Free Banach Lattices

Antonio Avilés Universidad de Murcia

MTM2014-541982-P, MTM2017-86182-P (AEI/FEDER, UE) Fundación Séneca 19275/PI/14

Winter School in Abstract Analysis - Section Analysis 2018

Definition

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \vee y$ and an infimum $x \wedge y$.

Definition

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \vee y$ and an infimum $x \wedge y$.

Definition

A vector lattice is a (real) vector space L that is also a lattice and

Definition

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \vee y$ and an infimum $x \wedge y$.

Definition

A vector lattice is a (real) vector space L that is also a lattice and $x \le x', \ y \le y', \ r,s \ge 0 \ \Rightarrow \ rx + sy \le rx' + sy'$

Definition

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \vee y$ and an infimum $x \wedge y$.

Definition

A vector lattice is a (real) vector space L that is also a lattice and $x \le x', y \le y', r, s \ge 0 \Rightarrow rx + sy \le rx' + sy'$

Definition

A Banach lattice is a vector lattice L that is also a Banach space and for all $x, y \in L$, $|x| \le |y| \Rightarrow ||x|| \le ||y||$

$$|x| = x \vee -x$$

Definition

A Banach lattice is a vector lattice L that is also a Banach space and for all $x,y\in L$, $|x|\leq |y| \Rightarrow ||x||\leq ||y||$

Definition

A Banach lattice is a vector lattice L that is also a Banach space and for all $x,y\in L$, $|x|\leq |y| \Rightarrow ||x||\leq ||y||$

Definition

A homomorphism $T: X \longrightarrow Y$ between Banach lattices is a bounded operator such that $T(x \lor y) = T(x) \lor T(y)$ and $T(x \land y) = T(x) \land T(y)$.

Definition

A Banach lattice is a vector lattice L that is also a Banach space and for all $x, y \in L$, $|x| \le |y| \Rightarrow ||x|| \le ||y||$

Definition

A homomorphism $T: X \longrightarrow Y$ between Banach lattices is a bounded operator such that $T(x \lor y) = T(x) \lor T(y)$ and $T(x \land y) = T(x) \land T(y)$.

• C(K), $L^p(\mu)$ with $f \le g$ iff $f(x) \le g(x)$ for (almost) all x.

Definition

A Banach lattice is a vector lattice L that is also a Banach space and for all $x,y\in L$, $|x|\leq |y| \Rightarrow ||x||\leq ||y||$

Definition

A homomorphism $T: X \longrightarrow Y$ between Banach lattices is a bounded operator such that $T(x \lor y) = T(x) \lor T(y)$ and $T(x \land y) = T(x) \land T(y)$.

- C(K), $L^p(\mu)$ with $f \leq g$ iff $f(x) \leq g(x)$ for (almost) all x.
- Spaces with unconditional basis with coordinatewise order.

Let X be a Banach lattice and $Y \subset X$

• *Y* is a Banach sublattice if it is closed linear subspace that is moreover closed under operations ∨, ∧.

Let X be a Banach lattice and $Y \subset X$

 Y is a Banach sublattice if it is closed linear subspace that is moreover closed under operations ∨, ∧. This makes Y a Banach lattice.

Let X be a Banach lattice and $Y \subset X$

- Y is a Banach sublattice if it is closed linear subspace that is moreover closed under operations ∨, ∧. This makes Y a Banach lattice.
- Y is an ideal if moreover, if $f \in Y$ and $|g| \le |f|$ then $g \in Y$.

Let X be a Banach lattice and $Y \subset X$

- Y is a Banach sublattice if it is closed linear subspace that is moreover closed under operations ∨, ∧. This makes Y a Banach lattice.
- Y is an ideal if moreover, if $f \in Y$ and $|g| \le |f|$ then $g \in Y$. This makes X/Y a Banach lattice.

For a Banach space E

$$E^* = \{x^* : E \longrightarrow \mathbb{R} \text{ bounded operators}\}$$

The weak topology of E is the least topology that makes all $x^* \in E^*$ continuous.

For a Banach space E

$$E^* = \{x^* : E \longrightarrow \mathbb{R} \text{ bounded operators}\}$$

The weak topology of E is the least topology that makes all $x^* \in E^*$ continuous.

For a Banach lattice X

For a Banach space E

$$E^* = \{x^* : E \longrightarrow \mathbb{R} \text{ bounded operators}\}$$

The weak topology of E is the least topology that makes all $x^* \in E^*$ continuous.

For a Banach lattice X

•
$$Hom(C(K),\mathbb{R}) = \{r\delta_x : r \geq 0, x \in K\}$$

For a Banach space E

$$E^* = \{x^* : E \longrightarrow \mathbb{R} \text{ bounded operators}\}$$

The weak topology of E is the least topology that makes all $x^* \in E^*$ continuous.

For a Banach lattice X

- $Hom(C(K),\mathbb{R}) = \{r\delta_x : r \geq 0, x \in K\}$
- $Hom(\ell_p, \mathbb{R}) = \{re_n^* : r \geq 0, n \in \mathbb{N}\}$

For a Banach space E

$$E^* = \{x^* : E \longrightarrow \mathbb{R} \text{ bounded operators}\}$$

The weak topology of E is the least topology that makes all $x^* \in E^*$ continuous.

For a Banach lattice X

- $Hom(C(K),\mathbb{R}) = \{r\delta_x : r \geq 0, x \in K\}$
- $Hom(\ell_p, \mathbb{R}) = \{re_n^* : r \geq 0, n \in \mathbb{N}\}$
- $Hom(L_p[0,1],\mathbb{R}) = \{0\}$

• A Banach space E is weakly compactly generated (WCG) if there exists a weakly compact subset $K \subset E$ that is linearly dense in E.

