Seminars on Harmonic Analysis
Academic year 2023/24
In the winter term, we follow mostly the book Neil Chriss, Victor Ginzburg: Representation Theory and Complex Geometry, Birkhauser, 1997.
- Oct 6 -
R. Golovko: Symplectic manifolds and Poisson algebras;
video
- Oct 20 -
R. Golovko: Poisson structures arising from noncommutative algebras and the moment map;
video
- Oct 27 -
R. Golovko: The moment map, coisotropic subvarieties and Lagrangian families 1;
video
- Nov 3 -
R. Golovko: The moment map, coisotropic subvarieties and Lagrangian families 2;
video
- Nov 10 -
Vít Tuček: Algebraic geometry 1;
video
- Nov 24 -
Vít Tuček: Algebraic geometry 2;
video
- Dec 8 -
Daniel Beďatš: Scalar-valued separation of variables in the non-stable range;
video
- Jan 5 -
Vít Tuček: The deformation construction;
video
- Jan 12 -
Andrey Krutov, Vít Tuček: C^* actions on projective varieties and fixed point reductions;
video
- Feb 23 -
Andrey Krutov: Borel-Moore homology I;
video
- Mar 1 -
Andrey Krutov: Borel-Moore homology II;
video
- Mar 8 -
Andrey Krutov: Borel-Moore homology III;
video
- Mar 22 -
Andrey Krutov: Convolution in Borel-Moore homology;
video
- Apr 5 -
Hans-Peter Schroecker: Factorization of polynomials over Clifford algebras;
video
- Apr 12 -
Vladimir Souček: Complex simple Lie algebras , flag manifolds and representations of the Weyl group I;
video
- Apr 19 -
Vladimir Souček: Complex simple Lie algebras , flag manifolds and representations of the Weyl group II;
video
- Apr 26 -
Vladimir Souček: Complex simple Lie algebras , flag manifolds and representations of the Weyl group III;
video
- May 3 -
Vladimir Souček: Complex simple Lie algebras , flag manifolds and representations of the Weyl group IV;
video
- May 10 -
Vladimir Souček: Complex simple Lie algebras , flag manifolds and representations of the Weyl group V;
video
- May 17 -
Vladimir Souček: Complex simple Lie algebras , flag manifolds and representations of the Weyl group VI;
video
- May 24 -
Vladimir Souček: Complex simple Lie algebras , flag manifolds and representations of the Weyl group VII;
video
Academic year 2022/23
- Oct 5 -
A. Merino: Classification and double commutant property for dual pairs in an orthosymplectic Lie supergroup;
video
- Oct 14 -
S. Afentoulidis-Almpanis: Motivation from the BGG category O, Coxeter systems;
video
- Nov 4 -
S. Afentoulidis-Almpanis: Coxeter systems - Examples and geometric representation;
video
- Nov 11 -
S. Afentoulidis-Almpanis: Coxeter systems - Affine reflection Groups (Part 1);
video
- Nov 18 -
S. Afentoulidis-Almpanis: Coxeter systems - Affine reflection Groups (Part 2);
video
- Nov 25 -
R. Lávička: Coxeter systems - general theory (Part 1);
video
- Dec 2 -
R. Lávička: Coxeter systems - general theory (Part 2);
video
- Dec 9 -
R. Lávička: Coxeter systems - general theory (Part 3);
video
- Dec 16 -
Asmus K. Bisbo: Spinor-valued polynomials in non-commuting variables;
video
- Jan 6 -
S. Afentoulidis-Almpanis: Matsumoto's theorem - Hyperbolic disc and Coxeter systems;
video
- Feb 17 -
V. Souček: Hecke algebra of a Coxeter system, part 1;
video
- Feb 24 -
M. Zimmermann: Introduction to q-deformed Clifford Analysis;
video
- Mar 10 -
V. Souček: Hecke algebra of a Coxeter system, part 2;
video
- Mar 24 -
