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I. ISOMETRIC EMBEDDINGS.



I.1. Four fundamental results on isometries.

Mazur-Ulam (1932)
Let X and Y be two normed spaces. Then any isometry U from X onto Y ,
such that U(0) = 0, is linear.

Banach-Mazur (1933)
Any separable Banach space is isometric to a subspace of C ([0, 1]).

Figiel (1968)
Let X and Y be two Banach spaces and U : X → Y be an isometry such
that U(0) = 0.
Then for all x1, .., xn in X and all λ1, .., λn in R :∥∥∥ n∑

k=1

λkU(xk)
∥∥∥

Y
≥
∥∥∥ n∑

k=1

λkxk

∥∥∥
X
.

In other words, there exists a linear quotient map Q : sp(U(X ))→ X such
that QU = IX and ‖Q‖ = 1.
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Proof of Figiel’s Theorem :

We may assume that dimX <∞.

Lemma
Let x ∈ SX such that ‖ ‖X is G-smooth at x and denote v∗x ∈ SX∗ its
differential.
Then v∗x is the unique 1-Lipschitz function f : X → R such that
f (tx) = t for all t ∈ R.

Proof : Let f : X → R be such a function, u ∈ X and |t| > |f (u)|. Then

|t − f (u)| ≤ ‖tx − u‖ = |t|
(
1− v∗x (u/t) + o(1/t)

)
sgn(t)

(
t − f (u)

)
≤ |t| − sgn(t)v∗x (u) + o(1)

sgn(t)v∗x (u) ≤ sgn(t)f (u) + o(1)

Letting t tend to +∞ and −∞, we get v∗x (u) = f (u).
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End of proof of Figiel’s Theorem : Fix x ∈ SX .

Then

∀n ∈ N ∃y∗n ∈ SY ∗
〈
y∗n ,U(nx)− U(−nx)

〉
= 2n.

Since U is an isometry and U(0) = 0, we get that

∀t ∈ [−n, n] 〈y∗n ,U(tx)〉 = t.

Consider now y∗x a weak∗-accumulation point of (y∗n )n.
We have that for all t ∈ R,

〈
y∗x ,U(tx)

〉
= t.

It follows from our Lemma that if x ∈ S (the set of points in SX of
G-smoothness of ‖ ‖X ), then y∗x ◦ U = v∗x .

Now ∥∥∥ n∑
k=1

λkU(xk)
∥∥∥

Y
≥ sup

x∈S

〈
y∗x ,

n∑
k=1

λkU(xk)
〉
= sup

x∈S

〈
v∗x ,

n∑
k=1

λkxk

〉

=
∥∥∥ n∑

k=1

λkxk

∥∥∥
X
,

because S is dense in SX .
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Godefroy-Kalton lifting theorem (2003)

Let X and Y be two Banach spaces. Assume that X is separable, that
Q : Y → X is linear continuous and onto and that there exists a Lipschitz
map L : X → Y so that QL = IdX (L is a Lipschitz lifting of Q).
Then there exists T : X → Y linear so that QT = IdX and ‖T‖ ≤ Lip (L).

Corollary
Assume that X is a separable Banach space which is isometric to a subset
of a Banach space Y . Then X is linearly isometric to a subspace of Y .

Proof of Corollary. Assume that U : X → Y is an isometry such that
U(0) = 0. We may also assume that Y = sp(U(X )). Then, by Figiel’s
Theorem, there exists Q : Y → X linear such that QU = IX and ‖Q‖ ≤ 1.
Now, by Godefroy-Kalton’s Theorem, there exists T : X → Y linear such
that ‖T‖ ≤ 1 and QT = IX and thus T is a linear isometry.

More precisely, if E = T (X ), then P = TQ is a projection of norm 1 from
Y onto E and we can decompose Y = E ⊕ Ker P = Y = E ⊕ Ker Q and
∀x ∈ X U(x) = (T (x),U(x)− T (x)).
Typical example : U : R→ `2∞, U(t) = (t, sin t).



Godefroy-Kalton lifting theorem (2003)
Let X and Y be two Banach spaces. Assume that X is separable, that
Q : Y → X is linear continuous and onto and that there exists a Lipschitz
map L : X → Y so that QL = IdX (L is a Lipschitz lifting of Q).

Then there exists T : X → Y linear so that QT = IdX and ‖T‖ ≤ Lip (L).

Corollary
Assume that X is a separable Banach space which is isometric to a subset
of a Banach space Y . Then X is linearly isometric to a subspace of Y .

Proof of Corollary. Assume that U : X → Y is an isometry such that
U(0) = 0. We may also assume that Y = sp(U(X )). Then, by Figiel’s
Theorem, there exists Q : Y → X linear such that QU = IX and ‖Q‖ ≤ 1.
Now, by Godefroy-Kalton’s Theorem, there exists T : X → Y linear such
that ‖T‖ ≤ 1 and QT = IX and thus T is a linear isometry.

More precisely, if E = T (X ), then P = TQ is a projection of norm 1 from
Y onto E and we can decompose Y = E ⊕ Ker P = Y = E ⊕ Ker Q and
∀x ∈ X U(x) = (T (x),U(x)− T (x)).
Typical example : U : R→ `2∞, U(t) = (t, sin t).



Godefroy-Kalton lifting theorem (2003)
Let X and Y be two Banach spaces. Assume that X is separable, that
Q : Y → X is linear continuous and onto and that there exists a Lipschitz
map L : X → Y so that QL = IdX (L is a Lipschitz lifting of Q).
Then there exists T : X → Y linear so that QT = IdX and ‖T‖ ≤ Lip (L).

Corollary
Assume that X is a separable Banach space which is isometric to a subset
of a Banach space Y . Then X is linearly isometric to a subspace of Y .

Proof of Corollary. Assume that U : X → Y is an isometry such that
U(0) = 0. We may also assume that Y = sp(U(X )). Then, by Figiel’s
Theorem, there exists Q : Y → X linear such that QU = IX and ‖Q‖ ≤ 1.
Now, by Godefroy-Kalton’s Theorem, there exists T : X → Y linear such
that ‖T‖ ≤ 1 and QT = IX and thus T is a linear isometry.

More precisely, if E = T (X ), then P = TQ is a projection of norm 1 from
Y onto E and we can decompose Y = E ⊕ Ker P = Y = E ⊕ Ker Q and
∀x ∈ X U(x) = (T (x),U(x)− T (x)).
Typical example : U : R→ `2∞, U(t) = (t, sin t).



Godefroy-Kalton lifting theorem (2003)
Let X and Y be two Banach spaces. Assume that X is separable, that
Q : Y → X is linear continuous and onto and that there exists a Lipschitz
map L : X → Y so that QL = IdX (L is a Lipschitz lifting of Q).
Then there exists T : X → Y linear so that QT = IdX and ‖T‖ ≤ Lip (L).

Corollary
Assume that X is a separable Banach space which is isometric to a subset
of a Banach space Y . Then X is linearly isometric to a subspace of Y .