- A Banach space E is weakly compactly generated (WCG) if there exists a weakly compact subset K ⊂ E that is linearly dense in F.
- A Banach lattice X is lattice-weakly compactly generated (LWCG) if there exists a weakly compact subset $K \subset X$ that generates X as a Banach lattice.

- A Banach space E is weakly compactly generated (WCG) if there exists a weakly compact subset K ⊂ E that is linearly dense in E.
- A Banach lattice X is lattice-weakly compactly generated (LWCG) if there exists a weakly compact subset $K \subset X$ that generates X as a Banach lattice.

Problem (Joe Diestel)

If a Banach lattice X is LWCG, is it also WCG when viewed as a Banach space?

Problem (Joe Diestel)

If a Banach lattice X is LWCG, is it also WCG when viewed as a Banach space?

Problem (Joe Diestel)

If a Banach lattice X is LWCG, is it also WCG when viewed as a Banach space?

Theorem (A., Guirao, Lajara, Rodríguez, Tradacete)

The answer is YES in the following cases:

Problem (Joe Diestel)

If a Banach lattice X is LWCG, is it also WCG when viewed as a Banach space?

Theorem (A., Guirao, Lajara, Rodríguez, Tradacete)

The answer is YES in the following cases:

• When X = C(K),

Problem (Joe Diestel)

If a Banach lattice X is LWCG, is it also WCG when viewed as a Banach space?

Theorem (A., Guirao, Lajara, Rodríguez, Tradacete)

The answer is YES in the following cases:

- When X = C(K),
- When the lattice operations ∧ and ∨ are weakly sequentially continuous,

Problem (Joe Diestel)

If a Banach lattice X is LWCG, is it also WCG when viewed as a Banach space?

Theorem (A., Guirao, Lajara, Rodríguez, Tradacete)

The answer is YES in the following cases:

- When X = C(K),
- When the lattice operations ∧ and ∨ are weakly sequentially continuous,
- X is order continuous
- ...

Order continuous: if $\bigwedge_{i \in I} f_i = 0$, then $\bigwedge \{ ||f_{i_1} \wedge \cdots \wedge f_{i_n}|| \} = 0$.

Let $\mathscr C$ be an algebraic category (groups, rings, vector spaces, vector lattices...)

Let $\mathscr C$ be an algebraic category (groups, rings, vector spaces, vector lattices...)

The algebraic notion of independence

For $X \in \mathcal{C}$, elements $x_1, \dots, x_n \in X$ are \mathcal{C} -independent if the only equations that they satisfy are those that follow from the axioms.

Let $\mathscr C$ be an algebraic category (groups, rings, vector spaces, vector lattices...)

The algebraic notion of independence

For $X \in \mathcal{C}$, elements $x_1, \dots, x_n \in X$ are \mathcal{C} -independent if the only equations that they satisfy are those that follow from the axioms.

The algebraic notion of free generation

 $Free_{\mathscr{C}}(A)$ is the set of all the algebraic expressions that we can form operating with elements of A,

Let $\mathscr C$ be an algebraic category (groups, rings, vector spaces, vector lattices...)

The algebraic notion of independence

For $X \in \mathcal{C}$, elements $x_1, \dots, x_n \in X$ are \mathcal{C} -independent if the only equations that they satisfy are those that follow from the axioms.

The algebraic notion of free generation

 $Free_{\mathscr{C}}(A)$ is the set of all the algebraic expressions that we can form operating with elements of A, two expressions being equal only when this is forced by the axioms.

Let $\mathscr C$ be an algebraic category (groups, rings, vector spaces, vector lattices...)

The algebraic notion of independence

For $X \in \mathcal{C}$, elements $x_1, \dots, x_n \in X$ are \mathcal{C} -independent if the only equations that they satisfy are those that follow from the axioms.

The algebraic notion of free generation

 $Free_{\mathscr{C}}(A)$ is the set of all the algebraic expressions that we can form operating with elements of A, two expressions being equal only when this is forced by the axioms.

That is, $Free_{\mathscr{C}}(A)$ contains A as a set of independent generators.

Categorical characterization of free generation

 $Free_{\mathscr{C}}(A)$ is characterized by the property that every map $A \longrightarrow X$ extends to a unique morphism $Free_{\mathscr{C}}(A) \longrightarrow X$

Categorical characterization of free generation

 $Free_{\mathscr{C}}(A)$ is characterized by the property that every map $A \longrightarrow X$ extends to a unique morphism $Free_{\mathscr{C}}(A) \longrightarrow X$

Free Banach space generated by a set A

It is the unique Banach space F with $A \subset B_F$ and every boundedmap $A \longrightarrow X$ extends to a unique operator $F \longrightarrow X$ of the same norm.

Categorical characterization of free generation

 $Free_{\mathscr{C}}(A)$ is characterized by the property that every map $A \longrightarrow X$ extends to a unique morphism $Free_{\mathscr{C}}(A) \longrightarrow X$

Free Banach space generated by a set A

It is the unique Banach space F with $A \subset B_F$ and every boundedmap $A \longrightarrow X$ extends to a unique operator $F \longrightarrow X$ of the same norm.

This is just $\ell_1(A)$.

Categorical characterization of free generation

 $Free_{\mathscr{C}}(A)$ is characterized by the property that every map $A \longrightarrow X$ extends to a unique morphism $Free_{\mathscr{C}}(A) \longrightarrow X$

Free Banach space generated by a set A

It is the unique Banach space F with $A \subset B_F$ and every boundedmap $A \longrightarrow X$ extends to a unique operator $F \longrightarrow X$ of the same norm.

