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Abstract. As is well-known, classical Clifford analysis is a refinemeritaimonic analysis. In
[4], it is shown that analysis of Hodge systems can be viewed asa refinement of Clifford
analysis. In this note, we recall the Howe duality for harmaanalysis and Clifford analysis
and, moreover, we describe quite explicitly the Howe duatityHodge systems. Our main aim
is to illustrate relations between these theories.



1 INTRODUCTION

In this note, we describe quite explicitly the Howe duality Hodge systems and connect it
with the well-known facts of harmonic analysis and Clifforthéysis.

In Section 2, we recall briefly the Fisher decomposition dredHowe duality for harmonic
analysis. In Section 3, the well-known fact that Clifford bsés is a real refinement of harmonic
analysis is illustrated by the Fisher decomposition andHinee duality for the space of spinor-
valued polynomials in the Euclidean spdt’@ under the so-called-action.

On the other hand, for Clifford algebra valued polynomial®ih, we can consider another
action, called in Clifford analysis thH-action. In the last section, we state the Fisher decom-
position for theH-action obtained recently in [4]. As in Clifford analysis theominent role
plays the Dirac equation in this case the basic set of equaatsoformed by the Hodge system.
According to [4], analysis of Hodge systems can be viewed exgea refinement of Clifford
analysis. In this note, we describe the Howe duality for Bhaction. In particular, in Propo-
sition 1, we recognize the Howe dual partner of the orthobgnaup O(m) in this case as
the Lie superalgebrsi((2|1). Furthermore, Theorem 2 gives the corresponding multiglicee
decomposition with an explicit description of irreducilplieces.

2 HARMONIC ANALYSIS

In this section, we recall briefly the Howe duality for the sp® of complex-valued polyno-
mials in the Euclidean spa@&”. We consider the spad@as an module over the full orthogonal
groupO(m) of R™. The action of the group(m) on the spacé is given by

lg- P)(z) = P(g"'z), g € O(m), P € Pandz € R™.

It is easily seen that the multiplication by the polynomial

T2:I%+...+x%”g:(Il,...7xm)eRm

and the Laplace operator

A= "0
7j=1
are bothO(m)-invariant linear operators on the sp&eeln fact, by the so-called Fisher dual-
ity, the operators? and A correspond to each other. LB}, be the space of-homogeneous
polynomials ofP and
Hy = {P € Pr; AP = O}.

Then the well-known Fisher decomposition of the spRaeads as follows:

o0

P=EPuw with Py =P r*H. 1)

k=0 p=0

In (1), all O(m)-modulesH,, are irreducible and mutually inequivalent &Rg) are correspond-
ing O(m)-isotypic components dP.

Now let us recall (see e.g. [7, 10]) that the sp&ckas the so-called hidden symmetry given
by a Lie algebra of differential operators commuting witk &\(m)-action. To be explicit, let
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W be the Weyl algebra of differential operators with polynahaioefficients inR™. This is the
subalgebra oEnd(P) generated as an associative algebra by the elements

T1,y ..., Ly @NAd0,,, ..., 0y, .

Polynomials ofP are contained ivV as polynomial differential operators of order zero and, in
a natural way, the spade can be viewed as a module ovai. Furthermore, the Weyl algebra
W endowed with the commutator

[Th,T5] = TW'T> — T:Th

forms a Lie algebra. Then itis easy to see that= —A andE~ = r? generate in the Weyl
algebra)V a copy ofsl(2). Indeed, let

E = Zm: :cjaz].
j=1

be the Euler operator anfd = —1(E + %). Then the following relations hold true:
[H,E*) = £E* and [ET,E7] = 2H.

Moreover, letl; be the Verma module fai(2) with the highest weight-(k + %). Then a real-
ization ofl, is a module

I(P) = span{r®P; p=10,1,2,...} (2)

for any non-zeraP € Hy, cf. [2]. Let H,, be an irreducible)(m)-module isomorphic to the
module™,,. Under the joint action of the Howe dual p@i(m) x s((2), the componerP,;, is
then isomorphic td, ® I, and the spac® is isomorphic to the multiplicity free direct sum

k=0

See e.g. [10] for details.

3 CLIFFORD ANALYSIS

In this section, following [2], we recall the Howe dualityrfspinor valued polynomials. Let
C,, be the complex Clifford algebra generated by vecters. . , e, of the standard basis &".
We considefR™ as a part ofC,, as usual. Namely, we identify the vectoer= (x4, ..., z,,)
of R™ with the element;z; + - - - + ez, Of C,,. Recall that the Pin group’in(m) can be
realized insideC,,, as

Pin(m) = {s189---s1; k €N, 5; € S™7'}

whereS™~! is the unit sphere iiR™. Moreover,Pin(m) is a double cover of the group(m).