Proof of Corollary. Assume that U : X → Y is an isometry such that
U(0) = 0. We may also assume that Y = sp(U(X )). Then, by Figiel’s
Theorem, there exists Q : Y → X linear such that QU = IX and ‖Q‖ ≤ 1.
Now, by Godefroy-Kalton’s Theorem, there exists T : X → Y linear such
that ‖T‖ ≤ 1 and QT = IX and thus T is a linear isometry.

More precisely, if E = T (X ), then P = TQ is a projection of norm 1 from
Y onto E and we can decompose Y = E ⊕ Ker P = Y = E ⊕ Ker Q and
∀x ∈ X U(x) = (T (x),U(x)− T (x)).
Typical example : U : R→ `2∞, U(t) = (t, sin t).



Godefroy-Kalton lifting theorem (2003)
Let X and Y be two Banach spaces. Assume that X is separable, that
Q : Y → X is linear continuous and onto and that there exists a Lipschitz
map L : X → Y so that QL = IdX (L is a Lipschitz lifting of Q).
Then there exists T : X → Y linear so that QT = IdX and ‖T‖ ≤ Lip (L).

Corollary
Assume that X is a separable Banach space which is isometric to a subset
of a Banach space Y . Then X is linearly isometric to a subspace of Y .

Proof of Corollary. Assume that U : X → Y is an isometry such that
U(0) = 0. We may also assume that Y = sp(U(X )).

Then, by Figiel’s
Theorem, there exists Q : Y → X linear such that QU = IX and ‖Q‖ ≤ 1.
Now, by Godefroy-Kalton’s Theorem, there exists T : X → Y linear such
that ‖T‖ ≤ 1 and QT = IX and thus T is a linear isometry.

More precisely, if E = T (X ), then P = TQ is a projection of norm 1 from
Y onto E and we can decompose Y = E ⊕ Ker P = Y = E ⊕ Ker Q and
∀x ∈ X U(x) = (T (x),U(x)− T (x)).
Typical example : U : R→ `2∞, U(t) = (t, sin t).



Godefroy-Kalton lifting theorem (2003)
Let X and Y be two Banach spaces. Assume that X is separable, that
Q : Y → X is linear continuous and onto and that there exists a Lipschitz
map L : X → Y so that QL = IdX (L is a Lipschitz lifting of Q).
Then there exists T : X → Y linear so that QT = IdX and ‖T‖ ≤ Lip (L).

Corollary
Assume that X is a separable Banach space which is isometric to a subset
of a Banach space Y . Then X is linearly isometric to a subspace of Y .

Proof of Corollary. Assume that U : X → Y is an isometry such that
U(0) = 0. We may also assume that Y = sp(U(X )). Then, by Figiel’s
Theorem, there exists Q : Y → X linear such that QU = IX and ‖Q‖ ≤ 1.

Now, by Godefroy-Kalton’s Theorem, there exists T : X → Y linear such
that ‖T‖ ≤ 1 and QT = IX and thus T is a linear isometry.

More precisely, if E = T (X ), then P = TQ is a projection of norm 1 from
Y onto E and we can decompose Y = E ⊕ Ker P = Y = E ⊕ Ker Q and
∀x ∈ X U(x) = (T (x),U(x)− T (x)).
Typical example : U : R→ `2∞, U(t) = (t, sin t).



Godefroy-Kalton lifting theorem (2003)
Let X and Y be two Banach spaces. Assume that X is separable, that
Q : Y → X is linear continuous and onto and that there exists a Lipschitz
map L : X → Y so that QL = IdX (L is a Lipschitz lifting of Q).
Then there exists T : X → Y linear so that QT = IdX and ‖T‖ ≤ Lip (L).

Corollary
Assume that X is a separable Banach space which is isometric to a subset
of a Banach space Y . Then X is linearly isometric to a subspace of Y .

Proof of Corollary. Assume that U : X → Y is an isometry such that
U(0) = 0. We may also assume that Y = sp(U(X )). Then, by Figiel’s
Theorem, there exists Q : Y → X linear such that QU = IX and ‖Q‖ ≤ 1.
Now, by Godefroy-Kalton’s Theorem, there exists T : X → Y linear such
that ‖T‖ ≤ 1 and QT = IX and thus T is a linear isometry.

More precisely, if E = T (X ), then P = TQ is a projection of norm 1 from
Y onto E and we can decompose Y = E ⊕ Ker P = Y = E ⊕ Ker Q and
∀x ∈ X U(x) = (T (x),U(x)− T (x)).
Typical example : U : R→ `2∞, U(t) = (t, sin t).



Godefroy-Kalton lifting theorem (2003)
Let X and Y be two Banach spaces. Assume that X is separable, that
Q : Y → X is linear continuous and onto and that there exists a Lipschitz
map L : X → Y so that QL = IdX (L is a Lipschitz lifting of Q).
Then there exists T : X → Y linear so that QT = IdX and ‖T‖ ≤ Lip (L).

Corollary
Assume that X is a separable Banach space which is isometric to a subset
of a Banach space Y . Then X is linearly isometric to a subspace of Y .

Proof of Corollary. Assume that U : X → Y is an isometry such that
U(0) = 0. We may also assume that Y = sp(U(X )). Then, by Figiel’s
Theorem, there exists Q : Y → X linear such that QU = IX and ‖Q‖ ≤ 1.
Now, by Godefroy-Kalton’s Theorem, there exists T : X → Y linear such
that ‖T‖ ≤ 1 and QT = IX and thus T is a linear isometry.

More precisely, if E = T (X ), then P = TQ is a projection of norm 1 from
Y onto E and we can decompose Y = E ⊕ Ker P = Y = E ⊕ Ker Q and
∀x ∈ X U(x) = (T (x),U(x)− T (x)).

Typical example : U : R→ `2∞, U(t) = (t, sin t).



Godefroy-Kalton lifting theorem (2003)
Let X and Y be two Banach spaces. Assume that X is separable, that
Q : Y → X is linear continuous and onto and that there exists a Lipschitz
map L : X → Y so that QL = IdX (L is a Lipschitz lifting of Q).
Then there exists T : X → Y linear so that QT = IdX and ‖T‖ ≤ Lip (L).

Corollary
Assume that X is a separable Banach space which is isometric to a subset
of a Banach space Y . Then X is linearly isometric to a subspace of Y .

Proof of Corollary. Assume that U : X → Y is an isometry such that
U(0) = 0. We may also assume that Y = sp(U(X )). Then, by Figiel’s
Theorem, there exists Q : Y → X linear such that QU = IX and ‖Q‖ ≤ 1.
Now, by Godefroy-Kalton’s Theorem, there exists T : X → Y linear such
that ‖T‖ ≤ 1 and QT = IX and thus T is a linear isometry.

More precisely, if E = T (X ), then P = TQ is a projection of norm 1 from
Y onto E and we can decompose Y = E ⊕ Ker P = Y = E ⊕ Ker Q and
∀x ∈ X U(x) = (T (x),U(x)− T (x)).
Typical example : U : R→ `2∞, U(t) = (t, sin t).



Basics on free spaces.

