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Abstract. As is well-known, classical Clifford analysis is a refinement ofharmonic analysis. In
[4], it is shown that analysis of Hodge systems can be viewed even as a refinement of Clifford
analysis. In this note, we recall the Howe duality for harmonicanalysis and Clifford analysis
and, moreover, we describe quite explicitly the Howe duality for Hodge systems. Our main aim
is to illustrate relations between these theories.
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1 INTRODUCTION

In this note, we describe quite explicitly the Howe duality for Hodge systems and connect it
with the well-known facts of harmonic analysis and Clifford analysis.

In Section 2, we recall briefly the Fisher decomposition and the Howe duality for harmonic
analysis. In Section 3, the well-known fact that Clifford analysis is a real refinement of harmonic
analysis is illustrated by the Fisher decomposition and theHowe duality for the space of spinor-
valued polynomials in the Euclidean spaceR

m under the so-calledL-action.
On the other hand, for Clifford algebra valued polynomials inR

m, we can consider another
action, called in Clifford analysis theH-action. In the last section, we state the Fisher decom-
position for theH-action obtained recently in [4]. As in Clifford analysis theprominent role
plays the Dirac equation in this case the basic set of equations is formed by the Hodge system.
According to [4], analysis of Hodge systems can be viewed even as a refinement of Clifford
analysis. In this note, we describe the Howe duality for theH-action. In particular, in Propo-
sition 1, we recognize the Howe dual partner of the orthogonal group O(m) in this case as
the Lie superalgebrasl(2|1). Furthermore, Theorem 2 gives the corresponding multiplicity free
decomposition with an explicit description of irreduciblepieces.

2 HARMONIC ANALYSIS

In this section, we recall briefly the Howe duality for the spaceP of complex-valued polyno-
mials in the Euclidean spaceRm. We consider the spaceP as an module over the full orthogonal
groupO(m) of R

m. The action of the groupO(m) on the spaceP is given by

[g · P ](x) = P (g−1x), g ∈ O(m), P ∈ P andx ∈ R
m.

It is easily seen that the multiplication by the polynomial

r2 = x2
1 + · · · + x2

m, x = (x1, . . . , xm) ∈ R
m

and the Laplace operator

∆ =
m
∑

j=1

∂2
xj

are bothO(m)-invariant linear operators on the spaceP . In fact, by the so-called Fisher dual-
ity, the operatorsr2 and∆ correspond to each other. LetPk be the space ofk-homogeneous
polynomials ofP and

Hk = {P ∈ Pk; ∆P = 0}.
Then the well-known Fisher decomposition of the spaceP reads as follows:

P =
∞
⊕

k=0

P(k) with P(k) =
∞
⊕

p=0

r2pHk. (1)

In (1), allO(m)-modulesHk are irreducible and mutually inequivalent andP(k) are correspond-
ing O(m)-isotypic components ofP .

Now let us recall (see e.g. [7, 10]) that the spaceP has the so-called hidden symmetry given
by a Lie algebra of differential operators commuting with the O(m)-action. To be explicit, let
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W be the Weyl algebra of differential operators with polynomial coefficients inRm. This is the
subalgebra ofEnd(P) generated as an associative algebra by the elements

x1, . . . , xm and∂x1
, . . . , ∂xm

.

Polynomials ofP are contained inW as polynomial differential operators of order zero and, in
a natural way, the spaceP can be viewed as a module overW . Furthermore, the Weyl algebra
W endowed with the commutator

[T1, T2] = T1T2 − T2T1

forms a Lie algebra. Then it is easy to see thatE+ = −1
2
∆ andE− = 1

2
r2 generate in the Weyl

algebraW a copy ofsl(2). Indeed, let

E =
m
∑

j=1

xj∂xj

be the Euler operator andH = −1
2
(E + m

2
). Then the following relations hold true:

[H,E±] = ±E± and [E+, E−] = 2H.

Moreover, letIk be the Verma module forsl(2) with the highest weight−(k + m
2
). Then a real-

ization ofIk is a module

Ik(P ) = span{r2pP ; p = 0, 1, 2, . . .} (2)

for any non-zeroP ∈ Hk, cf. [2]. Let Hk be an irreducibleO(m)-module isomorphic to the
moduleHk. Under the joint action of the Howe dual pairO(m) × sl(2), the componentP(k) is
then isomorphic toHk ⊗ Ik and the spaceP is isomorphic to the multiplicity free direct sum

P ≃
∞
⊕

k=0

Hk ⊗ Ik.