Indeed,

p(s)z =s'as, se Pin(m) and z € R™



is a two-fold covering homomorphism d?in(m) onto O(m). Denote byS a basic spinor
representation for the Pin groupin(m). Such a representatighis called a spinor space and
is usually realized as a subspace of the Clifford algéhralet P(S) = P ® S be thePin(m)-
module of spinor valued polynomials Ri". The so-called.-action on the spacB(S) is given
by

[L(s)(P)](z) = s P(s"'as), s € Pin(m), P € P(S) and z € R™. (3)

It is easily seen that the multiplication by= e,z + - - - + e,,x,, and the Dirac operator
Q = elaan + -+ emaﬂim

are bothPin(m)-invariant linear operators on the sp&@éS). Actually, by the Fisher dual-
ity, the operators—z and D correspond to each other. Denote b, (S) the space of-
homogeneous polynomialB € P(S) which are solutions of the Dirac equatidnP = 0.
In [2], the following Fisher decomposition for this case igem:

— @P(S)(k) with 73 @£ Mk; (4)
k=0 p=0

In (4), all Pin(m)-modulesM,(S) are irreducible and mutually inequivalent aRdS) . are
correspondingin(m)-isotypic components dP(S). Moreover, realizing that

H ®S = ./\/lk(S) D QMk_l(S)

andz? = —r?, it is easy to see that the decomposition (4) is a real refineofe).

It turns out that the hidden symmetry &¥(S) is given by the Lie superalgebrap(1/2)
generated in the twisted Weyl algebrd @ S by the odd element® andz. Indeed, by [2],
there is an infinite-dimensional irreduciliep(1|2)-modulel, which is isomorphic to

I,(P) = span{zP; p=0,1,2,...} (5)

for any non-zera®? € M, (S). Let M, be an irreducible”in(m)-module equivalent taV(,.(S).
Under the joint action of the Howe dual pdtin(m) x osp(1]2), the componer®(S) ;) is then

isomorphic toM, ® I, and the spac®(S) is isomorphic to the multiplicity free direct sum

k=0
see [2] for details. For an account of Lie superalgebras efier to [11] or [5].

We conclude this section by showing the following result.

Lemma 1. For each non-negative integér, the modulel, is the Verma module farsp(1]2)
with the highest weight (k + ).

Remarkl. Following [11], we recall Verma modules for a basic classiga superalgebrg. In
this note,g = osp(1/2) or g = sl(2[1). Leth be a Cartan subalgebra of the even pauf g and
b="h @ n" be aBorel subalgebra gf Forn € h* we define the Verma modulé (n) for g by

M(n) = U(g) ®u) Cuv,



where Cu, is the one dimensionai-module withtv, = n(t)v, for t € h andn*v, = 0.
HereU(g) andU(b) is the universal enveloping algebra @fand b, respectively. Moreover,
we call v, a maximal vector of the weighj and M (n) the Verma module with the highest
weightr. Finally, denote byf.(n) a unique irreducible factor module f (). We call L()) an
irreducibleg-module with the highest weight If the Verma modulé\/ () is itself irreducible
then, of course) () = L(n).

For any graded subspatef g write t = t, @ t; wheret, (resp.t,) is the even (resp. odd)
part oft. Forn € h* we define the Verma modul#/ (n) for g, and an irreduciblg,-module
L(n) with the highest weight analogously but in the definition we replageb andn™ with g,
by andn; .

Proof of Lemma 1 First let us fix the notation. Denote Ilgythe Lie superalgebra generated in
W ® S by the odd element® andz. Denoting
1 1 1 1 1
H=-—~(E+2), BY= A, E- == Ft=——_DandF =——_u,
2 2 ) 2 22 2v/2
it is easy to see that is isomorphic to the Lie superalgebssp(1]2) andg = go b g, where
go = span{H, E™, E~} andg; = span{F*, '} is the even and the odd partgfrespectively.
Moreover, the even pag is isomorphic tes((2). Indeed, it is sufficient to verify the following
relations:
[H,E*] = +B*, [ET,E7]=2H, [H F¥=+iF*
[E5,FT] = —F*, {F*,F"}=}H, {FfF*)=+}E%
Here{T,S} = T'S + ST is the anticommutator of operatdfsandS.
Now we fix the notation for roots of the Lie superalgelgraDenote byh = span{H}
a Cartan subalgebra gf Forn € h* we writen) = a wherea = n(2H). The set of roots of is
® = {+1, £2}. Moreover, lem* = span{F*, E*} andb = h @ n' be a Borel subalgebra of
g. . -
For a given non-zer@ € M,(S), letI,(P) be as in (5). It is easily seen th&t € I;(P)
is a maximal vector for the weight, = —(k + ). By [13] or [9, Corollary 4.4], the Verma
moduleM (n;) is irreducible and hendg,(P) ~ M (;), which completes the proof. O

