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The BV sets, functions, and beyond

A recurring theme in Geometric Measure Theory and in the study of
geometric variational problems is the theory of sets of finite
perimeter.

The best known classical result about such sets due to De Giorgi and
Federer says that a (measurable) set A in Euclidean n space has finite
perimeter if and only if its measure-theoretic boundary has finite area
(‘area’ means (n− 1)-dimensional Hausdorff/integralgeometric
measure), and more precisely the perimeter agrees with the area of
the measure-theoretic boundary of A.

Main questions: If we assume, for example, that just one partial
derivative of characteristic function of A is a (signed) Borel measure
with finite total variation, can we provide a nice integralgeometric
representation of this variation?
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Main questions studied

Question 1: Assume that just one partial derivative of characteristic
function of A is a (signed) Borel measure with finite total variation,
provide an integralgeometric representation of this variation measure.

This is a delicate question, as the Gauss-Green type theorems of De
Giorgi and Federer are not available in this generality.

We will show that a ‘measure-theoretic boundary’ plays its role in
such representations similarly as for the BV sets.

Question 2: There is a variety of plausible notions of
‘measure-theoretic boundary’ and one can address the question to find
notions of measure-theoretic boundary that are as fine as possible.
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Main results achieved

The main result concerning Question 1 states that a set A has finite
variation in a given direction τ (that is, the distributional derivative of
the characteristic function of A in the direction τ is a finite measure)
if and only if a suitably defined (n− 1)-dimensional measure of a
suitably defined measure-theoretic boundary is finite, and more
precisely the variation of A in the direction τ agrees with the measure
of such boundary.

Interestingly, our results give also a relatively elementary proof of the
classical result of De Giorgi and Federer mentioned above.

The results show quite clearly that the natural notion of ‘area’ in this
context is not the (n− 1)-dimensional Hausdorff measure, but the
integralgeometric measure (which of course agree in case of rectifiable
sets).

M Chleb́ık (University of Sussex) Going beyond variation of sets 4 / 18



Main results achieved

The main result concerning Question 1 states that a set A has finite
variation in a given direction τ (that is, the distributional derivative of
the characteristic function of A in the direction τ is a finite measure)
if and only if a suitably defined (n− 1)-dimensional measure of a
suitably defined measure-theoretic boundary is finite, and more
precisely the variation of A in the direction τ agrees with the measure
of such boundary.

Interestingly, our results give also a relatively elementary proof of the
classical result of De Giorgi and Federer mentioned above.

The results show quite clearly that the natural notion of ‘area’ in this
context is not the (n− 1)-dimensional Hausdorff measure, but the
integralgeometric measure (which of course agree in case of rectifiable
sets).

M Chleb́ık (University of Sussex) Going beyond variation of sets 4 / 18



Main results achieved

The main result concerning Question 1 states that a set A has finite
variation in a given direction τ (that is, the distributional derivative of
the characteristic function of A in the direction τ is a finite measure)
if and only if a suitably defined (n− 1)-dimensional measure of a
suitably defined measure-theoretic boundary is finite, and more
precisely the variation of A in the direction τ agrees with the measure
of such boundary.

Interestingly, our results give also a relatively elementary proof of the
classical result of De Giorgi and Federer mentioned above.

The results show quite clearly that the natural notion of ‘area’ in this
context is not the (n− 1)-dimensional Hausdorff measure, but the
integralgeometric measure (which of course agree in case of rectifiable
sets).

M Chleb́ık (University of Sussex) Going beyond variation of sets 4 / 18



Notion of ‘directional variation’

A set A ⊂ Rn is said to be a BV set, or a set of finite perimeter if it
is Lebesgue measurable and the gradient DχA in the sense of
distributions of its characteristic function χA is an Rn valued Borel
measure on Rn with finite total variation. The value of the perimeter
of A, denoted by P(A), is then the total variation ||DχA|| of the vector
measure DχA. Otherwise, let the perimeter of A be equal to + ∞.

Given a direction τ ∈ Sn−1 a set A ⊂ Rn is said to have bounded
variation at the direction τ if it is Lebesgue measurable and the
directional derivative in the sense of distributions ∂τχ

A of its
characteristic function χA is a signed Borel measure with finite total
variation on Rn . The value of the variation at direction τ of A,
denoted by Pτ(A), is then the total variation ||∂τχ

A|| of the signed
measure ∂τχ

A. Otherwise, let Pτ(A) = +∞.
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Representation of ‘variation of a set’

It is well known that, for a Lebesgue measurable set A and τ = ei
being the standard orthonormal basis direction (and writing briefly Pi
instead of Pei),

Pi(A) =

∫
mA
i (z)dz

where mA
i (z) is the infimum of the variations in xi of all functions

defined on the line Li(z) (paralel to the xi axis and meeting z) which
are equivalent to χA|Li(z) and the integration is over the (n− 1)
space orthogonal to the xi axis.

