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Categories

A category K consists of
a class of objects Obj(K),

a class of arrows
⋃

a,b∈Obj(K) K(a,b), where f ∈ K(a,b) means a is
the domain of f and b is the codomain of f ,
a partial associative composition operation ◦ defined on arrows,
where f ◦ g is defined⇐⇒ the domain of g coincides with the
domain of f .

Furthermore, for each a ∈ Obj(K) there is an identity ida ∈ K(a,a)
satisfying ida ◦ g = g and f ◦ ida = f for f ∈ K(a, x), g ∈ K(y ,a),
x , y ∈ Obj(K).
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W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 13–20 January 2018 4 / 36



Categories

A category K consists of
a class of objects Obj(K),
a class of arrows

⋃
a,b∈Obj(K) K(a,b), where f ∈ K(a,b) means a is

the domain of f and b is the codomain of f ,
a partial associative composition operation ◦ defined on arrows,
where f ◦ g is defined⇐⇒ the domain of g coincides with the
domain of f .

Furthermore, for each a ∈ Obj(K) there is an identity ida ∈ K(a,a)
satisfying ida ◦ g = g and f ◦ ida = f for f ∈ K(a, x), g ∈ K(y ,a),
x , y ∈ Obj(K).
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Definition
A sequence in K is a functor ~x from N into K.

x0 x1 x2 · · ·
x1

0 x2
1 x3

2

Definition
Let ~x be a sequence in K. The colimit of ~x is a pair 〈X , {x∞n }n∈N〉 with
x∞n : xn → X satisfying:

1 x∞n = x∞m ◦ xm
n for every n < m.

2 If 〈Y , {y∞n }n∈N〉 with y∞n : xn → Y satisfies y∞n = y∞m ◦ ym
n for every

n < m then there is a unique arrow f : X → Y satisfying
f ◦ x∞n = y∞n for every n ∈ N.

W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 13–20 January 2018 5 / 36



Definition
A sequence in K is a functor ~x from N into K.

x0 x1 x2 · · ·
x1

0 x2
1 x3

2

Definition
Let ~x be a sequence in K. The colimit of ~x is a pair 〈X , {x∞n }n∈N〉 with
x∞n : xn → X satisfying:

1 x∞n = x∞m ◦ xm
n for every n < m.

2 If 〈Y , {y∞n }n∈N〉 with y∞n : xn → Y satisfies y∞n = y∞m ◦ ym
n for every

n < m then there is a unique arrow f : X → Y satisfying
f ◦ x∞n = y∞n for every n ∈ N.
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The Banach-Mazur game

Definition
The Banach-Mazur game BM (K) played on K is described as follows.

There are two players: Eve and Odd. Eve starts by choosing
a0 ∈ Obj(K).
Then Odd chooses a1 ∈ Obj(K) together with a K-arrow a1

0 : a0 → a1.
More generally, after Odd’s move finishing with an object a2k−1, Eve
chooses a2k ∈ Obj(K) together with a K-arrow a2k

2k−1 : a2k−1 → a2k .
Next, Odd chooses a2k+1 ∈ Obj(K) together with a K-arrow
a2k+1

2k : a2k → a2k+1. And so on...
The result of a play is a sequence ~a:

a0 a1 · · · a2k−1 a2k · · ·
a1

0 a2k
2k−1
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W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 13–20 January 2018 6 / 36



The Banach-Mazur game

Definition
The Banach-Mazur game BM (K) played on K is described as follows.
There are two players: Eve and Odd. Eve starts by choosing
a0 ∈ Obj(K).
Then Odd chooses a1 ∈ Obj(K) together with a K-arrow a1

0 : a0 → a1.
More generally, after Odd’s move finishing with an object a2k−1, Eve
chooses a2k ∈ Obj(K) together with a K-arrow a2k

2k−1 : a2k−1 → a2k .

Next, Odd chooses a2k+1 ∈ Obj(K) together with a K-arrow
a2k+1

2k : a2k → a2k+1. And so on...
The result of a play is a sequence ~a:

a0 a1 · · · a2k−1 a2k · · ·
a1

0 a2k
2k−1
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Generic objects

General assumption: K ⊆ L.

Definition
We say that U ∈ Obj(L) is K-generic if Odd has a strategy in the
Banach-Mazur game BM (K) such that the colimit of the resulting
sequence ~a is always isomorphic to U, no matter how Eve plays.