Remark2. As ansl(2)-module, it is easily seen that ~ I, ® Ixy1, see [2]. Herdl, is the
Verma module fos((2) as in (2). Indeed, for a given non-zefoe M(S), we have that

I.(P) = span{r®?P; p=0,1,2,...} @ span{r?zP; p=10,1,2,...} ~ T, & L1,

4 HODGE SYSTEMS

In the previous section, we dealt with the space of spinaregpolynomials under thé-
action. But, for Clifford algebra valued functions, we can sider another action, given by
the adjoint action of)(m) on values of functions. Namely, fa? € P ® C,,, the so-called
H-action is given by

[H(s)(P)|(z) = s P(s 'zs)s™!, s € Pin(m) and z € R™. (6)

In what follows, we use the language of differential forms. &vhve identify the Clifford alge-
braC,, with the Grassmann algebid (C™) the spacé® @ C,,, corresponds namely to the space
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P* = P®A*(C™) of polynomial (differential) forms and th& -action to a natural action of the
groupO(m) on the spacé*, see [6, p. 153]. Furthermore, under this identification,Dirac
operatorD coincides withd + d* whered andd* is the de Rham differential and codifferential,
respectively. Denoting byz; A (resp.dz; |) the exterior (resp. interior) multiplication ki ;,
we have that

d=> Oydr; A and d°=—Y " 0, dz; |

M

1

J
By the Fisher dualityg* andd correspond to the operators

m m
——ijdacj/\ and :c*:Z:cjd:cjj
j=1 =1

and, under the identification, the Clifford multiplicatiog & vector—z coincides withr + z*.
See [1] for details.

Before we state the Fisher decomposition for this case we meee notation. Let\*(C™)
be the space of-vectors overlC™ andP; = P, ® A*(C™). Of course, we have that

A (C™) = éAS(Cm) and P* = Qm} é?,j.
s=0 s=0 k=0

Denote by the set of all non-trivial words in the lettetsandz*, that is,
Q={1,z,2" xa*, 2"z, xa”x, " xx*, .. .} (7)

In this connection, let us note that = 0 and(z*)? = 0. Denote byH; the set of polynomial
forms P € P; satisfying the Hodge system

dP =0, d"P =0.
Then the Fisher decomposition for this case is given in tHeviing theorem, see [4].

Theorem 1. The spacéP* = P ® A*(C™) decomposes as follows:

" (EB@P@,M) P Wi Pry=Duli @

s=1 k=0 wes

In addition, in (8), allO(m)-modulesH; are non-trivial, irreducible and mutually inequivalent
andP(, ,, are corresponding)(m)-isotypic components Gt*.

Remark3. As is shown in [4], the decomposition (8) can be understoca r@sinement of (4).
By [10], to find the hidden symmetry of the spaé we should replace the Weyl algebra in
this case withV(A*), the associative subalgebralofid(P*) generated by the elements
Tl oy Ty OpyyevoyOp s dxiA, ... dxy, A and dxy |, ... dx,, |.

In particular, the operators, z*, d andd* are O(m)-invariant elements ofV(A*). Further-
more, the algebraV(A*) has a natural,-gradation such that the elements ..., z,, and
Op,,...,0,, areeven and the elements, A, ..., dz,A anddz, |,...,dz,, | are odd. Thus
the superalgebr&/(A*) endowed with the supercommutator forms a Lie superalgebiehw
has the operators, =*, d andd* as odd elements. Even we can prove the following result.
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Proposition 1. The odd elements, z*, d andd* of the Lie superalgebraV(A*) generate the
Lie superalgebra isomorphic td(2|1).

Remark4. Our case is a part of the general theory of the Howe dualityeld@ed in [10].
But, in [10], the Howe dual partner @?(m) in this case is not explicitly described as the Lie

superalgebral(2|1).
Proposition 1 follows easily from the next well-known resske e.g. [1].