This is just $\ell_1(A)$. Because this is the free vector space generated by A completed with the largest possible norm.

The free Banach lattice generated by a set A

Definition (de Pagter, Wickstead 2015)

We say that F = FBL(A) if there is an inclusion map $A \longrightarrow B_F$ such that every bounded map $A \longrightarrow X$ extends to a unique Banach lattice homomorphism $FBL(A) \longrightarrow X$ of the same norm.

Definition (de Pagter, Wickstead 2015)

We say that F = FBL(A) if there is an inclusion map $A \longrightarrow B_F$ such that every bounded map $A \longrightarrow X$ extends to a unique Banach lattice homomorphism $FBL(A) \longrightarrow X$ of the same norm.

It exists and is unique up to isomorphism.

Definition (de Pagter, Wickstead 2015)

We say that F = FBL(A) if there is an inclusion map $A \longrightarrow B_F$ such that every bounded map $A \longrightarrow X$ extends to a unique Banach lattice homomorphism $FBL(A) \longrightarrow X$ of the same norm.

- It exists and is unique up to isomorphism.
- Uniqueness is easy, how to construct it?

Definition (de Pagter, Wickstead 2015)

We say that F = FBL(A) if there is an inclusion map $A \longrightarrow B_F$ such that every bounded map $A \longrightarrow X$ extends to a unique Banach lattice homomorphism $FBL(A) \longrightarrow X$ of the same norm.

- It exists and is unique up to isomorphism.
- Uniqueness is easy, how to construct it?
- Similarly as before, we first construct the free vector lattice FVL(A) generated by A, and later we complete it with the largest possible norm.

• For every $a \in A$, take the evaluation $\delta_a : \mathbb{R}^A \longrightarrow \mathbb{R}$.

- For every $a \in A$, take the evaluation $\delta_a : \mathbb{R}^A \longrightarrow \mathbb{R}$.
- The family $\{\delta_a : a \in A\}$ is vector lattice independent in $\mathbb{R}^{\mathbb{R}^A}$.

- For every $a \in A$, take the evaluation $\delta_a : \mathbb{R}^A \longrightarrow \mathbb{R}$.
- The family $\{\delta_a : a \in A\}$ is vector lattice independent in $\mathbb{R}^{\mathbb{R}^A}$.
- Hence, the free vector lattice generated by A, is the vector lattice generated by $\{\delta_a: a \in A\}$ inside $\mathbb{R}^{\mathbb{R}^A}$.

$$FVL(A) = \langle \delta_a : a \in A \rangle_{VL} \subset \mathbb{R}^{\mathbb{R}^A}$$

- For every $a \in A$, take the evaluation $\delta_a : \mathbb{R}^A \longrightarrow \mathbb{R}$.
- The family $\{\delta_a : a \in A\}$ is vector lattice independent in $\mathbb{R}^{\mathbb{R}^A}$.
- Hence, the free vector lattice generated by A, is the vector lattice generated by $\{\delta_a:a\in A\}$ inside $\mathbb{R}^{\mathbb{R}^A}$.

$$FVL(A) = \langle \delta_a : a \in A \rangle_{VL} \subset \mathbb{R}^{\mathbb{R}^A}$$

• All the functions of FVL(A) are positively homogeneous on \mathbb{R}^A and continuous on $[-1,1]^A$.

ullet Now, we take $f\in FVL(A)=\langle \delta_a:a\in A
angle_{veclat}\subset \mathbb{R}^{\mathbb{R}^A}$

- ullet Now, we take $f\in FVL(A)=\langle \delta_{\mathsf{a}}: \mathsf{a}\in A
 angle_{\mathsf{veclat}}\subset \mathbb{R}^{\mathbb{R}^A}$
- How to define norm ||f|| having the free extension property?

- Now, we take $f \in FVL(A) = \langle \delta_a : a \in A \rangle_{veclat} \subset \mathbb{R}^{\mathbb{R}^A}$
- How to define norm ||f|| having the free extension property?
- Focus on extending $T:A\longrightarrow (-1,1)$ to norm-one homomorphisms $\tilde{T}:FBL(A)\longrightarrow \ell_1^n$

- Now, we take $f \in FVL(A) = \langle \delta_a : a \in A \rangle_{veclat} \subset \mathbb{R}^{\mathbb{R}^A}$
- How to define norm ||f|| having the free extension property?
- Focus on extending $T:A\longrightarrow (-1,1)$ to norm-one homomorphisms $\tilde{T}:FBL(A)\longrightarrow \ell_1^n$ when T is a linear combinations of evaluations $T(a)=\sum_{i=1}^m z_i(a)e_i$,

- Now, we take $f \in FVL(A) = \langle \delta_a : a \in A \rangle_{veclat} \subset \mathbb{R}^{\mathbb{R}^A}$
- How to define norm ||f|| having the free extension property?
- Focus on extending $T:A\longrightarrow (-1,1)$ to norm-one homomorphisms $\tilde{T}:FBL(A)\longrightarrow \ell_1^n$ when T is a linear combinations of evaluations $T(a)=\sum_{i=1}^m z_i(a)e_i$, and we get

$$\|f\| \geq \| ilde{\mathcal{T}}f\| = \sum_{i=1}^m |f(z_i)|$$
 whenever $\sup_{a \in A} \sum_{i=1}^m |z_i(a)| \leq 1$

- ullet Now, we take $f \in FVL(A) = \langle \delta_a : a \in A
 angle_{veclat} \subset \mathbb{R}^{\mathbb{R}^A}$
- How to define norm ||f|| having the free extension property?
- Focus on extending $T:A\longrightarrow (-1,1)$ to norm-one homomorphisms $\tilde{T}:FBL(A)\longrightarrow \ell_1^n$ when T is a linear combinations of evaluations $T(a)=\sum_{i=1}^m z_i(a)e_i$, and we get

$$\|f\| \geq \| ilde{\mathcal{T}}f\| = \sum_{i=1}^m |f(z_i)|$$
 whenever $\sup_{a \in A} \sum_{i=1}^m |z_i(a)| \leq 1$

And this happen to be enough...

