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July 7, 2023

Faculty of Mathematics and Physics

Charles University, Prague
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1 MEROMORPHIC FUNCTIONS [NMMA410] COMPLEX ANALYSIS

1 Meromorphic functions

Recall 1.1. Recall the following notions:

• ℜz, ℑz the real and imaginary parts of z ∈ C,

• The Riemannian sphere S = C ∪ {∞}, S ≃ S2 is compact, the stereographic projection (from the point
(0, 0, 1)) ϕ : S→ S2 is given by

ϕ(x+ iy) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
, ϕ(∞) = (0, 0, 1), ϕ−1(a, b, c) =

(
a

1− c
,

b

1− c

)

• Neighbourhoods of ∞: P (∞, ε) = {z ∈ C : |z| > 1
ε}, U(∞, ε) = P (∞, ε) ∪ {∞},

• lim
z→∞

f(z) = lim
z→0

f
(
1
z

)
, if at least one of the limits exists; 1

0 =∞, 1
∞ = 0.

Definition 1.2. We say that a function f is holomorphic in a set F ⊆ C if there is an open set G,F ⊆ G ⊆ C
such that f is holomorphic in G. In particular, it is holomorphic at z0 ∈ C if it is holomorphic on some
neighbourhood of z0.

Definition 1.3. Function f has a removable singularity/pole/essential singularity at∞ if f
(
1
z

)
has a removable

singularity/pole/essential singularity at 0. f is holomorphic at ∞ if f
(
1
z

)
is holomorphic at 0. Let G ⊆ S be

open. Then f is holomorphic on G if f is holomorphic at any and all z0 ∈ G. Denote H(G) the set of all
functions holomorphic on G.

Example 1.4. H(S) is the set of all constant functions (continuous bounded on C). So H(G) is only interesting
for G ⊊ S, WLOG G ⊆ C: for G ⊆ S \ {z0}, z0 ∈ C use the transformation ϕ(z) = 1

z−z0 .

Definition 1.5. Let G ⊆ S be open. Function f on G is called meromorphic if at all points of G the function
f is either holomorphic or has a pole. DenoteM(G) the set of all meromorphic functions on G.

Remark 1.6. (i) H(G) ⊆M(G).

(ii) Denote Pf = {z ∈ G : f has a pole at z}. Then Pf has no limit points in G.

(iii) If f =∞ on Pf , then f : G→ S is continuous. ALWAYS ASSUME: f =∞ on Pf for f ∈M(G).

Example 1.7. π
sin(πz) ∈ M(C), e1/z /∈ M(C); the Gamma function Γ(s) =

∫∞
0
xs−1e−x dx ∈ M(C),ℜs > 0,

note that Γ(n + 1) = n!, n ∈ N0; Riemann1 zeta function ζ(z) ∈ M(C), for ℜz > 1 holds ζ(z) =
∑∞
n=1 n

−z =
Πp prime

1
1− 1

pz
.

Example 1.8. M(S) is the set of rational functions.

Proof. Rational functions are clearly meromorphic. Let f ∈M(S). S is compact and Pf has no limit points, so

Pf must be finite. Assume Pf ∩ C = {z1, . . . , zn}. There is h ∈ H(C) such that f(z) = h(z) +
∑n
j=1 Pj

(
1

z−zj

)
for some polynomials Pj (note that 1

z−zj has a removable singularity at ∞) and h(z) =
∑∞
k=0 akz

k, ak ∈ C has

essential singularity at infinity if and only if ak ̸= 0 for infinitely many k. So h is a polynomial.

Remark 1.9. M(G) is interesting for G ⊊ S. Using the same transformation as in Example 1.4, we can without
loss of generality assume G ⊆ C.

Example 1.10. If G ⊆ C is a domain, f, g ∈ H(G), g is not identically zero, then f
g ∈ M(G). The inverse is

also true (will be shown later, not true for G = S).

Proposition 1.11. Let G ⊆ S be open and M ⊆ G have no limit points in G. Then

(i) G \M is open;

(ii) if K ⊆ G is compact in G, then K ∩M is finite, in particular if G = S, then M is finite;

(iii) M is at most countable, if M is infinite, then ∅ ≠ derM ⊆ ∂G, where derM is the set of the limit points
of M ;

(iv) if G ⊆ C is a domain, then G \M is also a domain.

1Georg Friedrich Bernhard Riemann (17 September 1826, Breselenz, Kingdom of Hanover – 20 July 1866, Selasca, Kingdom of
Italy)
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2 LOGARITHMIC INTEGRALS [NMMA410] COMPLEX ANALYSIS

Proof. (i) Take z ∈ G \M . If for each neighbourhood U of z held U ∩M ̸= ∅, then z would be a limit
point of M . Thus there is a neighbourhood U of z which does not intersect M . By passing to a smaller
neighbourhood we can get a neighbourhood V such that V ⊂ G and V ∩M = ∅.

