E , µ,F ) denote the set of countable-to-one homo-
morphisms ϕ ∈ L(X , µ,Y ) from E � dom(ϕ) to F .

5



III. Separability
Homomorphisms

Proposition 3

Suppose that X , Y , and Z are Polish spaces, E , F , and G are count-
able Borel equivalence relations on X , Y , and Z , µ is a finite Borel
measure on X , there is a countable-to-one Borel homomorphism
ϕ : Y → Z from F to G , and Hom≤ℵ0-to-1(E , µ,G ) is separable.
Then Hom≤ℵ0-to-1(E , µ,F ) is separable.

Proof

By the previous proposition, it is clearly sufficient to observe that
ϕ ◦Hom≤ℵ0-to-1(E , µ,F ) ⊆ Hom≤ℵ0-to-1(E , µ,G ).
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III. Separability
Local rigidity

Definition

We say that E is µ-nowhere hyperfinite if there is no µ-positive Borel
set B ⊆ X with the property that E � B is hyperfinite.
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III. Separability
Local rigidity

Proposition 4

Suppose that X and Y are Polish spaces, E and F are countable Bor-
el equivalence relations on X and Y , µ is a finite Borel measure on X
for which E is µ-nowhere hyperfinite, and F is the orbit equivalence
relation of a locally rigid Borel action Γ y Y of a countable group.
Then Hom≤ℵ0-to-1(E , µ,F ) is separable.
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III. Separability
Local rigidity

Proof

Fix real numbers εn > 0 such that
∑

n∈N εn <∞.

Let µc denote the counting measure on X .

Fix an increasing sequence of Borel sets Rn ⊆ X × X such that
E =

⋃
n∈N Rn and each vertical section of Rn has cardinality ≤ n.

For each n ∈ N, set νn = (µ× µc) � Rn.

Set ν = (µ× µc) � E .
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III. Separability
Local rigidity

Proof of Proposition 4 (continued)

Fix countable dense sets Dn ⊆ L(Rn, νn, Γ).

Let D ′n denote the set of ρ ∈ Dn for which there exist σ ∈ L(E , ν, Γ)
and ϕ ∈ Hom≤ℵ0-to-1(E , µ,F ) such that dom(σ) = E � dom(ϕ), ϕ
is σ-invariant, and dνn(σ � (Rn � dom(ϕ)), ρ) ≤ εn.

Fix such a σn,ρ and ϕn,ρ for each n ∈ N and ρ ∈ D ′n.

We will show that the set Φ = {ϕn,ρ | n ∈ N and ρ ∈ D ′n} is dense.
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III. Separability
Local rigidity

Proof of Proposition 4 (continued)

Suppose that ε > 0 and ϕ ∈ Hom≤ℵ0-to-1(E , µ,F ).

We can assume that there exists σ ∈ L(E , ν, Γ) with the property
that dom(σ) = E � dom(ϕ) and ϕ is σ-invariant.

For n ∈ N, fix ρn ∈ Dn such that dνn(σ � (Rn � dom(ϕ)), ρn) ≤ εn.

Set σn = σn,ρn and ϕn = ϕn,ρn .

Note that dνn(σ � (Rn � dom(ϕ)), σn � (Rn � dom(ϕn))) ≤ 2εn.
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III. Separability
Local rigidity
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III. Separability
Local rigidity

Proof of Proposition 4 (continued)

For each n ∈ N, let En denote the equivalence relation generated by
the set Dn = dom(σ) ∩ Rn \ D(σ, σn).

Also for each n ∈ N, define Fn =
⋂

m≥n Em and

Xn = {x ∈ dom(ϕ) | ∃y ∈ dom(ϕ) ∩ (Rn)x σ(x , y) 6= σn(x , y)}.

So µ(Xn) ≤ dνn(σ � (Rn � dom(ϕ)), σn � (Rn � dom(ϕn))) ≤ 2εn.

Thus the set C = ∼
⋂

n∈N
⋃

m≥n Xm is µ-conull.
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III. Separability
Local rigidity

Proof of Proposition 4 (continued)

Note that E � (C ∩ dom(ϕ)) ⊆
⋃

n∈N Fn.

Fix n ∈ N for which there is a Borel set B ⊆ C ∩ dom(ϕ) such that
µ(dom(ϕ) \ B) ≤ ε and Fn � B is (µ � B)-nowhere hyperfinite.

Observe that both ϕ and ϕn are (σ � (Fn � B))-invariant.

So local rigidity ensures that ϕ � B = ϕn � B.

