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Banach lattices

Definition

A lattice is a partially ordered set (L,≤) such that every two
elements x and y have a supremum x ∨y and an infimum x ∧y .

Definition

A vector lattice is a (real) vector space L that is also a lattice and

x ≤ x ′, y ≤ y ′, r ,s ≥ 0 ⇒ rx + sy ≤ rx ′+ sy ′

Definition

A Banach lattice is a vector lattice L that is also a Banach space
and for all x ,y ∈ L, |x | ≤ |y | ⇒ ‖x‖ ≤ ‖y‖

|x |= x ∨−x
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A Banach lattice is a vector lattice L that is also a Banach space
and for all x ,y ∈ L, |x | ≤ |y | ⇒ ‖x‖ ≤ ‖y‖

Definition

A homomorphism T : X −→ Y between Banach lattices is a
bounded operator such that T (x ∨y) = T (x)∨T (y) and
T (x ∧y) = T (x)∧T (y).

C (K ), Lp(µ) with f ≤ g iff f (x)≤ g(x) for (almost) all x .

Spaces with unconditional basis with coordinatewise order.
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Sublattices, ideals and quotients

Let X be a Banach lattice and Y ⊂ X

Y is a Banach sublattice if it is closed linear subspace that is
moreover closed under operations ∨, ∧.

This makes Y a
Banach lattice.

Y is an ideal if moreover, if f ∈ Y and |g | ≤ |f | then g ∈ Y .

This makes X/Y a Banach lattice.
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Duality

For a Banach space E

E ∗ = {x∗ : E −→ R bounded operators}

The weak topology of E is the least topology that makes all
x∗ ∈ E ∗ continuous.

For a Banach lattice X

The set of Banach lattice homomorphims Hom(X ,R) is much
smaller

Hom(C (K ),R) = {rδx : r ≥ 0,x ∈ K}
Hom(`p,R) = {re∗n : r ≥ 0,n ∈ N}
Hom(Lp[0,1],R) = {0}
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A question by Joe Diestel

A Banach space E is weakly compactly generated (WCG) if
there exists a weakly compact subset K ⊂ E that is linearly
dense in E .

A Banach lattice X is lattice-weakly compactly generated
(LWCG) if there exists a weakly compact subset K ⊂ X that
generates X as a Banach lattice.

Problem (Joe Diestel)

If a Banach lattice X is LWCG, is it also WCG when viewed as a
Banach space?
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The answer is YES in the following cases:

When X = C (K ),

When the lattice operations ∧ and ∨ are weakly sequentially
continuous,

X is order continuous

· · ·

Order continuous: if
∧

i∈I fi = 0, then
∧
{‖fi1 ∧·· ·∧ fin‖}= 0.
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Independence and free generation

Let C be an algebraic category (groups, rings, vector spaces,
vector lattices...)

The algebraic notion of independence

For X ∈ C , elements x1, . . . ,xn ∈ X are C -independent if the only
equations that they satisfy are those that follow from the axioms.

The algebraic notion of free generation

FreeC (A) is the set of all the algebraic expressions that we can
form operating with elements of A,

two expressions being equal
only when this is forced by the axioms.

That is, FreeC (A) contains A as a set of independent generators.
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Independence and free generation

.

Categorical characterization of free generation

FreeC (A) is characterized by the property that every map A−→ X
extends to a unique morphism FreeC (A)−→ X

Free Banach space generated by a set A

It is the unique Banach space F with A⊂ BF and every
boundedmap A−→ X extends to a unique operator F −→ X of the
same norm.

This is just `1(A). Because this is the free vector space generated
by A completed with the largest possible norm.
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The free Banach lattice generated by a set A

Definition (de Pagter, Wickstead 2015)

We say that F = FBL(A) if there is an inclusion map A−→ BF

such that every bounded map A−→ X extends to a unique Banach
lattice homomorphism FBL(A)−→ X of the same norm.

It exists and is unique up to isomorphism.

Uniqueness is easy, how to construct it?

Similarly as before, we first construct the free vector lattice
FVL(A) generated by A, and later we complete it with the
largest possible norm.
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Free vector lattice

For every a ∈ A, take the evaluation δa : RA −→ R.

The family {δa : a ∈ A} is vector lattice independent in RRA
.

Hence, the free vector lattice generated by A, is the vector
lattice generated by {δa : a ∈ A} inside RRA

.