(ii) If K ∩M was infinite, by compactness we would get that K ∩M ⊆M has a limit point in K.

(iii) Let G ⊊ S, WLOG G ⊆ C. There are Kn compact in G such that G =
∞⋃
n=1

Kn. Then M =
∞⋃
n=1

M ∩Kn,

M ∩Kn is finite and so M is countable. If M is infinite, by compactness of S, M has a limit point, but
this limit point is not contained in any K ⊂ G compact.

(iv) Curves are compact, and thus have finite intersection with M . Given a curve connecting two points in G,
we can modify it on sufficiently small neighbourhoods of each point of intersection with M so that we get
a curve with the same endpoints in G \M .

Lemma 1.12. Let G ⊆ C be open. Then there are compacts Kn, n ∈ N such that

(i) G =
∞⋃
n=1

Kn;

(ii) Kn ⊆ IntKn+1;

(iii) for any compact K ⊆ G there is n0 ∈ N such that K ⊆ Kn0
.

Proof. Set Kn =
{
z ∈ G : dist(z,C \G) ≥ 1

n

}
∩ U(0, n).

Theorem 1.13 (Uniqueness of meromorphic functions). Let G ⊆ C be a domain, f ∈ M(G) not identically
zero. Then Nf = {z ∈ G : f(z) = 0} has no limit points in G.

Proof. We know this for holomorphic functions. Set G0 = G\Pf . Then G0 is also a domain by Proposition 1.11
and f ∈ H(G0), f ̸≡ 0 on G0. Then Nf ⊆ G0 and has no limit points in G0, nor in Pf .

Theorem 1.14 (Residue theorem). Let G ⊆ C be open, φ be a closed curve in G and Intφ ⊆ G (recall
Intφ = {z ∈ C \ ⟨φ⟩ : Indφ z ̸= 0}). Let M be a finite set in G \ ⟨φ⟩ and f ∈ H(G \ M). Then

∫
φ
f =

2πi
∑
s∈M ressf · Indφ s.

Remark 1.15. Residue theorem holds true even if instead of finiteness of M we assume that M ⊆ G \ ⟨φ⟩
has no limit points in G. Indeed, we have M0 = M ∩ Intφ is finite, because ⟨φ⟩ ∪ Intφ is compact, and
G0 :− G \ (M \M0) is open, f is holomorphic on G0 \M0 = G \M and by Residue theorem for G0 and M0 we
get that

∫
φ
f = 2πi

∑
s∈M0

ressf · Indφ s = 2πi
∑
s∈M ressf · Indφ s.

2 Logarithmic integrals

Let φ : [a, b]→ C be a (regular) curve and let f be a nonzero holomorphic function on ⟨φ⟩. Then

I :− 1

2πi

∫
φ

f ′

f
=

1

2πi

∫ b

a

f ′(φ(t))

f(φ(t))
φ′(t) dt =

1

2πi

∫ b

a

(f(φ(t)))′

f(φ(t))
dt =

1

2πi

∫
f◦φ

dz

z
=

1

2πi
(ϕ(b)− ϕ(a)),

where ϕ is a branch of logarithm of f ◦φ. If φ is in addition closed, then I = Indf◦φ 0 = 1
2π (θ(b)− θ(a)), where

θ is branch of argument of f ◦ φ.

Theorem 2.1 (Argument principle). Let G ⊆ C be a domain, φ a closed curve in G and f ∈ M(G). Let
Intφ ⊆ G and ⟨φ⟩ ∩Nf = ∅ = ⟨φ⟩ ∩ Pf . Then

1

2πi

∫
φ

f ′

f
=

∑
s∈Intφ
f(s)=0

nf (s) Indφ s−
∑

s∈Intφ
f(s)=∞

pf (s) Indφ s, (PA)

where nf (s) is the multiplicity of the zero point s of f and pf (s) is the multiplicity of the pole s of f . Denote
the right hand side of the equality (PA) as

∑
(f, φ).
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2 LOGARITHMIC INTEGRALS [NMMA410] COMPLEX ANALYSIS

Proof. By Residue theorem (1.14) we have

1

2πi

∫
φ

f ′

f
=

∑
s∈Intφ
s∈Nf∪Pf

ress

(
f ′

f

)
Indφ s.

If s ∈ Nf ∪ Pf , then on P (s) = P (s, r) holds

f ′(z)

f(z)
=
pcp(z − s)p−1 + · · ·
cp(z − s)p + · · ·

=
p

z − s
· 1 +HOT

1 +HOT
,

where by HOT we mean higher order terms. Thus ress(f
′/f) = p = nf (s), s ∈ Nf or analogously ress(f

′/f) =
−pf (s), s ∈ Pf .