Let (M, d) be a metric space with origin 0. Then

Lip0(M) = {f : M → R, f Lipschitz, f (0) = 0}.
For f ∈ Lip0(M), ‖f ‖L = Lip (f ).
For x ∈ M and f ∈ Lip0(M), 〈δM(x), f 〉 = f (x).
Then δM is an isometry from M into Lip0(M)∗

and we define F(M) = sp{δM(x), x ∈ M}.
Fundamental property : If Y is a Banach space and L : M → Y is
Lipschitz with L(0) = 0, then there exists L : F(M)→ Y linear such that
‖L‖ = Lip (L) and LδM = L.
So B(F(M),Y ) ≡ Lip0(M,Y ) and in particular F(M)∗ ≡ Lip0(M).
Weaver - arXiv 2017. If M is bounded or is complete and convex, then
Lip0(M) has a unique predual.

• If X is a Banach space, then there exists a quotient map βX : F(X )→ X
such that ‖βX‖ ≤ 1 and βX δX = IdX .

• The map δX is an isometric (non linear) lifting of βX .
Godefroy and Kalton showed that if X is separable, then βX admits a linear
isometric lifting V . Then the general case follows.
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Sketch of proof of Godefroy-Kalton.

Let (xn)
∞
n=1 ⊂ X be linearly independent, such that sp(xn) = X and

‖xn‖ = 2−n.
Denote λN the Lebesgue measure on [0, 1]N , EN = sp{x1, .., xN}.
An

N = {k ≤ N, k 6= n} and λn
N the Lebesgue measure on [0, 1]A

n
N .

Define VN : EN → F(X ) to be linear and such that

∀n ≤ N VN(xn) =

∫
[0,1]A

n
N

(
δX (xn +

∑
k∈An

N

tkxk)− δX (
∑

k∈An
N

tkxk)
)

dλn
N .

Clearly βXVN = IdEN .

Key step : ‖VN‖ ≤ 1 and therefore VN is a linear isometry.
(Approximation by C 1 functions + fundamental theorem of calculus)

Finally : ∀n ≤ N, ‖VN+1(xn)− VN(xn)‖ ≤ 2‖xN+1‖ ≤ 2−N .
So we can define,

∀x ∈ EN V (x) := lim
M→∞,M≥N

VM(x).

Then V extends to a linear isometry from X to Y so that βXV = IdX .
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General case.
Assume that X is a separable Banach space, Q : Y → X is a quotient map
and L : X → Y is a Lipschitz lifting of Q (QL = IdX ).

Recall that there exists L : F(X )→ Y linear with ‖L‖ = Lip (L) so that
LδX = L and a linear isometry V : X → F(X ) such that βXV = IdX .

Since
QLδX = QL = IdX = βX δX ,

we get that
QL = βX and QLV = βXV = IdX .

The operator T = LV is a linear lifting of Q with ‖T‖ ≤ Lip (L).

Remarks.
1. Godefroy-Kalton’s lifting theorem is false in the non separable setting
(Aharoni-Lindenstrauss 1978). Any non separable WCG space fails the
lifting property (Godefroy-Kalton).
2. Their Corollary about isometric embeddings is also false in the non
separable case (Godefroy-Kalton 2003) :
`∞ does not linearly embed into F(`∞).
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I.2. Other consequences of Figiel and Godefroy-Kalton.

Definition
Let X be a Banach space and F be a subset of X . We say that F is an
isometrically representing subset (IRS) for X if all Banach spaces containing
an isometric copy of F contain a subspace (linearly) isometric to X .

Questions.
1. Let X be a separable Banach space. Is BX IRS for X ?
2. Let X be a separable Banach space. Does X admit a compact IRS
subset ?
3. Assume that X and Y are separable Banach spaces with the same
compact subsets. Do they embed isometrically into each other ?
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Proposition
Let X be a separable Banach space and F be a closed convex and total
subset of X , with 0 ∈ F . Assume that there exists an isometry U from F
into a Banach space Y such that U(0) = 0 and

∀x1, .., xn ∈ F ∀λ1, .., λn ∈ R
∥∥∥ n∑

k=1

λkU(xk)
∥∥∥

Y
≥
∥∥ n∑

k=1

λkxk
∥∥

X . (∗)

Then X is linearly isometric to a subspace of Y .

Proof. Read carefully the proof of Godefroy-Kalton’s Theorem :
There exists a linear isometry V : X → F(F ), such that βXV = IX .
By (∗), ∃Q : Y → X linear, ‖Q‖ ≤ 1 and QU = IX on F (assume
Y = sp(U(X )).
Let U : F(F )→ Y linear with UδF = U and ‖U‖ ≤ 1.
So QUδF = QU = βX δF and QU = βX on F(F ).
Finally QUV = βXV = IX . So UV is a linear isometric embedding from X
into Y .
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Definition
Let X be a separable Banach space and F be a closed convex and total
subset of X , with 0 ∈ F . We say that F has the Uniform Figiel Property
(UF) if there exists r ∈ (0, 1] such that

∀x1, .., xn ∈ rF ∀λ1, .., λn ∈ R
∥∥∥ n∑

k=1

λkU(xk)
∥∥∥

Y
≥
∥∥ n∑

k=1

λkxk
∥∥

X ,

whenever U : F → Y is an isometry such that U(0) = 0.

It follows from the previous Proposition that F is (IRS) for X , whenever it
has property (UF).

Example 1
Let X be a finite dimensional polyhedral Banach space. Then BX has
property (UF) (and is therefore IRS for X ).
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Proof. Let U : BX → Y be an isometry with U(0) = 0.

We can write BX =
⋂l

i=1{x ∈ X , |x∗i (x)| ≤ 1}, with x∗i ∈ SX∗ .
We may assume that there exists (ui )

l
i=1 in SX such that x∗i (ui ) = 1 and

for all i 6= j , |x∗j (ui )| < 1. It follows that

∃r ∈ (0, 1] ∀x ∈ rBX ‖ui − x‖ = x∗i (ui − x).

If f : BX → R is 1-Lipschitz and such that f (ui ) = −f (−ui ) = 1, then

∀x ∈ rBX 1± f (x) ≤ ‖ui ± x‖ = 1± x∗i (x), so f (x) = x∗i (x).

Pick now y∗i ∈ SY ∗ so that 〈y∗i ,U(ui )− U(−ui )〉 = 2.
Then y∗i ◦ U = x∗i on rBX .
We deduce that for all x1, .., xn ∈ rBX and for all λ1, .., λn ∈ R :∥∥∥ n∑
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1≤i≤l
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x∗i ,
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λkxk

∥∥∥
X
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Example 2. The same proof shows that Bc0 has property (UF).

Example 3. Let K = {f ∈ C ([0, 1]), ‖f ‖∞ ≤ 1 and ‖f ‖L ≤ 1} and
assume that U : K → Y is an isometry so that U(0) = 0.
For t ∈ [0, 1], we denote ϕt ∈ K the function, which affine with slope 1 on
[0, t], affine with slope −1 on [t, 1] and such that ϕt(t) = 1.
If f : K → R 1-Lipschitz and such that f (ϕt) = −f (−ϕt) = 1, then

∀ψ ∈ K 1± f (ψ) ≤ ‖ϕt ± ψ‖∞ = 1± ψ(t), so f (ψ) = ψ(t).