See e.g. [10] for details.

3 CLIFFORD ANALYSIS

In this section, following [2], we recall the Howe duality for spinor valued polynomials. Let
Cm be the complex Clifford algebra generated by vectorse1, . . . , em of the standard basis ofR

m.

We considerRm as a part ofCm as usual. Namely, we identify the vectorx = (x1, . . . , xm)
of R

m with the elemente1x1 + · · · + emxm of Cm. Recall that the Pin groupPin(m) can be
realized insideCm as

Pin(m) = {s1s2 · · · sk; k ∈ N, sj ∈ Sm−1}

whereSm−1 is the unit sphere inRm. Moreover,Pin(m) is a double cover of the groupO(m).
Indeed,

ρ(s)x = s−1xs, s ∈ Pin(m) and x ∈ R
m
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is a two-fold covering homomorphism ofPin(m) onto O(m). Denote byS a basic spinor
representation for the Pin groupPin(m). Such a representationS is called a spinor space and
is usually realized as a subspace of the Clifford algebraCm. LetP(S) = P ⊗S be thePin(m)-
module of spinor valued polynomials inRm. The so-calledL-action on the spaceP(S) is given
by

[L(s)(P )](x) = s P (s−1xs), s ∈ Pin(m), P ∈ P(S) and x ∈ R
m. (3)

It is easily seen that the multiplication byx = e1x1 + · · · + emxm and the Dirac operator

D = e1∂x1
+ · · · + em∂xm

are bothPin(m)-invariant linear operators on the spaceP(S). Actually, by the Fisher dual-
ity, the operators−x and D correspond to each other. Denote byMk(S) the space ofk-
homogeneous polynomialsP ∈ P(S) which are solutions of the Dirac equationDP = 0.
In [2], the following Fisher decomposition for this case is given:

P(S) =
∞
⊕

k=0

P(S)(k) with P(S)(k) =
∞
⊕

p=0

xpMk(S). (4)

In (4), all Pin(m)-modulesMk(S) are irreducible and mutually inequivalent andP(S)(k) are
correspondingPin(m)-isotypic components ofP(S). Moreover, realizing that

Hk ⊗ S = Mk(S) ⊕ xMk−1(S)

andx2 = −r2, it is easy to see that the decomposition (4) is a real refinement of (1).
It turns out that the hidden symmetry ofP(S) is given by the Lie superalgebraosp(1|2)

generated in the twisted Weyl algebraW ⊗ S by the odd elementsD andx. Indeed, by [2],
there is an infinite-dimensional irreducibleosp(1|2)-moduleĨk which is isomorphic to

Ĩk(P ) = span{xpP ; p = 0, 1, 2, . . .} (5)

for any non-zeroP ∈ Mk(S). Let Mk be an irreduciblePin(m)-module equivalent toMk(S).
Under the joint action of the Howe dual pairPin(m)×osp(1|2), the componentP(S)(k) is then
isomorphic toMk ⊗ Ĩk and the spaceP(S) is isomorphic to the multiplicity free direct sum

P(S) ≃
∞
⊕

k=0

Mk ⊗ Ĩk,

see [2] for details. For an account of Lie superalgebras, we refer to [11] or [5].
We conclude this section by showing the following result.

Lemma 1. For each non-negative integerk, the modulẽIk is the Verma module forosp(1|2)
with the highest weight−(k + m

2
).

Remark1. Following [11], we recall Verma modules for a basic classical Lie superalgebrag. In
this note,g = osp(1|2) or g = sl(2|1). Let h be a Cartan subalgebra of the even partg0 of g and
b = h ⊕ n+ be a Borel subalgebra ofg. Forη ∈ h∗ we define the Verma modulẽM(η) for g by

M̃(η) = U(g) ⊗U(b) Cvη
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whereCvη is the one dimensionalb-module with tvη = η(t)vη for t ∈ h and n+vη = 0.
HereU(g) andU(b) is the universal enveloping algebra ofg andb, respectively. Moreover,
we call vη a maximal vector of the weightη andM̃(η) the Verma module with the highest
weightη. Finally, denote bỹL(η) a unique irreducible factor module of̃M(η). We callL̃(η) an
irreducibleg-module with the highest weightη. If the Verma moduleM̃(η) is itself irreducible
then, of course,̃M(η) = L̃(η).