Proposition
A K-generic object, if exists, is unique up to isomorphism.

Proof.
The rules for Eve and Odd are the same.
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Example 1
Let K be the category of all finite linearly ordered sets.
Then 〈Q, <〉 is K-generic.

Example 2
Let Mfin be the category of finite metric spaces with isometric
embeddings.
Then the Urysohn space U is Mfin-generic.
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The Gurarii space
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Theorem (Gurarii 1966)
There exists a separable Banach space G with the following property.
(G) For every ε > 0, for every finite-dimensional normed spaces

E ⊆ F, for every linear isometric embedding e : E → G there
exists a linear ε-isometric embedding f : F → G such that
f � E = e.

Theorem (Lusky 1976)
Among separable spaces, property (G) determines the space G
uniquely up to linear isometries.

Elementary proof: Solecki & K. 2013.
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W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 13–20 January 2018 11 / 36



Theorem (Gurarii 1966)
There exists a separable Banach space G with the following property.
(G) For every ε > 0, for every finite-dimensional normed spaces

E ⊆ F, for every linear isometric embedding e : E → G there
exists a linear ε-isometric embedding f : F → G such that
f � E = e.

Theorem (Lusky 1976)
Among separable spaces, property (G) determines the space G
uniquely up to linear isometries.

Elementary proof: Solecki & K. 2013.
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Theorem (K. 2018)
The Gurarii space G is generic over the category Bfd of
finite-dimensional normed spaces with linear isometric embeddings.

Key Lemma (Solecki & K.)
Let X , Y be finite-dimensional normed spaces, let f : X → Y be an
ε-isometry with 0 < ε < 1. Then there exist a finite-dimensional
normed space Z and isometric embeddings i : X → Z , j : Y → Z such
that

‖i − j ◦ f‖ 6 ε.
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The amalgamation property

Definition
We say that K has amalgamations at z ∈ Obj(K) if for every K-arrows
f : z → x , g : z → y there exist K-arrows f ′ : x → w , g′ : y → w such
that f ′ ◦ f = g′ ◦ g.

y w

z x

g

f

g f ′

We say that K has the amalgamation property (AP) if it has
amalgamations at every z ∈ Obj(K).

W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 13–20 January 2018 14 / 36



The amalgamation property

Definition
We say that K has amalgamations at z ∈ Obj(K) if for every K-arrows
f : z → x , g : z → y there exist K-arrows f ′ : x → w , g′ : y → w such
that f ′ ◦ f = g′ ◦ g.

y w

z x

g

f

g f ′

We say that K has the amalgamation property (AP) if it has
amalgamations at every z ∈ Obj(K).
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Theorem (Universality)
Assume K has the AP and X = lim~x, where ~x is a sequence in K.
Assume U is K-generic.

Then there exists an arrow e : X → U.
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The generic linear operator

Theorem (Cabello Sánchez, Garbulińska-Wegrzyn, K. 2014)
There exists a norm-one linear operator Ω: G→ G satisfying the
following condition.
(E) For every ε > 0, for every finite-dimensional Banach spaces

E ⊆ F, for every non-expansive linear operator T : F → G, for
every linear isometric embedding e : E → G with Ω ◦ e = T � E,
there exists an ε-isometric embedding f : F → G such that

f � E = e and Ω ◦ f = T .

Theorem
For every non-expansive linear operator S : X → G with X separable,
there exists a linear isometric embedding e : X → G such that

Ω ◦ e = S.
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Theorem
The operator Ω is generic.

Theorem (Bargetz, Kakol, K. 2017)
There exists a unique graded separable Fréchet space G∞ satisfying:
(E) For every ε > 0, for every finite-dimensional graded Fréchet

spaces E ⊆ F, for every linear isometric embedding e : E → G∞
there exists an ε-isometric embedding f : F → G∞ such that
f � E = e.
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The Cantor set

Fix a compact 0-dimensional space K . Define the category KK as
follows.
The objects are continuous mappings f : K → S with S finite.
An arrow from f : K → S to g : K → T is a surjection p : T → S
satisfying p ◦ g = f .

T

K

S

p

g

f
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Let LK be the category whose objects are continuous mappings
f : K → X with X metrizable compact 0-dimensional.