The perimeter of A (if it is finite) is equal to the (n− 1) measure of
the set frrA that is called the reduced boundary or equivalently it is
equal to (n− 1) measure of the essential boundary freA of A.
Specifically, x ∈ frrA iff there is an (n− 1) plane π through x such
that the symmetric difference of A and one of the halfspaces
determined by π has density zero at x. Further, x ∈ freA iff both A
and complement of A have positive outer upper density at x.
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Representation of ‘variation of a set’

Moreover, if the (n− 1) measure of freA is finite then A is of finite
perimeter. Hence (n− 1) measure of freA is equal to the perimeter
of A for a general set A ⊂ Rn (Our method also offers a simple
self-contained proof of this fact for an integralgeometric (n− 1)
measure.)

We can show that the directional variation of a general set A ⊂ Rn
(without any assumptions on regularity of A) is equal to the measure
of projection (with multiplicities taken into account) of the
’measure-theoretic boundary’. The essential boundary freA can play
here the role of such a ’measure-theoretic boundary’, but one can aim
to replace it even with finer notions of ’measure-theoretic boundary’.
We show, for example, that one can replace freA by finer
preponderant boundary frprA. Specifically, x ∈ frprA iff both A and
complement of A have the outer upper density at x greater than or
equal to 1

2 .
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Hausdorff measures

For an integer k = 0, 1, . . . , n let Hk stand for the k-dimensional
Hausdorff outer measure on Rn, which is normalized in such a way
that

Hk([0, 1]
kx{0}n−k) = 1.

In particular, H0 is the counting measure and Hn coincides with the
Lebesgue outer measure on Rn.

The constant V(n) = π
n
2

Γ(n
2
+1) means the volume of the unit ball in Rn

(with V(0) = 1), and the constant

A(n) = nV(n) = 2π
n
2

Γ(n
2
) means the area of Sn−1.
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Projection measures µτ

For τ ∈ Rn \ {0} the result of Caratheodory’s construction from the
set function

B 7−→ Hn−1[ pτ(B) ]

which is defined on the covering family of all Borel sets in Rn will be
called the projection measure at the direction τ and denoted by µτ.
Then µτ is a Borel regular outer measure on Rn and µτ ≤ Hn−1.

From Fubini theorem it follows that Hn(C) = 0 whenever C ⊂ Rn is
such that µτ(C) <∞.
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Integralgeometric measure =n−11

The result of Caratheodory’s construction from the set function

B −→ 1

2V(n− 1)

∫
Sn−1

Hn−1[ pτ(B) ]dHn−1(τ)

which is defined on the covering family of all Borel sets in Rn is
usually termed (n− 1) dimensional integral geometric measure with
exponent 1 on Rn and denoted by =n−11 .

=n−11 is a Borel regular outer measure on Rn and
2V(n− 1)=n−11 ≤ A(n)Hn−1.
Moreover, it is known that =n−11 ≤ Hn−1.
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Densities

For every set A ⊂ Rn and each x ∈ Rn we define the upper outer
density d(x,A) and the lower outer density d(x,A) of A at x by the
formulas

d(x,A) = limr→0+Hn[A ∩ B(x, r)]

Hn[B(x, r)]
,

d(x,A) = limr→0+Hn[A ∩ B(x, r)]

Hn[B(x, r)]
.

In the case d(x,A) = d(x,A) this common value is termed the
outer density of A at x and it is denoted by d(x,A).

A point x for which d(x,A) = 1 is termed the outer density point
of A.
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Essential and preponderant interior and boundary

We define the essential interior inteA and the essential boundary
freA of the set A ⊂ Rn by the formulas

inteA = { x ∈ Rn : d(x,Ac) = 0},

freA = { x ∈ Rn : d(x,A) > 0 and d(x,Ac) > 0 };

inteA∩ inte(Ac) = ∅, inteA is of type Fσδ and freA is of type Gσδ .
It is easy to see that intprA ∩ intprAc = ∅,

We also define the preponderant interior intprA and the
preponderant boundary frprA of A ⊂ Rn by the formulas

intprA =

{
x ∈ Rn : d(x,Ac) <

1

2

}
,

frprA =

{
x ∈ Rn : d(x,A) ≥ 1

2
and d(x,Ac) ≥ 1

2

}
;

intprA ∩ intprAc = ∅, intprA is of type Fσ and frprA is of type Gδ.
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BV functions