Thus dµ(ϕ,ϕn) ≤ ε.
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III. Separability
Local rigidity

Definition

We say that F has separable homomorphisms if whenever X is a Po-
lish space, E is a countable Borel equivalence relation on X , and µ
is a finite Borel measure on X for which E is µ-nowhere hyperfinite,
the space Hom≤ℵ0-to-1(E , µ,F ) is separable.

Theorem 5 (Conley-M)

The family of countable Borel equivalence relations on Polish spaces
with separable homomorphisms is closed downward under countable-
to-one Borel homomorphism, and includes every orbit equivalence
relation of a locally rigid Borel action of a countable group.
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Part IV

Borel reducibility



IV. Borel reducibility
Products

The following results are joint with Clinton Conley.
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IV. Borel reducibility
Products

Definition

An equivalence relation is µ-hyperfinite if there is a µ-conull Borel
set on which it is hyperfinite.

Definition

An equivalence relation is measure hyperfinite if it µ-hyperfinite for
every finite Borel measure µ on the underlying space.
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every finite Borel measure µ on the underlying space.
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IV. Borel reducibility
Products

Theorem 6

Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X with separable homomorphisms, and µ is a finite Borel
measure on X . Then exactly one of the following holds:

1 The equivalence relation E is µ-hyperfinite.

2 There is no (µ×m)-measurable reduction of E ×∆(R) to E .

Proof

Fix a µ-positive Borel A ⊆ X on which E is µ-nowhere hyperfinite.

Define ν(B) = µ(A ∩ B).

17



IV. Borel reducibility
Products

Theorem 6

Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X with separable homomorphisms, and µ is a finite Borel
measure on X . Then exactly one of the following holds:

1 The equivalence relation E is µ-hyperfinite.

2 There is no (µ×m)-measurable reduction of E ×∆(R) to E .

Proof

Fix a µ-positive Borel A ⊆ X on which E is µ-nowhere hyperfinite.

Define ν(B) = µ(A ∩ B).

17



IV. Borel reducibility
Products

Theorem 6

Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X with separable homomorphisms, and µ is a finite Borel
measure on X . Then exactly one of the following holds:

1 The equivalence relation E is µ-hyperfinite.

2 There is no (µ×m)-measurable reduction of E ×∆(R) to E .

Proof

Fix a µ-positive Borel A ⊆ X on which E is µ-nowhere hyperfinite.

Define ν(B) = µ(A ∩ B).

17



IV. Borel reducibility
Products

Proof of Theorem 6 (continued)

Suppose that ϕ : X × R→ X is a (µ×m)-measurable reduction.

For each r ∈ R, define ϕr : A→ X by ϕr (x) = ϕ(x , r).

Fix an uncountable set R ⊆ R such that ∀r ∈ R ϕr is ν-measurable.

Note that dν(ϕr , ϕs) = µ(A) for all distinct r , s ∈ R.

This contradicts separability of Hom≤ℵ0-to-1(E , ν,F ).
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IV. Borel reducibility
Quasi-invariance

Theorem 7

Suppose that X and Y are Polish spaces, E and F are countable
Borel equivalence relations on X and Y , µ is a finite Borel measure
on X , I is a σ-ideal on Y , E is µ-nowhere hyperfinite, and F has
separable homomorphisms. Then there is an I-conull set C ⊆ Y
such that every ϕ ∈ Hom≤ℵ0-to-1(E , µ,F � C ) sends µ-positive sets
to I-positive sets.
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IV. Borel reducibility
Quasi-invariance

Proof

Fix a sequence (ϕα)α<β of maximal length consisting of functions
in Hom≤ℵ0-to-1(E , µ,F ) with pairwise disjoint I-null ranges.

The separability of Hom≤ℵ0-to-1(E , µ,F ) ensures that β < ω1.

Set C = Y \
⋃
α<β rng(ϕα).
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IV. Borel reducibility
Small products

Theorem 8

Suppose that X is a Polish space and E is a countable Borel equiv-
alence relation on X with separable homomorphisms. Then exactly
one of the following holds:

1 The equivalence relation E is measure hyperfinite.

2 There is a Borel set B ⊆ X for which there is a finite Borel
measure µ on B with the property that there is no (µ× 2)-
measurable reduction of (E � B ×∆(2)) to E � B.

Proof

We can assume there is a finite Borel measure ν on X with the
property that E is not ν-hyperfinite.
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IV. Borel reducibility
Small products

Proof of Theorem 8 (continued)

We can assume that every E -invariant Borel set is ν-null or ν-conull.