For any graded subspacet of g write t = t0 ⊕ t1 wheret0 (resp. t1) is the even (resp. odd)
part of t. For η ∈ h∗ we define the Verma moduleM(η) for g0 and an irreducibleg0-module
L(η) with the highest weightη analogously but in the definition we replaceg, b andn+ with g0,

b0 andn+
0 .

Proof of Lemma 1.First let us fix the notation. Denote byg the Lie superalgebra generated in
W ⊗ S by the odd elementsD andx. Denoting

H = −1

2
(E +

m

2
), E+ = −1

2
∆, E− =

1

2
r2, F+ = − 1

2
√

2
D and F− = − 1

2
√

2
x,

it is easy to see thatg is isomorphic to the Lie superalgebraosp(1|2) andg = g0 ⊕ g1 where
g0 = span{H,E+, E−} andg1 = span{F+, F−} is the even and the odd part ofg, respectively.
Moreover, the even partg0 is isomorphic tosl(2). Indeed, it is sufficient to verify the following
relations:

[H,E±] = ±E±, [E+, E−] = 2H, [H,F±] = ±1
2
F±,

[E±, F∓] = −F±, {F+, F−} = 1
2
H, {F±, F±} = ±1

2
E±.

Here{T, S} = TS + ST is the anticommutator of operatorsT andS.

Now we fix the notation for roots of the Lie superalgebrag. Denote byh = span{H}
a Cartan subalgebra ofg. Forη ∈ h∗ we writeη = a wherea = η(2H). The set of roots ofg is
Φ = {±1, ±2}. Moreover, letn+ = span{F+, E+} andb = h ⊕ n+ be a Borel subalgebra of
g.

For a given non-zeroP ∈ Mk(S), let Ĩk(P ) be as in (5). It is easily seen thatP ∈ Ĩk(P )
is a maximal vector for the weightηk = −(k + m

2
). By [13] or [9, Corollary 4.4], the Verma

moduleM̃(ηk) is irreducible and hencẽIk(P ) ≃ M̃(ηk), which completes the proof.

Remark2. As ansl(2)-module, it is easily seen thatĨk ≃ Ik ⊕ Ik+1, see [2]. HereIk is the
Verma module forsl(2) as in (2). Indeed, for a given non-zeroP ∈ Mk(S), we have that

Ĩk(P ) = span{r2pP ; p = 0, 1, 2, . . .} ⊕ span{r2pxP ; p = 0, 1, 2, . . .} ≃ Ik ⊕ Ik+1.

4 HODGE SYSTEMS

In the previous section, we dealt with the space of spinor valued polynomials under theL-
action. But, for Clifford algebra valued functions, we can consider another action, given by
the adjoint action ofO(m) on values of functions. Namely, forP ∈ P ⊗ Cm, the so-called
H-action is given by

[H(s)(P )](x) = s P (s−1xs)s−1, s ∈ Pin(m) and x ∈ R
m. (6)

In what follows, we use the language of differential forms. When we identify the Clifford alge-
braCm with the Grassmann algebraΛ∗(Cm) the spaceP⊗Cm corresponds namely to the space
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P∗ = P⊗Λ∗(Cm) of polynomial (differential) forms and theH-action to a natural action of the
groupO(m) on the spaceP∗, see [6, p. 153]. Furthermore, under this identification, theDirac
operatorD coincides withd + d∗ whered andd∗ is the de Rham differential and codifferential,
respectively. Denoting bydxj ∧ (resp.dxj ⌋) the exterior (resp. interior) multiplication bydxj,

we have that

d =
m
∑

j=1

∂xj
dxj ∧ and d∗ = −

m
∑

j=1

∂xj
dxj ⌋.

By the Fisher duality,d∗ andd correspond to the operators

x = −
m
∑

j=1

xj dxj ∧ and x∗ =
m
∑

j=1

xj dxj ⌋,

and, under the identification, the Clifford multiplication by a vector−x coincides withx + x∗.

See [1] for details.
Before we state the Fisher decomposition for this case we needmore notation. LetΛs(Cm)

be the space ofs-vectors overCm andPs
k = Pk ⊗ Λs(Cm). Of course, we have that

Λ∗(Cm) =
m
⊕

s=0

Λs(Cm) and P∗ =
m
⊕

s=0

∞
⊕

k=0

Ps
k .

Denote byΩ the set of all non-trivial words in the lettersx andx∗, that is,

Ω = {1, x, x∗, xx∗, x∗x, xx∗x, x∗xx∗, . . .}. (7)

In this connection, let us note thatx2 = 0 and(x∗)2 = 0. Denote byHs
k the set of polynomial

formsP ∈ Ps
k satisfying the Hodge system

dP = 0, d∗P = 0.