Pick now y∗t ∈ SY ∗ so that 〈y∗t ,U(ϕt)− U(−ϕt)〉 = 2.
Then y∗t ◦ U = δt on K .
We deduce that for all f1, .., fn ∈ K and for all λ1, .., λn ∈ R :∥∥∥ n∑

k=1

λkU(fk)
∥∥∥

Y
≥ sup

t∈[0,1]

∣∣∣〈y∗t , n∑
k=1

λkU(fk)
〉∣∣∣

= sup
t∈[0,1]

∣∣∣ n∑
k=1

λk fk(t)
∣∣∣ = ∥∥ n∑

k=1

λk fk
∥∥∥
∞
.

Thus K has property (UF).
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Corollary - Dutrieux-L. (2008)
• The compact space K is IRS for C ([0, 1]).

So, if a Banach space Y is
isometrically universal for all compact metric spaces, then it is universal for
all separable Banach spaces and isometric linear embeddings.

•. Assume (M, d) is a compact metric space. Then C (M) admits a
compact IRS subset

Failure of the Figiel property.

Example - J. Melleray (unpublished).
There exists a Banach space Y and an isometry U : B = B`22 → Y such
that U(0) = 0 and :

∀r > 0 ∃x , y ∈ rB ‖U(x) + U(y)‖Y < ‖x + y‖2.
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I.3. Applications of descriptive set theory.

Godefroy-Kalton (2006)
If a separable Banach space X contains an isometric copy of every
separable strictly convex Banach space, then X contains an isometric copy
of every separable Banach space.

Kurka (2012)
If a separable Banach space X contains an isometric copy of every
separable reflexive Fréchet smooth Banach space, or if it contains an
isometric copy of every separable Banach space with Fréchet smooth dual
norm, then X contains an isometric copy of every separable Banach space.

Tools. Build Banach spaces E (T ) for all subtrees T of ω<ω so that if T is
well founded, then E (T ) is strictly convex and if T is not well founded,
E (T ) is universal. Equip the set of subspaces of E (ω<ω) with the
Effros-Borel structure. The set A of trees T such that E (T ) embeds into
X is analytic and contains all well founded trees, but the set of well
founded trees is not analytic. So, there is T not well founded such that
E (T ) embeds into X .
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Rolewicz question : Assume that a separable Banach space X contains
an isometric copy of every finite dimensional Banach space. Does this imply
that X contains an isometric copy of C ([0, 1]) ?

Szankowski (1972)
There exists a separable reflexive space which contains a 1-complemented
isometric copy of every finite dimensional space.

Kurka (2016)
There exists a separable reflexive space which contains an isometric copy of
every separable super-reflexive Banach space.

Open question ? Assume that a separable Banach space X contains an
isometric copy of every locally finite metric space. Does this imply that X
contains an isometric copy of C ([0, 1]) ?
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II. LIPSCHITZ EMBEDDINGS.



Definition
Let (M, d) and (N, δ) be two metric spaces and f : M → N.
We say that f is a Lipschitz embedding if there exist A,B > 0 such that

∀x , y ∈ M Ad(x , y) ≤ δ(f (x), f (y)) ≤ Bd(x , y).

Then the distortion of f is dist(f ) = Lip (f )Lip (f −1).
If there exists a Lipschitz embedding from M into N, we denote M ↪→

L
N.

If this embedding has distortion D ≥ 1, we denote M
D
↪→ N.

Finally CM(N) = inf{dist(f ), for f Lipschitz embedding from M into N}.

Aharoni (1974)
Let M be a separable metric space. Then M ↪→

L
c0.

More precisely, for any ε > 0, M
6+ε
↪→ c+0

Pelant (1994)

Let M be a separable metric space. Then M
3
↪→ c+0 .
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Kalton, L. (2008)

Let M be a separable metric space. Then M
2
↪→ c0.

Let M be a proper metric space. Then, for any ε > 0, M
1+ε
↪→ c0

This is optimal.

Open questions ( around the converse of Aharoni’s Theorem).
Let X be a Banach space

1) c0 ↪→
L

X ⇒ c0 ' Y ⊂ X ?

2)
(
∀ε > 0 c0

1+ε
↪→ X

)
⇒ c0 ' Y ⊂ X ?

3) c0 ↪→
L

X ⇒ c0
1+ε
↪→ X , for all ε > 0 ?

4) Assume that for any M metric compact (or locally finite, or proper) and

any ε > 0, M
1+ε
↪→ X .

Does this imply that c0 ' Y ⊂ X ?
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Baudier, L. (2008)
Let X be a Banach. Then every locally finite metric space (i.e with finite
balls) Lipschitz embeds into X if and only if X contains uniformly the `n∞’s.

Sketch of proof. (⇐ - Schechtman :) Note first that if every locally finite
metric space Lipschitz embeds into a Banach space X , then every finite
metric space embeds into X with uniform distortion. Let us fix n ∈ N.
For k ∈ N, denote Mk = ( 1

kZ
n ∩ B`n∞ , ‖ ‖∞). Then, there exists C ≥ 1

such that for all k ∈ N, there exists fk : Mk → X so that fk(0) = 0 and

∀x , y ∈ Mk ‖x − y‖∞ ≤ ‖fk(x)− fk(y)‖X ≤ C‖x − y‖∞.

Define now λk : B`n∞ → Mk such that

∀x ∈ B`n∞ ‖λk(x)− x‖∞ = d(x ,Mk) and ϕk = fk ◦ λk .

Finally ϕ(x) = (ϕk(x))k∈U is a bilipschitz embedding from B`n∞ into the
ultrapower XU ⊂ X ∗∗U .
So it follows from Heinrich-Mankiewicz’s weak∗-differentiability theorem,
local reflexivity and finite representability of XU into X that X uniformly
contains the `n∞’s.
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(⇒)

Let M be a locally finite metric space. Fix x0 ∈ M and denote
Bn = B(x0, 2n+1). For x ∈ Bn, set φn(x) =

(
d(x , y)− d(x0, y)

)
y∈Bn

, the

isometric Fréchet embedding of Bn into `|Bn|
∞ .

Since `n∞ ⊆ X , there exists a subspace Z of X with a FDD (Zn)n∈N such
that for all n ∈ N, there exists Tn : `

|Bn|
∞ ' Zn, with ‖Tn‖ ≤ 2 and

‖T−1
n ‖ ≤ 1.

Then set ψn = Tn ◦ φn : Bn → Zn.
Finally we define φ : M → Z by embedding Bn \ Bn−1 into Zn ⊕ Zn+1 as
follows :

∀x ∈ Bn \ Bn−1 φ(x) = λ(x)ψn(x) + (1− λ(x))ψn+1(x),

where λ(x) = 2n+1−d(x ,x0)
2n .

M. Ostrovskii (2012)
Let X and Y be two Banach spaces such that Y is finitely crudely
representable in X and M be a locally finite subset of Y . Then M admits a
bilipschitz embedding into X .
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III. COARSE AND UNIFORM EMBEDDINGS.