Then there exists a ν-conull Borel set B ⊆ X with the property
that every ϕ ∈ Hom≤ℵ0-to-1((E � B)×∆(2), ν,E � B) sends sets of
positive measure to sets of positive measure.

But clearly there can be no such ϕ.
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IV. Borel reducibility
Increasing sequences

Theorem 9

Suppose that X is a Polish space, E is a countable treeable Borel
equivalence relation on X with separable homomorphisms, and µ is
a finite Borel measure on X such that E is not µ-hyperfinite. Then
there is a µ-positive Borel set B ⊆ X for which there is an increasing
sequence (Fr )r∈R of Borel subequivalence relations of E such that
for no distinct r , s ∈ R is there a µ-positive set A ⊆ B on which
there is a µ-measurable reduction of Fr � A to Fs .
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IV. Borel reducibility
Increasing sequences

Proof (Sketch)

Fix a µ-positive Borel C ⊆ X on which E is µ-nowhere hyperfinite.

Fix an acyclic Borel graph G generating E � C .

Construct a Borel subgraph H ⊆ G whose induced equivalence re-
lation F is hyperfinite but µ-nowhere smooth.
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IV. Borel reducibility
Increasing sequences

Proof of Theorem 9 (continued)

Construct an increasing sequence (Hr )r∈R of Borel graphs lying be-
tween H and G with the property that for all real numbers r < s,
the projection of Hs \Hr contains points of µ-almost every E -class.

Then for no distinct r , s ∈ R is there a µ-positive set on which the
equivalence relations Fr and Fs induced by Hr and Hs agree.
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IV. Borel reducibility
Increasing sequences

Proof of Theorem 9 (continued)

We can assume there is a µ-positive Borel set B ⊆ C on which each
Fr is µ-nowhere hyperfinite.

Then for each r ∈ R, there are only countably many s ∈ R for
which there is a µ-positive set A ⊆ B with the property that there
is a (µ � A)-measurable reduction of Fr � A to Fs .

So we can assume that for no distinct r , s ∈ R is there a µ-positive
set A ⊆ B on which there is a µ-measurable reduction.
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IV. Borel reducibility
Cardinality of bases

Theorem 10

Suppose that X is a Polish space and E is a countable treeable Bor-
el equivalence relation on X which has separable homomorphisms
but is not measure hyperfinite. Then there is no basis of cardinality
strictly less than add(null) for the family of non-measure hyperfinite
countable Borel equivalence relations which admit countable-to-one
Borel homomorphisms to E .
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IV. Borel reducibility
Cardinality of bases

Proof

Fix a finite Borel measure µ for which E is not µ-hyperfinite.

Fix a µ-positive Borel set B ⊆ X and a sequence (Fr )r∈R of Bor-
el subequivalence relations of E such that for no distinct r , s ∈ R
is there a µ-positive set A ⊆ B on which there is a µ-measurable
reduction of Fr � A to Fs .
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IV. Borel reducibility
Cardinality of bases

Proof of Theorem 10 (continued)

Suppose that B is a basis of cardinality strictly less than add(null).

For each E ∈ B, fix a finite Borel measure µE such that E is µE -
nowhere hyperfinite.

We can assume that every µE -measurable reduction of E to any Fr
sends µE -positive sets to µ-positive sets.
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IV. Borel reducibility
Cardinality of bases

Proof of Theorem 10 (continued)

Fix Er ∈ B and µ-measurable reductions ϕr of Er to Fr .

Fix distinct r , s ∈ R such that Er = Es and ϕr and ϕs agree on a
µEr -positive set.

Then Fr and Fs agree on a µ-positive set.
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Proof of Theorem 10 (continued)
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IV. Borel reducibility
Complexity

Theorem 11

Suppose that X is a Polish space and E is a countable treeable Borel
equivalence relation on X which has separable homomorphisms but
is not measure hyperfinite. Then the initial segment of the Borel
reducibility hierarchy consisting of relations with countable-to-one
Borel homomorphisms to E × ∆(2N) contains copies of all Borel
quasi-orders on Polish spaces.
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IV. Borel reducibility
Complexity

Proof

Fix (Fr )r∈R as before.

We can assume there are finite Borel measures µr such that every
Fr -invariant Borel set is µr -null or µr -conull, and for no distinct
r , s ∈ R is there a µr -measurable reduction of Fr to Fs .

Associate with each Borel set B ⊆ R the disjoint union of the
equivalence relations Fr , for r ∈ B.