Lemma 2. Let E be the Euler operator and be the skew Euler operator, that is,

m m

E=>) u;0,, and E = (dx; A)(da; |).

Jj=1 J=1

Then we have thaEP = kP and EP = sP for eachP e P;. Furthermore, the following
relations hold true:

{z,z} =0, {z*, 2%} =0, {z, 2%} = —r? = — Z;nﬂ x?,
{d,d} =0, {d*,d*} =0, {d,d*} =-A=-3"",0z,
(o, d}=F+E, {a,d}=E—E+m, {2*,d'}=0={x,d}.
Proof of Proposition 1.Denote byg the Lie superalgebra generated by the elements’, d

andd*. By Lemma 2, it is easy to see that the even pamf g is isomorphic togl(2). Indeed,
denoting

1 m +_ _ 9 1, m
H = 2(E+ 2), ET=—-A F =37 andZ_Q(E 2),
we have that
go =span{H,ET, B~} ®R(27) ~ sl(2) ® sl(1) ~ gl(2).
Furthermore, the odd pagt is generated by the operators
1 1 _ 1 _ 1
Ff=_—d F=——z, Ffr=—d and F~ = — z*.
V2 ol V2 o

To conclude that the Lie superalgelira= go @ g, is isomorphic tos((2|1) it is sufficient to
verify the following relations:

[H,E*] = +E*, [H F*]=+lF* [H F*=+iF*

[Z,E*] =0, [Z, F*] = 1Fi Z, F%] = —1F=,

[E*, FE] =0, [E*, FT| = —F*, [E* F7]=F*, ©)
[E*, Ff] =0, [EY,E7|=2H, [Z,H]=0,

{F* FfY =0, {F* F*} =0, {F* F*} = B+,

{F£ FF} =0, {F* F¥}=0, {F:fFF\=Z7FH.

These relations follow easily from Lemma 2.



Following [12], we fix the notation of roots for the Lie suplg@brasi(2|1). Denote by
h = span{ H, Z} a Cartan subalgebra of the even gart= gl(2) of g = sl(2|1). Here we use
the notation of generators gffrom the proof of Proposition 1. For € h* we writen = (a, b)
wherea = n(2H) andb = n(27). Lettinga = (2,0) andjs = (—1, —1), the set of roots of is

® = {+a, £6, +(a+ F)}.

Sete, = Et, e =F,eqrp=F", e_o=E",e_3=F"ande_(.3 = F~. Moreover, let

+

n" = span{ea, €3, €ais}

andb = h & n be a Borel subalgebra gf Forn € h* we define the Verma moduléd (n) and
M () and irreducible module&(n) and L(n) as in Remark 1. Recall that, in this cagé(n)
is irreducible if and only ify = (a, b) is typical anda ¢ N, see [12, Theorem 1.6]. Moreover,
n = (a,b) is typical ifa — b # 0 anda + b + 2 # 0.
Before stating our main theorem we need the next lemma.

Lemma 3. Denote by, the set of non-negative integers and(letk) € {1,...,m — 1} x Ny
or (s, k) € {(0,0), (m,0)}. For anon-zeraP € H}, set

V3 (P) = span{wP; w € Q}

wheref) is as in (7). Then the following statements hold true:
(i) The spacéVi(P) is an infinite-dimensional irreducible(2|1)-module.

(i) For 1 < s < m—1andk € Ny, the moduléVs (P) is the Verma module faif(2|1) with the
highest weight

nz:(—k—%—l, 3—%—1)
and a maximal vectar* P.
(iii) For s = 0, the moduléV9(P) is an irreducibles((2|1)-module with the highest weight
=5 -3
and a maximal vectoP.
(iv) For s = m, the moduléV*(P) is an irreducibles((2|1)-module with the highest weight
m

m
M (—— —1,——1

and a maximal vector* P.

(v) In particular, thes((2|1)-moduleV; (P) is isomorphic to a modul&s,(P') if and only if
s=sandk = k.
(vi) LetV be an irreducibles!(2|1)-module with the highest weight and Vs be an irreducible
gl(2)-module with the highest weiglit-k — 3,5 — 7). As agl(2)-module, the modul&;
decomposes as )

V@ Viill © Villl D Vi

if 1 <s<m—1; moreoverV) ~ V0 ¢ V! and Vi ~ Vi* @ Y71,
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Remarks. Let V§ be an irreduciblg((2)-module as in Lemma 3 (vi). Obviously, we have that

wherel, is the Verma module fos((2) as in (2) andC; is a representation afi(1) with the
highest weights — %) (that is, the generat@Z of sl(1) has(s — ) as the eigenvalue).