Theorem (de Pagter, Wickstead; A., Tradacete, Rodríguez)

$$||f|| = \sup \left\{ \sum_{i=1}^{m} |f(z_i)| : \sup_{a \in A} \sum_{i=1}^{m} |z_i(a)| \le 1 \right\}$$

Theorem (de Pagter, Wickstead; A., Tradacete, Rodríguez)

The free Banach lattice generated by a set A is the closure of the the vector lattice generated by $\{\delta_a:a\in A\}$ in $\mathbb{R}^{\mathbb{R}^A}$ under the norm

$$||f|| = \sup \left\{ \sum_{i=1}^{m} |f(z_i)| : \sup_{a \in A} \sum_{i=1}^{m} |z_i(a)| \le 1 \right\}$$

 \bullet The proof requires some extra work because the homomorphisms onto $\mathbb R$ do not give all the information.

Theorem (de Pagter, Wickstead; A., Tradacete, Rodríguez)

$$||f|| = \sup \left\{ \sum_{i=1}^{m} |f(z_i)| : \sup_{a \in A} \sum_{i=1}^{m} |z_i(a)| \le 1 \right\}$$

Theorem (de Pagter, Wickstead; A., Tradacete, Rodríguez)

The free Banach lattice generated by a set A is the closure of the the vector lattice generated by $\{\delta_a:a\in A\}$ in $\mathbb{R}^{\mathbb{R}^A}$ under the norm

$$||f|| = \sup \left\{ \sum_{i=1}^{m} |f(z_i)| : \sup_{a \in A} \sum_{i=1}^{m} |z_i(a)| \le 1 \right\}$$

• Notice that $||f|| \ge ||f||_{[-1,1]^A}||_{\infty}$

Theorem (de Pagter, Wickstead; A., Tradacete, Rodríguez)

$$||f|| = \sup \left\{ \sum_{i=1}^{m} |f(z_i)| : \sup_{a \in A} \sum_{i=1}^{m} |z_i(a)| \le 1 \right\}$$

- Notice that $||f|| \ge ||f||_{[-1,1]^A}||_{\infty}$
- FBL(A) can be viewed as a subset of the Banach lattice of continuous and positively homogeneous functions on $[-1,1]^A$.

Theorem (de Pagter, Wickstead; A., Tradacete, Rodríguez)

$$||f|| = \sup \left\{ \sum_{i=1}^{m} |f(z_i)| : \sup_{a \in A} \sum_{i=1}^{m} |z_i(a)| \le 1 \right\}$$

- Notice that $||f|| \ge ||f||_{[-1,1]^A}||_{\infty}$
- FBL(A) can be viewed as a subset of the Banach lattice of continuous and positively homogeneous functions on $[-1,1]^A$.
- The inclusion $FBL(A) \longrightarrow C([-1,1]^A)$ is an injective homomorphism, but not isomorphism onto image. Like $\ell_1 \subset \ell_{\infty}$.

Theorem (de Pagter, Wickstead; A., Tradacete, Rodríguez)

$$||f|| = \sup \left\{ \sum_{i=1}^{m} |f(z_i)| : \sup_{a \in A} \sum_{i=1}^{m} |z_i(a)| \le 1 \right\}$$

- Notice that $||f|| \ge ||f||_{[-1,1]^A}||_{\infty}$
- FBL(A) can be viewed as a subset of the Banach lattice of continuous and positively homogeneous functions on $[-1,1]^A$.
- The inclusion $FBL(A) \longrightarrow C([-1,1]^A)$ is an injective homomorphism, but not isomorphism onto image. Like $\ell_1 \subset \ell_{\infty}$.
- In the finite case, FBL(n) is *n*-isomorphic to $C(\mathbb{S}^n)$.

• FBL(A) is always ccc (there is no uncountable family of pairwise disjoint positive elements).

- FBL(A) is always ccc (there is no uncountable family of pairwise disjoint positive elements).
- Do all intervals of FBL(A) have the same density?

- FBL(A) is always ccc (there is no uncountable family of pairwise disjoint positive elements).
- Do all intervals of FBL(A) have the same density?
- Does FBL(A) have the Nakano property?

- FBL(A) is always ccc (there is no uncountable family of pairwise disjoint positive elements).
- Do all intervals of FBL(A) have the same density?
- Does FBL(A) have the Nakano property?
 For every order bounded set F of positive elements

$$\sup\{\|x_1\vee\cdots\vee x_n\|:x_i\in\mathscr{F}\}=\inf\{\|y\|:y\geq\mathscr{F}\}$$

- FBL(A) is always ccc (there is no uncountable family of pairwise disjoint positive elements).
- Do all intervals of FBL(A) have the same density?
- Does FBL(A) have the Nakano property?
 For every order bounded set F of positive elements

$$\sup\{\|x_1\vee\cdots\vee x_n\|:x_i\in\mathscr{F}\}=\inf\{\|y\|:y\geq\mathscr{F}\}$$

They also pose a number of problems on projective Banach lattices.