V. Souček: Hecke algebra of a Coxeter system, part 3;
video
- Mar 31 -
V. Souček: Hecke algebra of a Coxeter system, part 4;
video
- Apr 14 -
V. Souček: Hecke algebra of a Coxeter system, part 5;
video
- Apr 21 -
Libor Křižka: Introduction to Soergel bimodules, part 1;
video
- Apr 28 -
Libor Křižka: Introduction to Soergel bimodules, part 2;
video
- May 5 -
Libor Křižka: Introduction to Soergel bimodules, part 3;
video
- May 12 -
S. Afentoulidis-Almpanis: The classical theory of Soergel bimodules I;
video (the beginning of the lecture is contained at the end of the previous video)
- May 26 -
S. Afentoulidis-Almpanis: The classical theory of Soergel bimodules II;
video
Academic year 2021/22
- Oct 8 -
S. Afentoulidis-Almpanis: Introduction to category O, part 1;
video
- Oct 15 -
S. Afentoulidis-Almpanis: Introduction to category O, part 2;
video
- Oct 22 -
I. Penkov: Automorphism groups of ind-varieties of generalized flags;
video
- Nov 5 -
S. Afentoulidis-Almpanis: Introduction to category O, part 3;
video
- Nov 12 -
R. Lávička: Introduction to category O, part 4;
video
- Nov 19 -
R. Lávička/L. Křižka: Introduction to category O, part 5;
video
- Nov 26 -
L. Křižka: Introduction to category O, part 6;
video
- Dec 3 -
L. Křižka: Introduction to category O, part 7;
video
- Dec 17 -
V. Tuček: Introduction to category O, part 8;
video
- Mar 18 -
S. Afentoulidis-Almpanis: Homological dimension and Extensions in the category O;
video
- Mar 25 -
V. Souček: Duality between algebraic and geometric versions of BGG complexes I.;
video
- Apr 8 -
V. Souček: Duality between algebraic and geometric versions of BGG complexes II.;
video
- Apr 22 -
S. Afentoulidis-Almpanis: Translation functors in the category O;
video
- Apr 29 -
S. Afentoulidis-Almpanis: Translation functors in the category O, part 2;
video
- May 6 -
S. Afentoulidis-Almpanis: Translation functors in the category O, part 3;
video
- May 20 -
S. Afentoulidis-Almpanis: Translation functors in the category O, part 4;
video
Academic year 2020/21
- Oct 30 -
Vít Tuček: Holomorphic functions on non-compact hermitian symmetric spaces and unitarizable highest weight representations;
video
- Nov 6 -
Vít Tuček: Representation on the space of holomorphic functions on the Siegel domain;
video
- Nov 13 -
Vít Tuček: Pluriharmonic polynomials;
video
- Nov 20 -
Vladimír Souček: The Nishiyama oscillator representation of the super Lie algebra osp(m,2n), I.;
video
- Nov 27 -
Vladimír Souček: The Nishiyama oscillator representation of the super Lie algebra osp(m,2n), II.;
video
- Dec 4 -
Vladimír Souček: The Nishiyama oscillator representation of the super Lie algebra osp(m,2n), III.;
video
- Dec 11 -
Pavle Pandžič: Unitary representations of the Lie superalgebra osp(n,2k);
video
- Dec 18 -
Vladimír Souček: On certain unitary representations of Lie superalgebra osp(1,2n);
video
- Jan 8 -
Pavle Pandžič: Unitary representations of the Lie superalgebra osp(n,2k), part 2;
video
- Mar 19 -
Libor Křižka: Chiral differential operators I.;
video
- Mar 26 -
Libor Křižka: Chiral differential operators II.;
video
- Apr 9 -
Libor Křižka: Chiral differential operators III.;
video
- May 28 -
S. Afentoulidis-Almpanis: Noncubic Dirac operators for finite-dimensional modules;
video