An LK -arrow
from f : K → X to g : K → Y is a continuous surjection p : Y → X
satisfying p ◦ g = f .

Y

K

X

p

g

f
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Theorem (Bielas, Walczyńska, K.)
Let 2ω denote the Cantor set. A continuous mapping η : K → 2ω is
KK -generic⇐⇒ η is a topological embedding and η[K ] is nowhere
dense in 2ω.

Corollary (Knaster & Reichbach 1953)
Let h : A→ B be a homeomorphism between closed nowhere dense
subsets of 2ω. Then there exists a homeomorphism H : 2ω → 2ω such
that

H � A = h.
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The pseudo-arc

Let I be the category of all continuous surjections from the unit interval
[0,1] onto itself.

Let C be the category of all chainable continua.

Theorem
The pseudo-arc is I-generic.
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Amalgamations

Definition
We say that K has amalgamations at z ∈ Obj(K) if for every K-arrows
f : z → x , g : z → y there exist K-arrows f ′ : x → w , g′ : y → w such
that f ′ ◦ f = g′ ◦ g.

y w

z x

g

f

g f ′

We say that K has the amalgamation property (AP) if it has
amalgamations at every z ∈ Obj(K).
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Definition
A category K is directed if for every x , y ∈ Obj(K) there is z ∈ Obj(K)
such that

K(x , z) 6= ∅ and K(y , z) 6= ∅.

x

z

y
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Fraı̈ssé theory

Theorem
Assume K is a countable directed category of finitely generated
models with embeddings.
If K has the AP then there exists a K-generic (countably generated)
model, called the Fraı̈ssé limit of K.

Theorem (Fraı̈ssé 1954)
Let K be as above, let U =

⋃
n∈N un with un ∈ Obj(K) for every n ∈ N.

The following conditions are equivalent.
(a) U is the Fraı̈ssé limit of K.
(b) Every K-object embeds into U and for every embeddings

e : a→ b, f : a→ U with a,b ∈ Obj(K) there exists an embedding
g : b → U such that f = g ◦ e.
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Fact
Finite graphs of vertex degree 6 2 fail the amalgamation property.
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Weakenings of amalgamation

Definition
We say that K has the cofinal amalgamation property (CAP) if for every
z ∈ Obj(K) there is a K-arrow e : z → z ′ such that K has
amalgamations at z ′.

Definition (Ivanov, 1999)
We say that K has the weak amalgamation property (WAP) if for every
z ∈ Obj(K) there is a K-arrow e : z → z ′ such that for every K-arrows
f : z ′ → X , g : z ′ → y there exist K-arrows f ′ : x → w , g′ : y → w such
that f ′ ◦ f ◦ e = g′ ◦ g ◦ e.
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CAP and WAP

y w

z ′ x

z

g′

f

g f ′

e

Proposition
Finite graphs of vertex degree 6 2 have the CAP.
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Theorem (Krawczyk & K. 2016)
Let K be a countable directed category of finitely generated models
with embeddings.

The following conditions are equivalent:
(a) There exists a K-generic model.
(b) K has the WAP.

Theorem (Krawczyk & K. 2016)
Let K be as above and let U be a countably generated model. The
following properties are equivalent:
(a) U is K-generic.
(b) Eve does not have a winning strategy in BM (K,U).
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A more concrete setup
We assume that K is a full subcategory of L and the following
conditions are satisfied.
(L0) All L-arrows are monic.
(L1) Every L-object is the co-limit of a sequence in K.
(L2) Every sequence in K has a co-limit in L.
(L3) Every K-object is ω-small in L.
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Weak injectivity

Definition
An object V ∈ Obj(L) is weakly K-injective if

every K-object has an L-arrow into V , and
for every L-arrow e : a→ V there exists a K-arrow i : a→ b such
that for every K-arrow f : b → y there is an L-arrow g : y → V
satisfying g ◦ f ◦ i = e.

a b y

V

i

e

f

g
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Theorem (K. 2017)
Assume K ⊆ L satisfy (L0)–(L3) and K is locally countable. Given
V ∈ Obj(L), the following conditions are equivalent.

(a) V is weakly K-injective.
(b) V is K-generic.
(c) Eve does not have a winning strategy in BM (K,V ).

Remark
If there exists a weakly K-injective object then K is directed and has the
WAP.
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