Definition
Let (M, d) and (N, δ) be two unbounded metric spaces. A map f : M → N
is said to be a coarse embedding if there exist two increasing functions
ρ1, ρ2 : [0,∞)→ [0,∞) such that lim∞ ρ1 = +∞ and

∀x , y ∈ M ρ1(d(x , y)) ≤ δ(f (x), f (y)) ≤ ρ2(d(x , y)).

An important question was to know whether a (separable) reflexive Banach
space could be universal for separable metric spaces and coarse embeddings.

Kalton (2007)
Assume that c0 coarsely embeds into a separable Banach space X . Then
one of the iterated duals of X has to be non separable.
In particular, X cannot be reflexive.

Kalton’s graphs : Let M be an infinite subset of N and k ∈ N. We denote

Gk(N) = {n = (n1, .., nk), ni ∈M n1 < .. < nk}.

We say that n 6= m ∈ Gk(M) are adjacent (or d(n,m) = 1) if
m1 ≤ n1 ≤ .. ≤ mk ≤ nk or n1 ≤ m1 ≤ .. ≤ nk ≤ mk .
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Proof : Assume that X is reflexive and fix a non principal ultrafilter U on
N. For a bounded function f : Gk(N)→ X we define ∂f : Gk−1(N)→ X by

∀n ∈ Gk−1(N) ∂f (n) = weak − lim
nk∈U

f (n1, .., nk−1, nk).

Note that ∂k f ∈ X .

Lemma 1
Let h : Gk(N)→ R be a bounded map and ε > 0. Then there is an infinite
subset M of N such that

∀n ∈ Gk(M) |h(n)− ∂kh| < ε.

Lemma 2
Let f : Gk(N)→ X and g : Gk(M)→ X ∗ be two bounded maps. Define
f ⊗ g : G2k(N)→ R by

(f ⊗ g)(n1, .., n2k) =
〈
f (n2, n4, .., n2k), g(n1, .., n2k−1)

〉
.

Then ∂2(f ⊗ g) = ∂f ⊗ ∂g .... ∂2k(f ⊗ g) = 〈∂k f , ∂kg〉 ∈ R.
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Lemma 3
Let f : Gk(N)→ X be a bounded map and ε > 0. Then there is an infinite
subset M of N such that

∀n ∈ Gk(M) ‖f (n)‖ ≤ ‖∂k f ‖+ ωf (1) + ε,

where ωf is the modulus of continuity of f .

Proof. For all n ∈ Gk(N), there exists g(n) ∈ SX∗ such that
〈f (n), g(n)〉 = ‖f (n)‖. Then

|∂2k(f ⊗ g)| = |〈∂k f , ∂kg〉| ≤ ‖∂k f ‖.
By Lemma 1, there is an infinite subset M0 of N such that

∀p ∈ G2k(M0) : |(f ⊗ g)(p)| ≤ ‖∂k f ‖+ ε.

Then write M0 = {n1 < m1 < .. < ni < mi < ..} and set
M = {n1 < n2 < .. < ni < ..}. Thus for all n = (ni1 , .., nik ) ∈ Gk(M),

‖f (n)‖ = 〈f (n), g(n)〉 ≤ |〈f (ni1+1, .., nik+1), g(ni1 , .., nik )〉|+ ωf (1)

≤ ‖∂k f ‖+ ε+ ωf (1).
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Lemma 4
Let ε > 0, X be a separable reflexive Banach space and I be an
uncountable set. Assume that for each i ∈ I , fi : Gk(N)→ X is a bounded
map. Then there exist i 6= j ∈ I and an infinite subset M of N such that

∀n ∈ Gk(M) ‖fi (n)− fj(n)‖ ≤ ωfi (1) + ωfj (1) + ε.

Proof. Since X is separable and I is uncountable, there exists i 6= j ∈ I ,
‖∂k fi − ∂k fj‖ < ε/2.
Then just apply Lemma 3 to fi − fj .
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End of proof. Assume X is reflexive and let h : c0 → X be a map which is
bounded on bounded subsets of c0. Let (ek)k be the canonical basis of c0.

For an infinite subset A of N we now define

∀n ∈ N sA(n) =
∑

k≤n, k∈A

ek

and

∀n = (n1, .., nk) ∈ Gk(N) fA(n) =
k∑

i=1

sA(ni ).

(h ◦ fA)A is an uncountable family of bounded maps from Gk(N) to X .
It follows from Lemma 4 that there are two distinct infinite subsets A and
B of N and another infinite subset M of N so that for all n ∈ Gk(M) :

‖h ◦ fA(n)− h ◦ fB(n)‖ ≤ ωh◦fA(1) + ωh◦fB (1) + 1 ≤ 2ωh(1) + 1.

Since A 6= B , there is n ∈ Gk(M) with ‖fA(n)− fB(n)‖ = k .
By taking arbitrarily large values of k we deduce that h cannot be a coarse
embedding. ρ1 cannot tend to +∞.
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Remarks.

1) Similarly, one can show that h cannot be a uniform embedding, by
composing h with the maps tfA and letting t tend to zero.
2) It is now easy to adapt this proof in order to obtain the stronger result
stated in Kalton’s theorem.
3) On the other hand, Kalton proved that c0 embeds uniformly and
coarsely in a Banach space X with the Schur property. Note that such an
X does not contain any subspace linearly isomorphic to c0.
4) Kalton used the same graph distance on Gk(ω1) in order to show that
the unit balls of `∞/c0 or C ([0, ω1]) do not uniformly embed into `∞.
5) Kalton also proved that any stable metric space can be coarsely and
uniformly embedded into a reflexive Banach space.

Open question.
Let X be a separable Banach space such that c0 embeds coarsely in X .
Does it imply that X ∗∗ is non separable ?

Problem. Describe the Banach spaces containing uniform bi-Lipschitz
copies of the Gk(N)’s.
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Almost Lipschitz embeddability - with F. Baudier (2015).

Definition
Let (M, d) be a metric space and Y be a Banach space. We say that
(M, d) almost Lipschitz embeds into Y if there exist D ≥ 1 such that for
any continuous function ϕ : [0,+∞)→ [0, 1) satisfying ϕ(0) = 0 and
ϕ(t) > 0 for all t > 0, there exists a map fϕ : M → Y such that

∀x , y ∈ M ϕ(dX (x , y)) dX (x , y) ≤ dY (fϕ(x), fϕ(y)) ≤ DdX (x , y).

A metric space is proper if all its closed balls are compact.

Theorem
Let p ∈ [1,+∞], M a proper subset of Lp, and Y a Banach space
containing uniformly the `np’s. Then M almost Lipschitz embeds into Y .
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Corollary 1
Any proper metric space almost Lipschitz embeds into any Banach space
without cotype.

Corollary 2
Any proper subset of a Hilbert space almost Lipschitz embeds into any
infinite dimensional Banach space.

Question. Does `2 coarsely embed into any infinite dim. Banach space ?