For a nonempty open set Ω ⊂ Rn and for any τ ∈ Rn we define the
space BV(Ω, τ) of all locally (in Ω) Hn summable functions g for
which there exists a finite signed Borel measure ΦgΩ,τ on Ω with the
equality ∫

Ω

g(x) · τ ◦ gradϕ(x)dx = −

∫
Ω

ϕ(x)dΦgΩ,τ(x)

whenever ϕ ∈ C∞
0 (Ω). BV(Ω) is defined as the space of all locally

(in Ω) Hn summable functions g such that there exist the finite
signed Borel measures ΦgΩ,1, Φ

g
Ω,2, . . . , Φ

g
Ω,n with the equality∫

Ω

g(x) · divψ(x)dx = −

n∑
i=1

∫
Ω

ψi(x)dΦ
g
Ω,i(x)

whenever ψ = (ψ1, ψ2, . . . , ψn) ∈ C∞
0 (Ω,Rn).
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Directional variation and perimeter of sets

For a nonempty open set Ω ⊂ Rn and for any τ ∈ Rn the set
functions PΩ,τ and PΩ over the subsets of Rn are defined for A ⊂ Rn
by the following:
If A ∩Ω is not Hn measurable then we put

PΩ,τ(A) = PΩ(A) =∞.
If A ∩Ω is Hn measurable then we put

PΩ,τ(A) = sup


∫
Ω

χA(x)τ ◦Dϕ(x)dx : ϕ ∈ C∞
0 (Ω) , |ϕ| ≤ 1

 ,
PΩ(A) = sup


∫
Ω

χA(x) divψ(x)dx : ψ ∈ C∞
0 (Ω,Rn) , |ψ| ≤ 1

 .
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Integralgeometric characterization of variations

Theorem

Let Ω ⊂ Rnbe nonempty open, A ⊂ Rn be arbitrary and τ ∈ Sn−1. Then

PΩ,τ(A) = µτ(Ω ∩ freA) = µτ(Ω ∩ frprA).

Corollary: Let Ω ⊂ Rn be nonempty open and A ⊂ Rn be arbitrary.
Then the following are equivalent :
(i) PΩ(A) <∞.
(ii) There exist linearly independent vectors τ1, τ2, . . . , τn ∈ Rn such
that µτi(Ω ∩ frprA) <∞ for i = 1, 2, . . . , n.
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Integralgeometric characterization of variations

Theorem

Let Ω ⊂ Rn be nonempty open and A ⊂ Rn be arbitrary. Then

PΩ(A) =
1

2V(n− 1)

∫
Sn−1

PΩ,τ(A)dHn−1(τ).

Theorem

Let Ω ⊂ Rn be nonempty open and A ⊂ Rn be arbitrary. Then the
following equalities hold:

PΩ(A) = =n−11 (Ω ∩ freA) = =n−11 (Ω ∩ frprA).
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Some open questions

We have seen that there is a variety of notions of ‘measure theoretic
boundary’ that play an important role in integralgeometric
representations of various notions of variation of a general set
A ⊂ Rn. We demonstrated this here using the essential boundary,
and the slightly finer preponderant boundary.

While for the sets of bounded variation there is plenty of such notions
of boundary that can be used, much less is known about which
notions of ’boundary’ can be used for integral representations of
variations of more general sets.

Even for the usual notion of the perimeter P(A) of a set A ⊂ Rn we
aim to understand for which notions of ’fine boundary’, frfine(A), we
can say that P(A) is equal to (n− 1)-dimensional measure of
frfine(A) for general sets A ⊂ Rn.
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Some open questions

One of natural choices for such finer notions of ‘boundary’ that need
to be understand for general sets is the following ‘strong boundary’,

frs(A) = { x ∈ Rn : d(x,A) > 0 and d(x,Ac) > 0 }.

Or one can suggest its finer version, frs,δ(A) for 0 < δ ≤ 0.5,

frs,δ(A) = { x ∈ Rn : d(x,A) ≥ δ and d(x,Ac) ≥ δ }.

For BV sets these ‘boundaries’ can be used to represent their
variation, but what can be said about them for general sets? Is their
(n− 1)-dimensional measure always equal to P(A), or can it be
‘small’ for some set A of infinite variation?

We know the answers in dimension n = 1 only, for higher dimensions
these questions about ’strong boundaries’ of general sets are open.

THANK YOU!
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