Then the Fisher decomposition for this case is given in the following theorem, see [4].

Theorem 1. The spaceP∗ = P ⊗ Λ∗(Cm) decomposes as follows:

P∗ = P∗
(0,0) ⊕

(

m−1
⊕

s=1

∞
⊕

k=0

P∗
(s,k)

)

⊕ P∗
(m,0) with P∗

(s,k) =
⊕

w∈Ω

wHs
k. (8)

In addition, in (8), allO(m)-modulesHs
k are non-trivial, irreducible and mutually inequivalent

andP∗
(s,k) are correspondingO(m)-isotypic components ofP∗.

Remark3. As is shown in [4], the decomposition (8) can be understood asa refinement of (4).

By [10], to find the hidden symmetry of the spaceP∗ we should replace the Weyl algebra in
this case withW(Λ∗), the associative subalgebra ofEnd(P∗) generated by the elements

x1, . . . , xm, ∂x1
, . . . , ∂xm

, dx1∧, . . . , dxm ∧ and dx1 ⌋, . . . , dxm ⌋.

In particular, the operatorsx, x∗, d andd∗ areO(m)-invariant elements ofW(Λ∗). Further-
more, the algebraW(Λ∗) has a naturalZ2-gradation such that the elementsx1, . . . , xm and
∂x1

, . . . , ∂xm
are even and the elementsdx1∧, . . . , dxm∧ anddx1 ⌋, . . . , dxm ⌋ are odd. Thus

the superalgebraW(Λ∗) endowed with the supercommutator forms a Lie superalgebra which
has the operatorsx, x∗, d andd∗ as odd elements. Even we can prove the following result.

6



Proposition 1. The odd elementsx, x∗, d andd∗ of the Lie superalgebraW(Λ∗) generate the
Lie superalgebra isomorphic tosl(2|1).

Remark4. Our case is a part of the general theory of the Howe duality developed in [10].
But, in [10], the Howe dual partner ofO(m) in this case is not explicitly described as the Lie
superalgebrasl(2|1).

Proposition 1 follows easily from the next well-known result, see e.g. [1].

Lemma 2. LetE be the Euler operator and̂E be the skew Euler operator, that is,

E =
m
∑

j=1

xj∂xj
and Ê =

m
∑

j=1

(dxj ∧)(dxj ⌋).

Then we have thatEP = kP and ÊP = sP for eachP ∈ Ps
k . Furthermore, the following

relations hold true:

{x, x} = 0, {x∗, x∗} = 0, {x, x∗} = −r2 = −∑m

j=1 x2
j ,

{d, d} = 0, {d∗, d∗} = 0, {d, d∗} = −∆ = −∑m

j=1 ∂2
xj

,

{x∗, d} = E + Ê, {x, d∗} = E − Ê + m, {x∗, d∗} = 0 = {x, d}.

Proof of Proposition 1.Denote byg the Lie superalgebra generated by the elementsx, x∗, d

andd∗. By Lemma 2, it is easy to see that the even partg0 of g is isomorphic togl(2). Indeed,
denoting

H = −1

2
(E +

m

2
), E+ = −1

2
∆, E− =

1

2
r2 and Z =

1

2
(Ê − m

2
),

we have that
g0 = span{H,E+, E−} ⊕ R(2Z) ≃ sl(2) ⊕ sl(1) ≃ gl(2).

Furthermore, the odd partg1 is generated by the operators

F+ =
1√
2

d, F− = − 1√
2

x, F̄+ =
1√
2

d∗ and F̄− =
1√
2

x∗.

To conclude that the Lie superalgebrag = g0 ⊕ g1 is isomorphic tosl(2|1) it is sufficient to
verify the following relations:

[H,E±] = ±E±, [H,F±] = ±1
2
F±, [H, F̄±] = ±1

2
F̄±,

[Z,E±] = 0, [Z, F±] = 1
2
F±, [Z, F̄±] = −1

2
F̄±,

[E±, F±] = 0, [E±, F∓] = −F±, [E±, F̄∓] = F̄±,

[E±, F̄±] = 0, [E+, E−] = 2H, [Z,H] = 0,

{F±, F±} = 0, {F̄±, F̄±} = 0, {F±, F̄±} = E±,

{F±, F∓} = 0, {F̄±, F̄∓} = 0, {F±, F̄∓} = Z ∓ H.

(9)

These relations follow easily from Lemma 2.