This reduces ⊆ on Borel sets to Borel reducibility.
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IV. Borel reducibility
Products

Theorem 1

Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X with separable homomorphisms, and µ is a finite Borel
measure on X . Then exactly one of the following holds:

1 The equivalence relation E is µ-hyperfinite.

2 There is no (µ×m)-measurable reduction of E ×∆(R) to E .

Proof

Fix a µ-positive Borel A ⊆ X on which E is µ-nowhere hyperfinite.

3



IV. Borel reducibility
Products

Theorem 1

Suppose that X is a Polish space, E is a countable Borel equivalence
relation on X with separable homomorphisms, and µ is a finite Borel
measure on X . Then exactly one of the following holds:

1 The equivalence relation E is µ-hyperfinite.

2 There is no (µ×m)-measurable reduction of E ×∆(R) to E .

Proof

Fix a µ-positive Borel A ⊆ X on which E is µ-nowhere hyperfinite.

3



IV. Borel reducibility
Products

Proof of Theorem 1 (continued)

Suppose that ϕ : X × R→ X is a (µ×m)-measurable reduction.

For each r ∈ R, define ϕr : A→ X by ϕr (x) = ϕ(x , r).

Fix an uncountable set R ⊆ R such that ∀r ∈ R ϕr is µ-measurable.

Note that dν(ϕr , ϕs) = µ(A) for all distinct r , s ∈ R.

This contradicts separability of Hom≤ℵ0-to-1(E , ν,F ).
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IV. Borel reducibility
Quasi-invariance

Theorem 2

Suppose that X and Y are Polish spaces, E and F are countable
Borel equivalence relations on X and Y , µ is a finite Borel measure
on X , I is a σ-ideal on Y , E is µ-nowhere hyperfinite, and F has
separable homomorphisms. Then there is an I-conull set C ⊆ Y
such that rng(ϕ) /∈ I for all ϕ ∈ Hom≤ℵ0-to-1(E , µ,F � C ).
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IV. Borel reducibility
Quasi-invariance

Proof

Fix a sequence (ϕα)α<β of maximal length consisting of functions
in Hom≤ℵ0-to-1(E , µ,F ) with pairwise disjoint I-null ranges.

The separability of Hom≤ℵ0-to-1(E , µ,F ) ensures that β < ω1.

Set C = Y \
⋃
α<β rng(ϕα).
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IV. Borel reducibility
Small products

Theorem 3

Suppose that X is a Polish space and E is a countable Borel equiv-
alence relation on X with separable homomorphisms. Then exactly
one of the following holds:

1 The equivalence relation E is measure hyperfinite.

2 There is a Borel set B ⊆ X for which there is a finite Borel
measure µ on B with the property that there is no (µ× 2)-
measurable reduction of (E � B ×∆(2)) to E � B.

Proof

We can assume there is a finite Borel measure µ on X with the
property that E is not µ-hyperfinite.
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IV. Borel reducibility
Small products

Proof of Theorem 3 (continued)

We can assume every E -invariant Borel set is µ-null or µ-conull.

Then there exists a µ-conull Borel set B ⊆ X with the property
that every ϕ ∈ Hom≤ℵ0-to-1((E � B)×∆(2), µ,E � B) sends sets of
positive measure to sets of positive measure.

But clearly there can be no such ϕ.
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IV. Borel reducibility
Small products

Proof of Theorem 3 (continued)
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IV. Borel reducibility
Increasing sequences

Definition

We say that E is µ-nowhere smooth if there is no µ-positive Borel
set on which E is smooth.
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IV. Borel reducibility
Increasing sequences

Theorem 4

Suppose that X is a Polish space, E is a countable treeable Borel
equivalence relation on X with separable homomorphisms, and µ is
a finite Borel measure on X such that E is µ-nowhere hyperfinite.
Then there is an increasing sequence (Er )r∈R of µ-nowhere hyper-
finite Borel subequivalence relations of E such that for no distinct
r , s ∈ R is there a µ-positive set on which Er and Es agree.
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IV. Borel reducibility
Increasing sequences

Proof (Sketch)

We can assume that the µ-null sets are closed under E -saturation.

Fix an acyclic Borel graph G generating E .

Construct a Borel subgraph H ⊆ G whose induced equivalence re-
lation F is hyperfinite but µ-nowhere smooth.
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IV. Borel reducibility
Increasing sequences

Proof of Theorem 4 (continued)

Construct an increasing sequence (Hr )r∈R of Borel graphs lying be-
tween H and G with the property that for all real numbers r < s,
the projection of Hs \ Hr intersects µ-almost every (E � B)-class.