Proof of Lemma 3Let0 # P € Hf andV = Vi(P).

(a) To show thatV is ansl(2|1)-module it is sufficient to verify that, for any word € €,
d(wP) € Vandd*(wP) € V. But it is easy to show by induction on the length of the word
using the relations of Lemma 2.

(b) Thesl(2|1)-moduleV is infinite-dimensional. Indeed, by Theorem 1, the elemerfsvith

w € ) form a vector space basis ¥fwhenl < s < m — 1. On the other hand, & = 0 (resp.

s = m) thenwP = 0 for wordsw € 2 with the last letterc* (resp.z). Thus, in the case when
s = 0 (resp.s = m), the elements P for wordsw € ) with the last letterr (resp.xz*) form

a vector space basis ¥t

(c) Thesl(2]|1)-moduleV is irreducible. Indeed, led # W C V be a submodule. We can
assume that there is a non-zétbc W such thatP’ = wP + P” for some wordw € (2 of the

length2p + 1 and
2p+k

P’ e @ P;e AT (C™).
ij=k
Otherwise, apply the operatarsandz* alternatively toP’. Moreover, for the sake of explicit-
ness, leb < s < m andw = r¥z. DenotingU,jﬁ = ¢ H}, itis easy to see that mappings

. 2pyrs+l 2(p—1)7rs+1
ArPUT —r Uit

andd* : UJfl — Hj are both one-to-one and onto. Here we use the relafidns®] =
AE +2m, [A, 2] = —2d and{z,d*} = E — E + m, see (9). Hence we have that

0# d*"AP(P) = &*AP(wP) € HN'W,

which impliesW = V.

(d)Letl < s <m—1. Thenitis easy to see thatP € V is a maximal vector of the weigh
andV C M (n;). Moreover, the highest weighy, is typical. By [12, Theorem 1.6], the Verma
module (n;) is thus irreducible, which completes the proof of (ii).

(e) Letk = 0. If s = 0thenP € V is a maximal vector of the weighf. On the other hand,
if s = m thenz*P € V is a maximal vector of the weighg’. In both these cases, the Verma
module M (n;) is not irreducible and the modulé is instead isomorphic td.(7;), see [12,
Theorem 1.6].

(f) The statement (v) is obvious.

(g9) Now we prove the statement (vi). Denote
V1 = span{r*P; p € No}, V, =span{r?zP; p € Ny}, V3 = span{r*2*P; p € Ny}
and V, = span{r®((k +m — s)za* — (k + s)x*x)P; p € No}.
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By [4], it is easy to see that the spa€alecomposes as

vV = Vl@Vz@Vg@V4 |f1§8§m—1,
= Vl@VQ ifS:O,
= Vl@V:J, Ifs:m

Obviously, asgl(2)-modules,V; ~ Vi, V, ~ Vitl V3 ~ Vi | andV, ~ V;_ ,, which
completes the proof. n

Now we are ready to state the following theorem.

Theorem 2. Under the joint action of the paiD(m) x s[(2|1), the spaceP* = P @ A*(C™) is
isomorphic to the multiplicity free direct sum

m—1 oo

P~ (Hy @ V§) @ <@@HS®VS> (Hg' ® Vi) (10)

s=1 k=0

whereH is an irreducibleO(m)-module isomorphic tdf; and Vs is an infinite-dimensional
irreducibles((2]|1)-module with the highest weighf (defined in Lemma 3).

Remark6. Theorem 2 is a special case of [10, Theorem 8] but, in additiayives an explicit
description of irreducible pieces of the decomposition) (10 addition, in [3], irreducible
O(m)-modulesH; are characterized in terms of the highest weights for theesponding
SO(m)-modules.

Proof. For the sake of completeness, we give a direct proof witheigrring to the general
theory developed in [10]. To that end, IBf be a vector space basis of the spdte For
eachP € B;, by Lemma 3, the((2|1)-module Vs (P) is isomorphic to an irreducible module
with the highest weight); we denote byi’;. If H; stands for an irreducibl®(m)-module
isomorphic toH}, then it is not difficult to see that

we

is isomorphic to the irreducibl®(m) x s{(2|1)-moduleH; ® V3. Finally, using Theorem 1
and Lemma 3, we conclude that the whole spatés isomorphic to the multiplicity free direct
sum (10), which completes the proof. n
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