The idea now is to create a Banach lattice FBL[E] that is generated (as a Banach lattice) by a Banach subspace isometric to E in a free way.

The idea now is to create a Banach lattice FBL[E] that is generated (as a Banach lattice) by a Banach subspace isometric to E in a free way.

Definition

F = FBL[E] if there is an inclusion mapping $E \longrightarrow F$ and every operator $E \longrightarrow X$ extends to a unique homomorphism $FBL(E) \longrightarrow X$ of the same norm.

The idea now is to create a Banach lattice FBL[E] that is generated (as a Banach lattice) by a Banach subspace isometric to E in a free way.

Definition

F = FBL[E] if there is an inclusion mapping $E \longrightarrow F$ and every operator $E \longrightarrow X$ extends to a unique homomorphism $FBL(E) \longrightarrow X$ of the same norm.

• The uniqueness of *FBL*[*E*] is easy.

The idea now is to create a Banach lattice FBL[E] that is generated (as a Banach lattice) by a Banach subspace isometric to E in a free way.

Definition

F = FBL[E] if there is an inclusion mapping $E \longrightarrow F$ and every operator $E \longrightarrow X$ extends to a unique homomorphism $FBL(E) \longrightarrow X$ of the same norm.

- The uniqueness of *FBL*[*E*] is easy.
- For the existence one can take the quotient of FBL(E) by the ideal generated by all linear combinations of E which are zero.

For $x \in E$, take $\delta_x : E^* \longrightarrow \mathbb{R}$ the evaluation.

For $x \in E$, take $\delta_x : E^* \longrightarrow \mathbb{R}$ the evaluation.

Theorem (A., Tradacete, Rodríguez)

$$||f|| = \sup \left\{ \sum_{i=1}^{m} |f(x_i^*)| : \sup_{x \in B_E} \sum_{i=1}^{m} |x_i^*(x)| \le 1 \right\}$$

For $x \in E$, take $\delta_x : E^* \longrightarrow \mathbb{R}$ the evaluation.

Theorem (A., Tradacete, Rodríguez)

The free Banach lattice generated by E is the closure of the the vector lattice generated by $\{\delta_e:e\in E\}$ in \mathbb{R}^{E^*} under the norm

$$||f|| = \sup \left\{ \sum_{i=1}^{m} |f(x_i^*)| : \sup_{x \in B_E} \sum_{i=1}^{m} |x_i^*(x)| \le 1 \right\}$$

The difficulty here is, again, that we cannot reduce to homomorphisms onto \mathbb{R} or onto ℓ_1^n .

For $x \in E$, take $\delta_x : E^* \longrightarrow \mathbb{R}$ the evaluation.

Theorem (A., Tradacete, Rodríguez)

The free Banach lattice generated by E is the closure of the the vector lattice generated by $\{\delta_e: e \in E\}$ in \mathbb{R}^{E^*} under the norm

$$||f|| = \sup \left\{ \sum_{i=1}^{m} |f(x_i^*)| : \sup_{x \in B_E} \sum_{i=1}^{m} |x_i^*(x)| \le 1 \right\}$$

We used that each $f \in FVL(A)$ is the difference of suprema of linear combinations in A,

For $x \in E$, take $\delta_x : E^* \longrightarrow \mathbb{R}$ the evaluation.

Theorem (A., Tradacete, Rodríguez)

The free Banach lattice generated by E is the closure of the the vector lattice generated by $\{\delta_e:e\in E\}$ in \mathbb{R}^{E^*} under the norm

$$||f|| = \sup \left\{ \sum_{i=1}^{m} |f(x_i^*)| : \sup_{x \in B_E} \sum_{i=1}^{m} |x_i^*(x)| \le 1 \right\}$$

We used that each $f \in FVL(A)$ is the difference of suprema of linear combinations in A, and the Riesz-Kantorovich formula:

$$y^* \left(\bigvee_{k=1}^m u_k \right) = \sup \left\{ \sum_{k=1}^m y_k^*(u_k) : y_k^* \ge 0, \sum_{k=1}^m y_k^* = y^* \right\}.$$

For $x \in E$, take $\delta_x : E^* \longrightarrow \mathbb{R}$ the evaluation.

Theorem (A., Tradacete, Rodríguez)

$$||f|| = \sup \left\{ \sum_{i=1}^{m} |f(x_i^*)| : \sup_{x \in B_E} \sum_{i=1}^{m} |x_i^*(x)| \le 1 \right\}$$

$$\|f\| = \sup \left\{ \sum_{i=1}^m |f(x_i^*)| : \sup \left\| \sum_{i=1}^m \pm x_i^* \right\| \le 1 \right\}$$

Free Banach lattice generated by ℓ_1

Proposition

The free Banach lattice generated by the Banach space $\ell_1(A)$ coincides with the free Banach lattice generated by a set A.

$$FBL[\ell_1(A)] = FBL(A)$$

Proposition (A., Rodríguez, Tradacete)

In $FBL[\ell_2]$, $\{|e_n|: n \in \mathbb{N}\}$ is equivalent to the basis of ℓ_1 .

Proposition (A., Rodríguez, Tradacete)

In $FBL[\ell_2]$, $\{|e_n|: n \in \mathbb{N}\}$ is equivalent to the basis of ℓ_1 .

Proof:

Proposition (A., Rodríguez, Tradacete)

In $FBL[\ell_2]$, $\{|e_n|: n \in \mathbb{N}\}$ is equivalent to the basis of ℓ_1 .