Optimality
Let X be a separable Banach space. Then, there exists a compact subset K
of X such that, whenever K almost Lipschitz embeds into a Banach space
Y , then X is crudely finitely representable into Y .
In particular :
• For any p ∈ [1,∞), there exists a compact subset Kp of Lp such that, Kp
almost Lipschitz embeds into Y iff Y uniformly contains the `np’s.
• There exists a compact subset K∞ of c0 such that, K∞ almost Lipschitz
embeds into Y iff Y uniformly contains the `n∞’s.
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Tools for the embedding result.

Let M be a proper subset of Lp and Bk = {x ∈ M, ‖x‖p ≤ 2k+1}, k ∈ Z.

• There is a finite rank norm 1 linear εn-approximation of the identity ϕk
n

on the compact Bk .
• We may assume that the image of ϕk

n is included in Hk
n which is

2-isomorphic to some `d(n,k)p .
• We can build a subspace Z of X with an FDD (Gj)j such that each Gj is
2-isomorphic to exactly one of the Hk

n .
• fk =

∑∞
n=1 2

−nϕk
n embeds Bk into Z .

• Finally, we use the convex-gluing technique to define, for x ∈ Bk \ Bk−1 :

f (x) = λfk(x) + (1− λ)fk+1(x), with λ =
2k+1 − ‖x‖p

2k .
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Steps of the proof of optimality.
• Let (xn, x∗n )

∞
n=1 biorthogonal in X × X ∗ such that sp{xn : n ≥ 1} = X .

Pick a decreasing sequence (an)
∞
n=1 of positive real numbers such that

∞∑
n=1

an‖xn‖ ‖x∗n‖ ≤ 1.

Let S(x) =
∑∞

n=1 anx∗n (x)xn and K = S(BX ). K is a compact subset of X .
• If f : K → Y is a bi-Lipschitz embedding, then X linearly embeds into
Y ∗∗ (use the weak∗-Gâteaux derivative of f ◦ S).
• If K almost Lipschitz embeds into Y . Then we can build an increasing
sequence (Rn)n of 2−n-nets of K so that the Rn’s uniformly bi-Lipschitz
embed into Y .
• Then, the usual argument shows that K bi-Lipschitz embeds into an
ultrapower of Y .
• Therefore X linearly embeds into the bidual of the ultrapower and is
therefore finitely crudely representable into Y .
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IV. METRIC INVARIANTS.



Definition
Let (M, d) and (N, δ) be two unbounded metric spaces. A map f : M → N
is said to be a coarse Lipschitz embedding if there exist A,B,C ,D > 0
such that

∀x , y ∈ M Ad(x , y)− B ≤ δ(f (x), f (y)) ≤ Cd(x , y) + D.

We denote M ↪→
CL

N.

Ribe 1976
Let X and Y be two Banach spaces such that X ↪→

CL
Y . Then X is finitely

crudely representable into Y : there exists a C ≥ 1 such that every finite
dimensional subspace of X is C -isomorphic to a subspace of Y .

In other words : the local linear properties of Banach spaces (such as type,
cotype, superreflexivity...) are stable under coarse Lipschitz embeddings.

Ribe program (Bourgain-Lindenstrauss). Characterize the local
properties of Banach spaces in purely metric terms.
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IV.1 Examples of local properties.

linear type et cotype
Let X be a Banach space, p ∈ [1, 2] et q ∈ [2,+∞[.
We say that X is of type p if there exists C > 0 so that

∀x1, .., xn ∈ X 2−n
∑
εi=±1

∥∥ n∑
i=1

εixi
∥∥ ≤ C

( n∑
i=1

‖xi‖p
)1/p

.

We say that X is of cotype q if there exists C > 0 so that

∀x1, .., xn ∈ X
( n∑

i=1

‖xi‖q
)1/q ≤ C2−n

∑
εi=±1

∥∥ n∑
i=1

εixi
∥∥.

Maurey-Pisier (1973-1976)
X is of trivial type iff it contains uniformly the `n1’s (Pisier 73).
X is of trivial cotype iff it contains uniformly the `n∞’s (Maurey-Pisier 76).
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Enflo’s metric type
Let (M, d) be a metric space and p ≥ 1. We say that M is of
metric type p, if there exists C > 0 such that for all (xε)ε∈{−1,1}n ⊂ M :

2−n
∑

diagonals ≤ C
(
2−n

∑
(edges)p

)1/p
,

where a diagonal is a pair (xε, x−ε) and an edge is a pair (xε, xδ) with ε and
δ different on exactly one coordinate.

• It is clear that a Banach space of metric type p is of linear type p
(consider functions of the sort : xε =

∑n
i=1 εixi ).

• An inequality of Pisier (1986) shows that if X is of linear type p, then it
is of metric type r , for all r < p.
• It is unknown whether a Banach space of linear type p is always of metric
type p.

Bourgain-Milman-Wolfson (1986)
A metric space is of trivial metric type iff it contains uniformly bi-Lipschitz
copies of the Hamming cubes Hn = ({−1, 1}n, ‖ ‖1).
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Some contributions of Mendel and Naor (2007 and 2008).

• Definition of a better adapted metric type called “Scaled Enflo type”, for
which they show that a Banach space is of linear type p iff it is of scaled
Enflo type p.

• Definition of a good notion of metric cotype for which they showed two
major results (Annals of Math. 2008).

Mendel-Naor (2008)
• A Banach space is of linear cotype q iff it is of metric cotype q.
• A metric space is of trivial metric cotype iff it contains uniformly
bi-Lipschitz copies of the spaces Cm

n = ({1, ..,m}n, ‖ ‖∞).
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Super-reflexivity.
For N ∈ N, denote DN = {∅} ∪ ∪N

k=1{0, 1}k the dyadic tree of height N,
equipped with its geodesic distance ρ.

We denote D∞ = ∪N∈NDN , the infinite dyadic tree.

Bourgain (1986)
A Banach space X is super-reflexive if and only if

lim
N→∞

CX (DN) =∞.

Proof : (⇐) : Uses James’ criterion.
(⇒) : Kloeckner’s argument (2013).

Baudier (2007)
A Banach space X is not super-reflexive if and only if D∞ Lipschitz embeds
into X .

Idea of proof : Assume X is not super-reflexive. Combine Bourgain’s
embedding technique of (D2N , ρ) into X with the usual convex-gluing
technique.
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IV.2 Asymptotic properties.

Various asymptotic moduli. Let (X , ‖ ‖) be a Banach space.
For t > 0, x ∈ SX and Y a closed linear subspace of X , we define

ρ(t, x ,Y ) = sup
y∈SY

‖x + ty‖ − 1 and δ(t, x ,Y ) = inf
y∈SY

‖x + ty‖ − 1.

Then

ρX (t) = sup
x∈SX

inf
dim(X/Y )<∞

ρ(t, x ,Y ); δX (t) = inf
x∈SX

sup
dim(X/Y )<∞

δ(t, x ,Y ).