7



Following [12], we fix the notation of roots for the Lie superalgebrasl(2|1). Denote by
h = span{H,Z} a Cartan subalgebra of the even partg0 = gl(2) of g = sl(2|1). Here we use
the notation of generators ofg from the proof of Proposition 1. Forη ∈ h∗ we writeη = (a, b)
wherea = η(2H) andb = η(2Z). Lettingα = (2, 0) andβ = (−1,−1), the set of roots ofg is

Φ = {±α, ±β, ±(α + β)}.

Seteα = E+, eβ = F̄−, eα+β = F̄+, e−α = E−, e−β = F+ ande−(α+β) = F−. Moreover, let

n+ = span{eα, eβ, eα+β}

andb = h⊕ n+ be a Borel subalgebra ofg. Forη ∈ h∗ we define the Verma modules̃M(η) and
M(η) and irreducible modules̃L(η) andL(η) as in Remark 1. Recall that, in this case,M̃(η)
is irreducible if and only ifη = (a, b) is typical anda 6∈ N, see [12, Theorem 1.6]. Moreover,
η = (a, b) is typical if a − b 6= 0 anda + b + 2 6= 0.

Before stating our main theorem we need the next lemma.

Lemma 3. Denote byN0 the set of non-negative integers and let(s, k) ∈ {1, . . . ,m− 1} ×N0

or (s, k) ∈ {(0, 0), (m, 0)}. For a non-zeroP ∈ Hs
k, set

Ṽ
s
k(P ) = span{wP ; w ∈ Ω}

whereΩ is as in (7). Then the following statements hold true:

(i) The spacẽVs
k(P ) is an infinite-dimensional irreduciblesl(2|1)-module.

(ii) For 1 ≤ s ≤ m− 1 andk ∈ N0, the modulẽVs
k(P ) is the Verma module forsl(2|1) with the

highest weight

ηs
k = (−k − m

2
− 1, s − m

2
− 1)

and a maximal vectorx∗P.

(iii) For s = 0, the modulẽV0
0(P ) is an irreduciblesl(2|1)-module with the highest weight

η0
0 = (−m

2
,−m

2
)

and a maximal vectorP.

(iv) For s = m, the modulẽVm
0 (P ) is an irreduciblesl(2|1)-module with the highest weight

ηm
0 = (−m

2
− 1,

m

2
− 1)

and a maximal vectorx∗P.

(v) In particular, thesl(2|1)-moduleṼ
s
k(P ) is isomorphic to a modulẽVs′

k′(P ′) if and only if
s = s′ andk = k′.

(vi) LetṼs
k be an irreduciblesl(2|1)-module with the highest weightηs

k andV
s
k be an irreducible

gl(2)-module with the highest weight(−k − m
2
, s − m

2
). As agl(2)-module, the modulẽVs

k

decomposes as
Ṽ

s
k ≃ V

s
k ⊕ V

s+1
k+1 ⊕ V

s−1
k+1 ⊕ V

s
k+2

if 1 ≤ s ≤ m − 1; moreover,̃V0
0 ≃ V

0
0 ⊕ V

1
1 andṼ

m
0 ≃ V

m
0 ⊕ V

m−1
1 .
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Remark5. Let V
s
k be an irreduciblegl(2)-module as in Lemma 3 (vi). Obviously, we have that

V
s
k ≃ Ik ⊗ Cs

whereIk is the Verma module forsl(2) as in (2) andCs is a representation ofsl(1) with the
highest weight(s − m

2
) (that is, the generator2Z of sl(1) has(s − m

2
) as the eigenvalue).

Proof of Lemma 3.Let 0 6= P ∈ Hs
k andV = Ṽ

s
k(P ).

(a) To show thatV is ansl(2|1)-module it is sufficient to verify that, for any wordw ∈ Ω,

d(wP ) ∈ V andd∗(wP ) ∈ V. But it is easy to show by induction on the length of the wordw

using the relations of Lemma 2.

(b) Thesl(2|1)-moduleV is infinite-dimensional. Indeed, by Theorem 1, the elementswP with
w ∈ Ω form a vector space basis ofV when1 ≤ s ≤ m − 1. On the other hand, ifs = 0 (resp.
s = m) thenwP = 0 for wordsw ∈ Ω with the last letterx∗ (resp.x). Thus, in the case when
s = 0 (resp.s = m), the elementswP for wordsw ∈ Ω with the last letterx (resp.x∗) form
a vector space basis ofV.