Proof: By Khintchine inequality, we have an operator $T: \ell_2 \longrightarrow L_1[0,1]$ such that $Te_n = r_n$ are the Rademacher functions,

Proposition (A., Rodríguez, Tradacete)

In $FBL[\ell_2]$, $\{|e_n|: n \in \mathbb{N}\}$ is equivalent to the basis of ℓ_1 .

Proof: By Khintchine inequality, we have an operator $T:\ell_2\longrightarrow L_1[0,1]$ such that $Te_n=r_n$ are the Rademacher functions, and $|Te_n|$ is the constant 1 function.

Proposition (A., Rodríguez, Tradacete)

In $FBL[\ell_2]$, $\{|e_n|:n\in\mathbb{N}\}$ is equivalent to the basis of ℓ_1 .

Proof: By Khintchine inequality, we have an operator $T:\ell_2\longrightarrow L_1[0,1]$ such that $Te_n=r_n$ are the Rademacher functions, and $|Te_n|$ is the constant 1 function. There is a Banach lattice homomorphism of the same norm $\tilde{T}:FBL(\ell_2)\longrightarrow L_1[0,1]$ that extends T.

Proposition (A., Rodríguez, Tradacete)

In $FBL[\ell_2]$, $\{|e_n|:n\in\mathbb{N}\}$ is equivalent to the basis of ℓ_1 .

Proof: By Khintchine inequality, we have an operator $T:\ell_2\longrightarrow L_1[0,1]$ such that $Te_n=r_n$ are the Rademacher functions, and $|Te_n|$ is the constant 1 function. There is a Banach lattice homomorphism of the same norm $\tilde{T}:FBL(\ell_2)\longrightarrow L_1[0,1]$ that extends T. Then $\tilde{T}|e_n|=|Te_n|$,

Proposition (A., Rodríguez, Tradacete)

In $FBL[\ell_2]$, $\{|e_n|:n\in\mathbb{N}\}$ is equivalent to the basis of ℓ_1 .

Proof: By Khintchine inequality, we have an operator $T:\ell_2\longrightarrow L_1[0,1]$ such that $Te_n=r_n$ are the Rademacher functions, and $|Te_n|$ is the constant 1 function. There is a Banach lattice homomorphism of the same norm $\tilde{T}:FBL(\ell_2)\longrightarrow L_1[0,1]$ that extends T. Then $\tilde{T}|e_n|=|Te_n|$, and

$$\|T\|\cdot\|\sum r_i|e_i|\|\geq \|\tilde{T}\left(\sum r_i|e_i|\right)\|=|\sum r_i|$$

Corollary (A., Rodríguez, Tradacete)

In $FBL[\ell_2(\Gamma)]$, $\{|e_{\gamma}| : \gamma \in \Gamma\}$ is equivalent to the basis of $\ell_1(\Gamma)$.

Corollary (A., Rodríguez, Tradacete)

In $FBL[\ell_2(\Gamma)]$, $\{|e_{\gamma}| : \gamma \in \Gamma\}$ is equivalent to the basis of $\ell_1(\Gamma)$.

Therefore $FBL[\ell_2(\Gamma)]$ is LWCG but not WCG.

Corollary (A., Rodríguez, Tradacete)

In $FBL[\ell_2(\Gamma)]$, $\{|e_{\gamma}| : \gamma \in \Gamma\}$ is equivalent to the basis of $\ell_1(\Gamma)$.

Therefore $FBL[\ell_2(\Gamma)]$ is LWCG but not WCG.

We do not know if $FBL[c_0(\Gamma)]$ is WCG...

Corollary (A., Rodríguez, Tradacete)

In $FBL[\ell_2(\Gamma)]$, $\{|e_{\gamma}| : \gamma \in \Gamma\}$ is equivalent to the basis of $\ell_1(\Gamma)$.

Therefore $FBL[\ell_2(\Gamma)]$ is LWCG but not WCG.

We do not know if $FBL[c_0(\Gamma)]$ is WCG... but we do know now that in this case $\{|e_\gamma| : \gamma \in \Gamma\}$ is weakly null.

Corollary (A., Rodríguez, Tradacete)

In $FBL[\ell_2(\Gamma)]$, $\{|e_{\gamma}| : \gamma \in \Gamma\}$ is equivalent to the basis of $\ell_1(\Gamma)$.

Therefore $FBL[\ell_2(\Gamma)]$ is LWCG but not WCG.

We do not know if $FBL[c_0(\Gamma)]$ is WCG... but we do know now that in this case $\{|e_\gamma|: \gamma \in \Gamma\}$ is weakly null. Therefore, also

Corollary

If $\{e_n:n<\omega\}$ is a sequence equivalent to c_0 in any Banach lattice, then $\{|e_n|:n<\omega\}$ is weakly null.

Theorem (A., Rodríguez, Tradacete)

All intervals of FBL[E] have the same density as E.

Theorem (A., Rodríguez, Tradacete)

All intervals of FBL[E] have the same density as E.

Sketch of proof for FBL(A).

Theorem (A., Rodríguez, Tradacete)

All intervals of FBL[E] have the same density as E.

Sketch of proof for FBL(A). Take f < g.

Theorem (A., Rodríguez, Tradacete)

All intervals of FBL[E] have the same density as E.

Sketch of proof for FBL(A). Take f < g. There exists $A_0 \subset A$ countable such that $f,g \in FBL(A_0) \subset FBL(A)$.

Theorem (A., Rodríguez, Tradacete)

All intervals of FBL[E] have the same density as E.

Sketch of proof for FBL(A). Take f < g. There exists $A_0 \subset A$ countable such that $f,g \in FBL(A_0) \subset FBL(A)$. Consider

$$D = \{d_b = (f \vee b) \wedge g : b \in A \setminus A_0\}.$$

Theorem (A., Rodríguez, Tradacete)

All intervals of FBL[E] have the same density as E.