• The norm is asymptotically uniformly smooth (AUS) if limt→0
ρX (t)

t = 0.
• It is asymptotically uniformly convex (AUC) if δX (t) > 0, for all t > 0.
Similarly, there is in X ∗ a modulus of weak∗ asymptotic uniform convexity :

δ
∗
X (t) = inf

x∗∈SX∗
sup
E

inf
y∗∈SE⊥

{‖x∗ + ty∗‖ − 1},

where E runs through all finite dimensional subspaces of X .
• The norm of X ∗ is weak∗ uniformly asymptotically convex (w∗-AUC) if
δ
∗
X (t) > 0, for all t > 0.
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Let p ∈ [1,∞[.

• The norm of X is p-AUS if : ∃C > 0 ∀t > 0 ρX (t) ≤ Ctp (1 < p <∞).
• The norm of X is p-AUC if : ∃C > 0 ∀t > 0 δX (t) ≥ Ctp.
Notation : X ∈ 〈P〉 if X admits an equivalent norm with property P .

Property (β) of Rolewicz
We say that X has property (β) of Rolewicz if for every t > 0, there exists
δ > 0 such that for any x ∈ BX and any t-separated sequence (xn) in BX :

∃n ∈ N
∥∥∥x + xn

2

∥∥∥ ≤ 1− δ.

The infimum of such δ’s is denoted βX (t).

Examples :
1) Uniformly convex spaces.
2) X =

(∑∞
n=1 Fn

)
`p
, where p ∈]1,+∞[ and the Fn’s are finite

dimensional. If Fn = `n∞, X is not superreflexive.

Remark : Propery (β) implies reflexivity (easy with James’criterion).
The converse is false (even up to renorming) : X =

(∑∞
n=1 `1+2−n

)
`2
.
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The Szlenk index.

Let X be a Banach space, K a weak∗-compact subset of X ∗ and ε > 0.
Denote V the set of all relatively weak∗-open subsets V of K such that the
diameter of V is less than ε. Then, define the derivation

sεK = K \ ∪{V : V ∈ V}

and inductively

sα+1
ε K = sε(sαε K ) and sαε K =

⋂
β<α

sβε K if α is a limit ordinal.

Define Sz(X , ε) to be the least ordinal α so that sαε BX∗ = ∅, if it exists.
Otherwise we write Sz(X , ε) =∞.
Finally, the Szlenk index of X is Sz(X ) = supε>0 Sz(X , ε).

Asymptotic analogue of Bourgain’s theorem ?
Try to describe the (uniform) Lipschitz embeddability of the countably
branching trees : TN = {∅} ∪ ∪N

k=1N
k or of T∞ = ∪N∈NTN (all equipped

with the geodesic distance).
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Theorem
Let X be a reflexive Banach space. The following assertions are equivalent.

(i) Sz(X ) ≤ ω and Sz(X ∗) ≤ ω.
(ii) There exist p, q > 1 so that X ∈ 〈p-AUS〉 ∩ 〈q-AUC〉.
(iii) There exist p, q > 1 so that X ∈ 〈p-AUS and q-AUC〉.
(iv) X ∈ 〈β〉 (with power type modulus).
(v) limN→+∞ CX (TN) = +∞.
(vi) T∞ does not bi-Lipschitz embed into X .

Remark : There is a characterization of super-reflexivity similar to (i) in
terms of dentability indices.

“Proof”.
(iv)⇒(v). Reproduce Kloeckner’s argument (Baudier-Zhang, 2016).
(v)⇒(vi). Clear.
(vi)⇒(i). Baudier-Kalton-L. (2010). (details later ?)
In [B-K-L 2010], there is a direct complicated proof of (i)⇒(v).
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Knaust-Odell-Schlumprecht (1999), Raja (2010)
Let X be a Banach space. Then Sz(X ) ≤ ω if and only if there exists
p ∈ (1,∞) such that X ∈ 〈p-AUS〉.

Easy fact. Let p ∈ (1,∞) and p′ be its conjugate exponent. Then ‖ ‖X is
p-AUS if and only if ‖ ‖X∗ is p′-weak∗ AUC.

(i)⇒(ii). Follows immediately from this remark and the previous theorem.
(iii)⇒(iv). Kutzarova (1990) and
Dilworth-Kutzarova-Randrianarivony-Revalski-Zhivkov (2013).
Focus on (ii)⇒(iii).
Let (X , ‖ ‖) be a Banach space. Denote S the set of continuous
semi-norms on X . We equip S with the metric

∀N,M ∈ S d(N,M) = sup
x∈BX

|N(x)−M(x)|.

It is clear that (S, d) is complete and that the set P of all equivalent
norms on X is open in S. So (P, d) is a Baire space.
Finish it on the board.



Knaust-Odell-Schlumprecht (1999), Raja (2010)
Let X be a Banach space. Then Sz(X ) ≤ ω if and only if there exists
p ∈ (1,∞) such that X ∈ 〈p-AUS〉.

Easy fact. Let p ∈ (1,∞) and p′ be its conjugate exponent. Then ‖ ‖X is
p-AUS if and only if ‖ ‖X∗ is p′-weak∗ AUC.

(i)⇒(ii). Follows immediately from this remark and the previous theorem.
(iii)⇒(iv). Kutzarova (1990) and
Dilworth-Kutzarova-Randrianarivony-Revalski-Zhivkov (2013).
Focus on (ii)⇒(iii).
Let (X , ‖ ‖) be a Banach space. Denote S the set of continuous
semi-norms on X . We equip S with the metric

∀N,M ∈ S d(N,M) = sup
x∈BX

|N(x)−M(x)|.

It is clear that (S, d) is complete and that the set P of all equivalent
norms on X is open in S. So (P, d) is a Baire space.
Finish it on the board.



Knaust-Odell-Schlumprecht (1999), Raja (2010)
Let X be a Banach space. Then Sz(X ) ≤ ω if and only if there exists
p ∈ (1,∞) such that X ∈ 〈p-AUS〉.

Easy fact. Let p ∈ (1,∞) and p′ be its conjugate exponent. Then ‖ ‖X is
p-AUS if and only if ‖ ‖X∗ is p′-weak∗ AUC.

(i)⇒(ii). Follows immediately from this remark and the previous theorem.

(iii)⇒(iv). Kutzarova (1990) and
Dilworth-Kutzarova-Randrianarivony-Revalski-Zhivkov (2013).
Focus on (ii)⇒(iii).
Let (X , ‖ ‖) be a Banach space. Denote S the set of continuous
semi-norms on X . We equip S with the metric

∀N,M ∈ S d(N,M) = sup
x∈BX

|N(x)−M(x)|.

It is clear that (S, d) is complete and that the set P of all equivalent
norms on X is open in S. So (P, d) is a Baire space.
Finish it on the board.



Knaust-Odell-Schlumprecht (1999), Raja (2010)
Let X be a Banach space. Then Sz(X ) ≤ ω if and only if there exists
p ∈ (1,∞) such that X ∈ 〈p-AUS〉.

Easy fact. Let p ∈ (1,∞) and p′ be its conjugate exponent. Then ‖ ‖X is
p-AUS if and only if ‖ ‖X∗ is p′-weak∗ AUC.