FVL(A) = 〈δa : a ∈ A〉VL ⊂ RRA

All the functions of FVL(A) are positively homogeneous on
RA and continuous on [−1,1]A.
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Free Banach lattice generated by a set A

Now, we take f ∈ FVL(A) = 〈δa : a ∈ A〉veclat ⊂ RRA

How to define norm ‖f ‖ having the free extension property?

Focus on extending T : A−→ (−1,1) to norm-one
homomorphisms T̃ : FBL(A)−→ `n1

when T is a linear
combinations of evaluations T (a) = ∑

m
i=1 zi (a)ei , and we get

‖f ‖ ≥ ‖T̃ f ‖=
m

∑
i=1

|f (zi )| whenever sup
a∈A

m

∑
i=1

|zi (a)| ≤ 1

And this happen to be enough...
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Free Banach lattice generated by a set A

Theorem (de Pagter, Wickstead; A., Tradacete, Rodŕıguez)

The free Banach lattice generated by a set A is the closure of the
the vector lattice generated by {δa : a ∈ A} in RRA

under the norm

‖f ‖= sup

{
m

∑
i=1

|f (zi )| : sup
a∈A

m

∑
i=1

|zi (a)| ≤ 1

}

Notice that ‖f ‖ ≥ ‖f |[−1,1]A‖∞

FBL(A) can be viewed as a subset of the Banach lattice of
continuous and positively homogeneous functions on [−1,1]A.

The inclusion FBL(A)−→ C ([−1,1]A) is an injective
homomorphism, but not isomorphism onto image.
Like `1 ⊂ `∞.

In the finite case, FBL(n) is n-isomorphic to C (Sn).
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Other facts and questions from de Pagter and Wickstead

FBL(A) is always ccc (there is no uncountable family of
pairwise disjoint positive elements).

Do all intervals of FBL(A) have the same density?

Does FBL(A) have the Nakano property?

For every order bounded set F of positive elements

sup{‖x1∨·· ·∨xn‖ : xi ∈F}= inf{‖y‖ : y ≥F}

They also pose a number of problems on projective Banach lattices.
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Free Banach lattice generated by a Banach space E

The idea now is to create a Banach lattice FBL[E ] that is
generated (as a Banach lattice) by a Banach subspace isometric to
E in a free way.

Definition

F = FBL[E ] if there is an inclusion mapping E −→ F and every
operator E −→ X extends to a unique homomorphism
FBL(E )−→ X of the same norm.

The uniqueness of FBL[E ] is easy.

For the existence one can take the quotient of FBL(E ) by the
ideal generated by all linear combinations of E which are zero.
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More explicit description of FBL[E ]

For x ∈ E , take δx : E ∗ −→ R the evaluation.

Theorem (A., Tradacete, Rodŕıguez)

The free Banach lattice generated by E is the closure of the the
vector lattice generated by {δe : e ∈ E} in RE ∗ under the norm

‖f ‖= sup

{
m

∑
i=1

|f (x∗i )| : sup
x∈BE

m

∑
i=1

|x∗i (x)| ≤ 1

}

We used that each f ∈ FVL(A) is the difference of suprema of
linear combinations in A, and the Riesz-Kantorovich formula:

y∗
( m∨
k=1

uk

)
= sup

{ m

∑
k=1

y∗k (uk) : y∗k ≥ 0,
m

∑
k=1

y∗k = y∗
}
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Free Banach lattice generated by `1

Proposition

The free Banach lattice generated by the Banach space `1(A)
coincides with the free Banach lattice generated by a set A.

FBL[`1(A)] = FBL(A)



Free Banach lattice generated by `2

Proposition (A., Rodŕıguez, Tradacete)

In FBL[`2], {|en| : n ∈ N} is equivalent to the basis of `1.

Proof: By Khintchine inequality, we have an operator
T : `2 −→ L1[0,1] such that Ten = rn are the Rademacher
functions, and |Ten| is the constant 1 function. There is a Banach
lattice homomorphism of the same norm T̃ : FBL(`2)−→ L1[0,1]
that extends T . Then T̃ |en|= |Ten|, and

‖T‖ ·
∥∥∑ ri |ei |

∥∥≥ ∥∥∥T̃ (∑ ri |ei |
)∥∥∥=

∣∣∑ ri
∣∣
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Solution to Diestel’s question

Corollary (A., Rodŕıguez, Tradacete)

In FBL[`2(Γ)], {|eγ | : γ ∈ Γ} is equivalent to the basis of `1(Γ).