Sketch of proof for FBL(A). Take f < g. There exists $A_0 \subset A$ countable such that $f,g \in FBL(A_0) \subset FBL(A)$. Consider

$$D = \{d_b = (f \vee b) \land g : b \in A \setminus A_0\}.$$

Given $b, c \in A \setminus A_0$, extend $T : A \to FBL(A)$ that is identity on A_0 and Tb = f and Tc = g.

Theorem (A., Rodríguez, Tradacete)

All intervals of FBL[E] have the same density as E.

Sketch of proof for FBL(A). Take f < g. There exists $A_0 \subset A$ countable such that $f,g \in FBL(A_0) \subset FBL(A)$. Consider

$$D = \{d_b = (f \vee b) \land g : b \in A \setminus A_0\}.$$

Given $b, c \in A \setminus A_0$, extend $T : A \to FBL(A)$ that is identity on A_0 and Tb = f and Tc = g.

$$||f - g|| = ||Td_b - Td_c|| \le ||d_b - d_c||$$

Theorem (A., Rodríguez, Tradacete)

 $FBL(A) = FBL[\ell_1(A)]$ has the strong Nakano property.

Theorem (A., Rodríguez, Tradacete)

 $FBL(A) = FBL[\ell_1(A)]$ has the strong Nakano property.

Strong Nakano: If $\mathscr{F} \subset X_+$ is norm-bounded and closed under \vee , then it has an upper bound y with

$$||y|| = \sup\{||x|| : x \in \mathscr{F}\}$$

Theorem (A., Rodríguez, Tradacete)

 $FBL(A) = FBL[\ell_1(A)]$ has the strong Nakano property.

Strong Nakano: If $\mathscr{F} \subset X_+$ is norm-bounded and closed under \vee , then it has an upper bound y with

$$||y|| = \sup\{||x|| : x \in \mathscr{F}\}$$

Example: C(K), we can take y a constant function.

Theorem (A., Rodríguez, Tradacete)

 $FBL(A) = FBL[\ell_1(A)]$ has the strong Nakano property.

Strong Nakano: If $\mathscr{F} \subset X_+$ is norm-bounded and closed under \vee , then it has an upper bound y with

$$||y|| = \sup\{||x|| : x \in \mathscr{F}\}$$

Example: C(K), we can take y a constant function.

In FBL(A), we have elements that play analogous role, the elements

$$\left|\sum_{a\in A}r_a|\delta_a|\right|$$

for
$$(r_a)_A \in \ell_1(A)$$
.

Theorem (A., Rodríguez, Tradacete)

 $FBL[L_1]$ fails the Nakano property.

Theorem (A., Rodríguez, Tradacete)

 $FBL[L_1]$ fails the Nakano property. There is an increasing sequence of positive elements of norms at most 1, all of whose upper bounds have norm greater than 2.

$$f_n = g \wedge \sum_{i=1}^{2^n} \left| \delta_{u_k^n} \right|$$

- g is any positive element with ||g|| = 2.
- $u_k^n = 1_{[(k-1)\cdot 2^{-n}, k\cdot 2^{-n}]}$

Theorem (A., Plebanek, Rodríguez Abellán)

The Banach lattice FBL[E] has the countable chain condition.

Theorem (A., Plebanek, Rodríguez Abellán)

The Banach lattice FBL[E] has the countable chain condition.

The ccc: Every uncountable family \mathscr{F} of positive elements contains two with $f \wedge g \neq 0$.

Theorem (A., Plebanek, Rodríguez Abellán)

The Banach lattice FBL[E] has the countable chain condition.

The ccc: Every uncountable family \mathscr{F} of positive elements contains two with $f \wedge g \neq 0$.

Remember that $FBL[E] \hookrightarrow C_{+h}(B_{E^*})$

Theorem (A., Plebanek, Rodríguez Abellán)

The Banach lattice FBL[E] has the countable chain condition.

The ccc: Every uncountable family \mathscr{F} of positive elements contains two with $f \wedge g \neq 0$.

Remember that $FBL[E] \hookrightarrow C_{+h}(B_{E^*})$

When $E = \ell_1(A)$, it is known that $C(B_{E^*}) = C([-1,1]^A)$ is ccc.

Theorem (A., Plebanek, Rodríguez Abellán)

The Banach lattice FBL[E] has the countable chain condition.

The ccc: Every uncountable family \mathscr{F} of positive elements contains two with $f \land g \neq 0$.

Remember that $FBL[E] \hookrightarrow C_{+h}(B_{E^*})$

When $E = \ell_1(A)$, it is known that $C(B_{E^*}) = C([-1,1]^A)$ is ccc. In fact it is K_n : Every uncountable family of positive elements has an uncountable subfamily with $f_1 \wedge \cdots \wedge f_n \neq 0$.

Theorem (A., Plebanek, Rodríguez Abellán)

The Banach lattice FBL[E] has the countable chain condition.

The ccc: Every uncountable family \mathscr{F} of positive elements contains two with $f \land g \neq 0$.

Remember that $FBL[E] \hookrightarrow C_{+h}(B_{E^*})$

When $E = \ell_1(A)$, it is known that $C(B_{E^*}) = C([-1,1]^A)$ is ccc. In fact it is K_n : Every uncountable family of positive elements has an uncountable subfamily with $f_1 \wedge \cdots \wedge f_n \neq 0$.

For every N > 0 and every uncountable family $\mathscr{F} \subset C_{+h}(B_{E^*})_+$ has an uncountable subfamily \mathscr{F}' such that among every N elements there are two with $f \wedge g \neq 0$.