(i)⇒(ii). Follows immediately from this remark and the previous theorem.
(iii)⇒(iv). Kutzarova (1990) and
Dilworth-Kutzarova-Randrianarivony-Revalski-Zhivkov (2013).

Focus on (ii)⇒(iii).
Let (X , ‖ ‖) be a Banach space. Denote S the set of continuous
semi-norms on X . We equip S with the metric

∀N,M ∈ S d(N,M) = sup
x∈BX

|N(x)−M(x)|.

It is clear that (S, d) is complete and that the set P of all equivalent
norms on X is open in S. So (P, d) is a Baire space.
Finish it on the board.



Knaust-Odell-Schlumprecht (1999), Raja (2010)
Let X be a Banach space. Then Sz(X ) ≤ ω if and only if there exists
p ∈ (1,∞) such that X ∈ 〈p-AUS〉.

Easy fact. Let p ∈ (1,∞) and p′ be its conjugate exponent. Then ‖ ‖X is
p-AUS if and only if ‖ ‖X∗ is p′-weak∗ AUC.

(i)⇒(ii). Follows immediately from this remark and the previous theorem.
(iii)⇒(iv). Kutzarova (1990) and
Dilworth-Kutzarova-Randrianarivony-Revalski-Zhivkov (2013).
Focus on (ii)⇒(iii).

Let (X , ‖ ‖) be a Banach space. Denote S the set of continuous
semi-norms on X . We equip S with the metric

∀N,M ∈ S d(N,M) = sup
x∈BX

|N(x)−M(x)|.

It is clear that (S, d) is complete and that the set P of all equivalent
norms on X is open in S. So (P, d) is a Baire space.
Finish it on the board.



Knaust-Odell-Schlumprecht (1999), Raja (2010)
Let X be a Banach space. Then Sz(X ) ≤ ω if and only if there exists
p ∈ (1,∞) such that X ∈ 〈p-AUS〉.

Easy fact. Let p ∈ (1,∞) and p′ be its conjugate exponent. Then ‖ ‖X is
p-AUS if and only if ‖ ‖X∗ is p′-weak∗ AUC.

(i)⇒(ii). Follows immediately from this remark and the previous theorem.
(iii)⇒(iv). Kutzarova (1990) and
Dilworth-Kutzarova-Randrianarivony-Revalski-Zhivkov (2013).
Focus on (ii)⇒(iii).
Let (X , ‖ ‖) be a Banach space. Denote S the set of continuous
semi-norms on X .

We equip S with the metric

∀N,M ∈ S d(N,M) = sup
x∈BX

|N(x)−M(x)|.

It is clear that (S, d) is complete and that the set P of all equivalent
norms on X is open in S. So (P, d) is a Baire space.
Finish it on the board.



Knaust-Odell-Schlumprecht (1999), Raja (2010)
Let X be a Banach space. Then Sz(X ) ≤ ω if and only if there exists
p ∈ (1,∞) such that X ∈ 〈p-AUS〉.

Easy fact. Let p ∈ (1,∞) and p′ be its conjugate exponent. Then ‖ ‖X is
p-AUS if and only if ‖ ‖X∗ is p′-weak∗ AUC.

(i)⇒(ii). Follows immediately from this remark and the previous theorem.
(iii)⇒(iv). Kutzarova (1990) and
Dilworth-Kutzarova-Randrianarivony-Revalski-Zhivkov (2013).
Focus on (ii)⇒(iii).
Let (X , ‖ ‖) be a Banach space. Denote S the set of continuous
semi-norms on X . We equip S with the metric

∀N,M ∈ S d(N,M) = sup
x∈BX

|N(x)−M(x)|.

It is clear that (S, d) is complete and that the set P of all equivalent
norms on X is open in S. So (P, d) is a Baire space.
Finish it on the board.



Knaust-Odell-Schlumprecht (1999), Raja (2010)
Let X be a Banach space. Then Sz(X ) ≤ ω if and only if there exists
p ∈ (1,∞) such that X ∈ 〈p-AUS〉.

Easy fact. Let p ∈ (1,∞) and p′ be its conjugate exponent. Then ‖ ‖X is
p-AUS if and only if ‖ ‖X∗ is p′-weak∗ AUC.

(i)⇒(ii). Follows immediately from this remark and the previous theorem.
(iii)⇒(iv). Kutzarova (1990) and
Dilworth-Kutzarova-Randrianarivony-Revalski-Zhivkov (2013).
Focus on (ii)⇒(iii).
Let (X , ‖ ‖) be a Banach space. Denote S the set of continuous
semi-norms on X . We equip S with the metric

∀N,M ∈ S d(N,M) = sup
x∈BX

|N(x)−M(x)|.

It is clear that (S, d) is complete and that the set P of all equivalent
norms on X is open in S. So (P, d) is a Baire space.

Finish it on the board.



Knaust-Odell-Schlumprecht (1999), Raja (2010)
Let X be a Banach space. Then Sz(X ) ≤ ω if and only if there exists
p ∈ (1,∞) such that X ∈ 〈p-AUS〉.

Easy fact. Let p ∈ (1,∞) and p′ be its conjugate exponent. Then ‖ ‖X is
p-AUS if and only if ‖ ‖X∗ is p′-weak∗ AUC.

(i)⇒(ii). Follows immediately from this remark and the previous theorem.
(iii)⇒(iv). Kutzarova (1990) and
Dilworth-Kutzarova-Randrianarivony-Revalski-Zhivkov (2013).
Focus on (ii)⇒(iii).
Let (X , ‖ ‖) be a Banach space. Denote S the set of continuous
semi-norms on X . We equip S with the metric

∀N,M ∈ S d(N,M) = sup
x∈BX

|N(x)−M(x)|.

It is clear that (S, d) is complete and that the set P of all equivalent
norms on X is open in S. So (P, d) is a Baire space.
Finish it on the board.



This proof gives a norm which is AUS and AUC,

but does not give the
result about power types moduli.Indeed, the conditions “p-AUS” and
“q-AUC” are not Gδ.
However it is enough to deduce (iv).

• For the quantitative result, one has to adapt a proof by John and Zizler
(1979).
Assume that N and M are equivalent norms on X with

N ≤ M ≤ C M δN(t) ≥ atq and ρM(t) ≤ btp.

Set

‖ ‖∗n = N∗ +
1
n
M∗ and | | =

∞∑
n=1

1
n3 ‖ ‖n.

Then | | is p-AUS and 4q-AUC.

Question. We do not know if both exponents can be preserved in
(ii)⇒(iii). The similar question for UC and US renormings is a famous open
question.
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Corollary
Having an equivalent norm with property (β) is stable under coarse
Lipschitz embeddings.

Indeed a Banach space which coarse Lipschitz embeds into a reflexive AUS
space is reflexive (Kalton-Randrianarivony).

Open questions :
1) Describe the non reflexive spaces that contain a bi-Lipschitz copy of T∞
or uniform bi-Lipschitz copies of the TN ’s.
2) Is (〈AUS〉 + reflexive) stable under coarse Lipschitz embeddings ?
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