(c) Thesl(2|1)-moduleV is irreducible. Indeed, let0 6= W ⊂ V be a submodule. We can
assume that there is a non-zeroP ′ ∈ W such thatP ′ = wP + P ′′ for some wordw ∈ Ω of the
length2p + 1 and

P ′′ ∈
2p+k
⊕

j=k

Pj ⊗ Λ∗(Cm).

Otherwise, apply the operatorsx andx∗ alternatively toP ′. Moreover, for the sake of explicit-
ness, let0 ≤ s < m andw = r2px. DenotingU s+1

k+1 = xHs
k, it is easy to see that mappings

∆ : r2pU s+1
k+1 → r2(p−1)U s+1

k+1

and d∗ : U s+1
k+1 → Hs

k are both one-to-one and onto. Here we use the relations[∆, r2] =

4E + 2m, [∆, x] = −2d and{x, d∗} = E − Ê + m, see (9). Hence we have that

0 6= d∗∆p(P ′) = d∗∆p(wP ) ∈ Hs
k ∩ W,

which impliesW = V.

(d) Let1 ≤ s ≤ m−1. Then it is easy to see thatx∗P ∈ V is a maximal vector of the weightηs
k

andV ⊂ M̃(ηs
k). Moreover, the highest weightηs

k is typical. By [12, Theorem 1.6], the Verma
moduleM̃(ηs

k) is thus irreducible, which completes the proof of (ii).

(e) Letk = 0. If s = 0 thenP ∈ V is a maximal vector of the weightη0
0. On the other hand,

if s = m thenx∗P ∈ V is a maximal vector of the weightηm
0 . In both these cases, the Verma

moduleM̃(ηs
k) is not irreducible and the moduleV is instead isomorphic tõL(ηs

k), see [12,
Theorem 1.6].

(f) The statement (v) is obvious.

(g) Now we prove the statement (vi). Denote

V1 = span{r2pP ; p ∈ N0}, V2 = span{r2pxP ; p ∈ N0}, V3 = span{r2px∗P ; p ∈ N0}

and V4 = span{r2p((k + m − s)xx∗ − (k + s)x∗x)P ; p ∈ N0}.
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By [4], it is easy to see that the spaceV decomposes as

V = V1 ⊕ V2 ⊕ V3 ⊕ V4 if 1 ≤ s ≤ m − 1,

= V1 ⊕ V2 if s = 0,

= V1 ⊕ V3 if s = m.

Obviously, asgl(2)-modules,V1 ≃ V
s
k, V2 ≃ V

s+1
k+1, V3 ≃ V

s−1
k+1 and V4 ≃ V

s
k+2, which

completes the proof.

Now we are ready to state the following theorem.

Theorem 2. Under the joint action of the pairO(m)× sl(2|1), the spaceP∗ = P ⊗Λ∗(Cm) is
isomorphic to the multiplicity free direct sum

P∗ ≃ (H0
0 ⊗ Ṽ

0
0) ⊕

(

m−1
⊕

s=1

∞
⊕

k=0

H
s
k ⊗ Ṽ

s
k

)

⊕ (Hm
0 ⊗ Ṽ

m
0 ) (10)

whereH
s
k is an irreducibleO(m)-module isomorphic toHs

k and Ṽ
s
k is an infinite-dimensional

irreduciblesl(2|1)-module with the highest weightηs
k (defined in Lemma 3).

Remark6. Theorem 2 is a special case of [10, Theorem 8] but, in addition, it gives an explicit
description of irreducible pieces of the decomposition (10). In addition, in [3], irreducible
O(m)-modulesHs

k are characterized in terms of the highest weights for the corresponding
SO(m)-modules.

Proof. For the sake of completeness, we give a direct proof without referring to the general
theory developed in [10]. To that end, letBs

k be a vector space basis of the spaceHs
k. For

eachP ∈ Bs
k, by Lemma 3, thesl(2|1)-moduleṼ

s
k(P ) is isomorphic to an irreducible module

with the highest weightηs
k we denote byṼs

k. If H
s
k stands for an irreducibleO(m)-module

isomorphic toHs
k, then it is not difficult to see that

P∗
(s,k) =

∞
⊕

w∈Ω

wHs
k

is isomorphic to the irreducibleO(m) × sl(2|1)-moduleH
s
k ⊗ Ṽ

s
k. Finally, using Theorem 1

and Lemma 3, we conclude that the whole spaceP∗ is isomorphic to the multiplicity free direct
sum (10), which completes the proof.
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