Chain conditions

 K_n : Every uncountable family of positive elements has an uncountable subfamily with $f_1 \wedge \cdots \wedge f_n \neq 0$.

Theorem (A., Plebanek, Rodríguez Abellán)

If E is WCG, then $C_{+h}(B_{E^*})$ has Knaster's property K_n .

Chain conditions

 K_n : Every uncountable family of positive elements has an uncountable subfamily with $f_1 \wedge \cdots \wedge f_n \neq 0$.

Theorem (A., Plebanek, Rodríguez Abellán)

If E is WCG, then $C_{+h}(B_{E^*})$ has Knaster's property K_n .

We do not know if this holds for arbitrary E

Chain conditions

 K_n : Every uncountable family of positive elements has an uncountable subfamily with $f_1 \wedge \cdots \wedge f_n \neq 0$.

Theorem (A., Plebanek, Rodríguez Abellán)

If E is WCG, then $C_{+h}(B_{E^*})$ has Knaster's property K_n .

We do not know if this holds for arbitrary E (at least for FBL[E])

Now, let \mathbb{L} be a lattice.

Now, let \mathbb{L} be a lattice. A lattice-morphism means that $f(x \wedge y) = f(x) \wedge f(y)$ and $f(x \vee y) = f(x) \vee f(y)$.

Now, let \mathbb{L} be a lattice. A lattice-morphism means that $f(x \wedge y) = f(x) \wedge f(y)$ and $f(x \vee y) = f(x) \vee f(y)$.

Definition

We say that $F = FBL[\mathbb{L}]$ if there is an inclusion map $\mathbb{L} \longrightarrow B_F$ such that every bounded lattice-morphism $\mathbb{L} \longrightarrow X$ extends to a unique Banach lattice homomorphism $FBL[\mathbb{L}] \longrightarrow X$ of the same norm.

Now, let \mathbb{L} be a lattice. A lattice-morphism means that $f(x \wedge y) = f(x) \wedge f(y)$ and $f(x \vee y) = f(x) \vee f(y)$.

Definition

We say that $F=FBL[\mathbb{L}]$ if there is an inclusion map $\mathbb{L}\longrightarrow B_F$ such that every bounded lattice-morphism $\mathbb{L}\longrightarrow X$ extends to a unique Banach lattice homomorphism $FBL[\mathbb{L}]\longrightarrow X$ of the same norm.

Again, we can always construct this by making a suitable quotient of $FBL(\mathbb{L})$.

 $\mathbb{L}^* = \{x^* : \mathbb{L} \longrightarrow [-1,1] \text{ lattice morphism}\}.$

```
\mathbb{L}^* = \{x^* : \mathbb{L} \longrightarrow [-1,1] \text{ lattice morphism}\}. For x \in \mathbb{L}, take \delta_x : \mathbb{L}^* \longrightarrow \mathbb{R} the evaluation.
```

 $\mathbb{L}^* = \{x^* : \mathbb{L} \longrightarrow [-1,1] \text{ lattice morphism}\}.$ For $x \in \mathbb{L}$, take $\delta_x : \mathbb{L}^* \longrightarrow \mathbb{R}$ the evaluation.

Theorem (A., Rodríguez Abellán)

The free Banach lattice generated by linear order $\mathbb L$ is the closure of the the vector lattice generated by $\{\delta_x:x\in\mathbb L\}$ in $\mathbb R^{\mathbb L^*}$ under the norm

$$||f|| = \sup \left\{ \sum_{i=1}^{m} |f(x_i^*)| : \sup_{x \in \mathbb{L}} \sum_{i=1}^{m} |x_i^*(x)| \le 1 \right\}$$

 $\mathbb{L}^* = \{x^* : \mathbb{L} \longrightarrow [-1,1] \text{ lattice morphism}\}.$ For $x \in \mathbb{L}$, take $\delta_x : \mathbb{L}^* \longrightarrow \mathbb{R}$ the evaluation.

Theorem (A., Rodríguez Abellán)

The free Banach lattice generated by linear order $\mathbb L$ is the closure of the the vector lattice generated by $\{\delta_x:x\in\mathbb L\}$ in $\mathbb R^{\mathbb L^*}$ under the norm

$$||f|| = \sup \left\{ \sum_{i=1}^{m} |f(x_i^*)| : \sup_{x \in \mathbb{L}} \sum_{i=1}^{m} |x_i^*(x)| \le 1 \right\}$$

It seems to us that this description may not be valid for an arbitrary lattice $\mathbb{L}. \label{eq:lambda}$

Theorem (A., Rodríguez Abellán)

For a linear order \mathbb{L} , the following are equivalent:

Theorem (A., Rodríguez Abellán)

For a linear order \mathbb{L} , the following are equivalent:

lacktriangledown *FBL*[\mathbb{L}] is ccc

Theorem (A., Rodríguez Abellán)

For a linear order \mathbb{L} , the following are equivalent:

- FBL[L] is ccc
- 2 L is order-isomorphic to a subset of \mathbb{R} .

References

- B. de Pagter and A. W. Wickstead, Free and projective Banach lattices, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), no. 1, 105–143.
- A. Avilés, J. Rodríguez, P. Tradacete, The free Banach lattice generated by a Banach space, arXiv:1706.08147 +work in progress
- A. Avilés, G. Plebanek, J. D. Rodríguez Abellán, *Chain conditions in free Banach lattices.* To be available soon.
- A. Avilés, J. D. Rodríguez Abellán, *The free Banach lattice generated by a linear order*, in preparation.