Therefore FBL[`2(Γ)] is LWCG but not WCG.

We do not know if FBL[c0(Γ)] is WCG... but we do know now that
in this case {|eγ | : γ ∈ Γ} is weakly null. Therefore, also

Corollary

If {en : n < ω} is a sequence equivalent to c0 in any Banach
lattice, then {|en| : n < ω} is weakly null.
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Density of intervals

Theorem (A., Rodŕıguez, Tradacete)

All intervals of FBL[E ] have the same density as E .

Sketch of proof for FBL(A). Take f < g . There exists A0 ⊂ A
countable such that f ,g ∈ FBL(A0)⊂ FBL(A). Consider

D = {db = (f ∨b)∧g : b ∈ A\A0}.

Given b,c ∈ A\A0, extend T : A→ FBL(A) that is identity on A0

and Tb = f and Tc = g .

‖f −g‖= ‖Tdb−Tdc‖ ≤ ‖db−dc‖
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Theorem (A., Rodŕıguez, Tradacete)

All intervals of FBL[E ] have the same density as E .

Sketch of proof for FBL(A). Take f < g . There exists A0 ⊂ A
countable such that f ,g ∈ FBL(A0)⊂ FBL(A).

Consider

D = {db = (f ∨b)∧g : b ∈ A\A0}.

Given b,c ∈ A\A0, extend T : A→ FBL(A) that is identity on A0

and Tb = f and Tc = g .

‖f −g‖= ‖Tdb−Tdc‖ ≤ ‖db−dc‖



Density of intervals

Theorem (A., Rodŕıguez, Tradacete)
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The Nakano property

Theorem (A., Rodŕıguez, Tradacete)

FBL(A) = FBL[`1(A)] has the strong Nakano property.

Strong Nakano: If F ⊂ X+ is norm-bounded and closed under ∨,
then it has an upper bound y with

‖y‖= sup{‖x‖ : x ∈F}

Example: C (K ), we can take y a constant function.

In FBL(A), we have elements that play analogous role, the
elements ∣∣∣∣∣∑

a∈A
ra|δa|

∣∣∣∣∣
for (ra)A ∈ `1(A).
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Theorem (A., Plebanek, Rodŕıguez Abellán)

The Banach lattice FBL[E ] has the countable chain condition.

The ccc: Every uncountable family F of positive elements
contains two with f ∧g 6= 0.

Remember that FBL[E ] ↪→ C+h(BE ∗)

When E = `1(A), it is known that C (BE ∗) = C ([−1,1]A) is ccc.
In fact it is Kn: Every uncountable family of positive elements has
an uncountable subfamily with f1∧·· ·∧ fn 6= 0.

For every N > 0 and every uncountable family F ⊂ C+h(BE ∗)+

has an uncountable subfamily F ′ such that among every N
elements there are two with f ∧g 6= 0.
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Free Banach lattice generated by a lattice

Now, let L be a lattice.

A lattice-morphism means that
f (x ∧y) = f (x)∧ f (y) and f (x ∨y) = f (x)∨ f (y).

Definition

We say that F = FBL[L] if there is an inclusion map L−→ BF such
that every bounded lattice-morphism L−→ X extends to a unique
Banach lattice homomorphism FBL[L]−→ X of the same norm.

Again, we can always construct this by making a suitable quotient
of FBL(L).
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Free Banach lattice generated by a line

L∗ = {x∗ : L−→ [−1,1] lattice morphism}.

For x ∈ L, take δx : L∗ −→ R the evaluation.

Theorem (A., Rodŕıguez Abellán)

The free Banach lattice generated by linear order L is the
closure of the the vector lattice generated by {δx : x ∈ L} in RL∗

under the norm

‖f ‖= sup

{
m

∑
i=1

|f (x∗i )| : sup
x∈L

m

∑
i=1

|x∗i (x)| ≤ 1

}

It seems to us that this description may not be valid for an
arbitrary lattice L.
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Theorem (A., Rodŕıguez Abellán)

For a linear order L, the following are equivalent:

1 FBL[L] is ccc

2 L is order-isomorphic to a subset of R.



Free Banach lattice generated by a line

Theorem (A., Rodŕıguez Abellán)

For a linear order L, the following are equivalent:

1 FBL[L] is ccc

2 L is order-isomorphic to a subset of R.



Free Banach lattice generated by a line

Theorem (A., Rodŕıguez Abellán)
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