Then for no distinct r , s ∈ R is there a µ-positive A ⊆ B on which
the relations Fr and Fs induced by Hr and Hs agree.
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IV. Borel reducibility
Increasing sequences

Proof of Theorem 4 (continued)

Fix a Borel contraction f : X → B such that ∀x ∈ X x E f (x).

Define x Er y ⇔ f (x) Fr f (y).

Then for no distinct r , s ∈ R is there a µ-positive set on which Er

and Es agree.
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IV. Borel reducibility
Increasing sequences

Theorem 5

Suppose that X is a Polish space, E is a countable treeable Borel
equivalence relation on X with separable homomorphisms, and µ is
a finite Borel measure on X such that E is µ-nowhere hyperfinite.
Then there is an increasing sequence (Er )r∈R of Borel subequiva-
lence relations of E such that for no distinct r , s ∈ R is there a
µ-measurable reduction of Er to Es on a µ-positive set.
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IV. Borel reducibility
Increasing sequences

Proof

Fix an increasing sequence (Er )r∈R of µ-nowhere hyperfinite Borel
subequivalence relations of E such that for no distinct r , s ∈ R is
there a µ-positive set on which Er and Es agree.

We can assume that
⋂

r∈R Er is µ-nowhere hyperfinite on B.
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IV. Borel reducibility
Increasing sequences

Proof of Theorem 5 (continued)

Then for each r ∈ R, there are only countably many s ∈ R for which
there is a µ-measurable reduction of Es to Er on a µ-positive set.

So we can assume that for no distinct r , s ∈ R is there a µ-
measurable reduction of Er to Es on a µ-positive set.
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IV. Borel reducibility
Increasing sequences

Proof of Theorem 5 (continued)

Then for each r ∈ R, there are only countably many s ∈ R for which
there is a µ-measurable reduction of Es to Er on a µ-positive set.

So we can assume that for no distinct r , s ∈ R is there a µ-
measurable reduction of Er to Es on a µ-positive set.
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IV. Borel reducibility
Cardinality of bases

Theorem 6

Suppose that X is a Polish space and E is a countable treeable Bor-
el equivalence relation on X which has separable homomorphisms
but is not measure hyperfinite. Then there is no basis of cardinality
strictly less than add(null) for the family of non-measure hyperfinite
countable Borel equivalence relations which admit countable-to-one
Borel homomorphisms to E .
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IV. Borel reducibility
Cardinality of bases

Proof

Fix a finite Borel measure µ for which E is µ-nowhere hyperfinite.

Fix a sequence (Er )r∈R of Borel subequivalence relations of E such
that for no distinct r , s ∈ R is there a µ-measurable reduction of Er

to Es on a µ-positive set.
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IV. Borel reducibility
Cardinality of bases

Proof of Theorem 6 (continued)

Suppose that F is a basis of cardinality < add(null).

For each F ∈ F , fix a finite Borel measure µF such that F is
µF -nowhere hyperfinite.

We can assume that every µF -measurable reduction of F to Er sends
µF -positive sets to µ-positive sets.
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IV. Borel reducibility
Cardinality of bases

Proof of Theorem 6 (continued)

Fix Fr ∈ F and µ-measurable reductions ϕr of Fr to Er .

Fix distinct r , s ∈ R such that Fr = Fs and ϕr and ϕs agree on a
µFr -positive set.

Then Er and Es agree on a µ-positive set.
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IV. Borel reducibility
Complexity

Theorem 7

Suppose that X is a Polish space and E is a countable treeable Borel
equivalence relation on X which has separable homomorphisms but
is not measure hyperfinite. Then the initial segment of the Borel
reducibility hierarchy consisting of relations with countable-to-one
Borel homomorphisms to E × ∆(R) contains copies of all Borel
quasi-orders on Polish spaces.
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IV. Borel reducibility
Complexity

Proof

Fix a finite Borel measure µ for which E is µ-nowhere hyperfinite.

Fix a sequence (Er )r∈R of Borel subequivalence relations of E such
that for no distinct r , s ∈ R is there a µ-measurable reduction of Er

to Es on a µ-positive set.
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IV. Borel reducibility
Complexity

Proof of Theorem 7 (continued)

We can assume there are finite Borel measures µr such that every Er -
invariant Borel set is µr -null or µr -conull, and for no distinct r , s ∈ R
is there a µr -measurable reduction of Er to Es on a µr -positive set.

Associate with each Borel set B ⊆ R the disjoint union of the
equivalence relations Er , for r ∈ B.

This reduces ⊆ on Borel sets to Borel reducibility.
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