Lemma 2.2. Let φ1, φ2 : [a, b]→ C be closed curves and s ∈ C\(⟨φ1⟩∪⟨φ2⟩). Assume ∀t ∈ [a, b] : |φ1(t)− φ2(t)| <
|φ1(t)− s|. Then Indφ1

s = Indφ2
s.

Proof. For t ∈ [a, b] we have |(φ1(t)− s)− (φ2(t)− s)| < |φ1(t)− s| =⇒ |1− ψ(t)| < 1 for ψ(t) = φ2(t)−s
φ1(t)−s .

ψ is a closed curve, ⟨ψ⟩ ⊆ U(1, 1) and so 0 = Indψ 0 = 1
2πi

∫ b
a
ψ′

ψ . We calculate ψ′ =
φ′

2(φ1−s)−φ′
1(φ2−s)

(φ1−s)2 =
φ′

2

φ1−s −
φ′

1(φ2−s)
(φ1−s)2 and ψ′

ψ =
φ′

2

φ2−s −
φ′

1

φ1−s . Put together we get

0 =
1

2πi

∫ b

a

ψ′

ψ
=

1

2πi

∫ b

a

φ′
2

φ2 − s
− 1

2πi

∫ b

a

φ′
1

φ1 − s
= Indφ2

s− Indφ1
s.

Theorem 2.3 (Rouché2). Let G ⊆ C be an open domain, f1, f2 ∈ M(G) and φ be a closed curve in G such
that Intφ ⊆ G. Assume that |f1(z)− f2(z)| < |f1(z)| <∞ for any z ∈ ⟨φ⟩. Then

∑
(f1, φ) =

∑
(f2, φ).

Proof. Set φj :− fj ◦ φ, j = 1, 2. Then Indφj
0 = 1

2πi

∫
φ

f ′
j

fj

(PA)
=

∑
(fj , φ). By Lemma 2.2 for s = 0, we have

Indφ1
0 = Indφ2

0.

Corollary 2.4. Let f1, f2 be holomorphic on U(z0, r) and |f1(z)− f2(z)| < |f1(z)| , z ∈ ∂U(z0, r). Then
Σ1 = Σ2, where Σj =

∑
s∈U(z0,r)
fj(s)=0

nfj (s).

Proof. Use the closed curve φ(t) = z0 + reit, t ∈ [0, 2π].

Example 2.5. Let p(z) = anz
n + · · ·+ a0, n ∈ N, an ̸= 0. Then p has just n roots (including multiplicities) in

C.

Proof. By Corollary for f1(z) = anz
n and f2(z) = p(z) and big enough U(0, r).

Recall 2.6. Let z ∈ C, p ∈ N and f be a function holomorphic on some neighbourhood of z. We say that z is
a zero point of f of order p, if f(z) = f ′(z) = · · · = f (p−1)(z) = 0 and f (p)(z) ̸= 0.

Notation 2.7. Let f be a holomorphic function at z0 ∈ C. We say that f(z0) = w0 p-times, p ∈ N if z0 is
a zero point of f − w0 of order p. The following statements are equivalent:

(i) f(z0) = w0 p times,

(ii) f(z0) = w0, f
′(z0) = · · · = f (p−1)(z0) = 0, f (p)(z0) ̸= 0,

(iii) f(z) = w0 +
∑∞
k=p ck(z − z0)k on a neighbourhood of z0, cp ̸= 0.

We say that f(z0) = ∞ p-times, if z0 is a zero point of f( 1z ) of order p, i.e. f has a pole of order p at z0. We
say that f(∞) = w0 p-times if f( 1z ) attains the value w0 p-times at 0.

Theorem 2.8 (On multiple values). Let z0, w0 ∈ S, f be holomorphic on P (z0) and f(z0) = w0 p-times for
some p ∈ N. Let δ0 > 0. Then there are ε > 0 and δ ∈ (0, δ0) such that ∀w ∈ P (w0, ε) there are exactly p
different points z1, . . . , zp ∈ P (z0, δ) with f(zj) = w, j = 1, . . . , p. In addition, f(zj) = w only once.

Proof. WLOG z0 = w0 = 0. Then z0 = 0 is a zero point of f of order p. Choose δ ∈ (0, δ0) such that f ̸= 0, f ′ ̸= 0
on P (0, 2δ). Set ε = min|z|=δ |f | > 0. Let w ∈ P (0, ε), use Rouché’s theorem (2.3) for f1 = f, f2 = f − w and
φ(t) = δeit, t ∈ [0, 2π]. We know |f1 − f2| = |w| < ε ≤ |f1| on ⟨φ⟩. Since in U(0, δ) f = f1 has the only zero
point of order p at 0 and (f−w)′ = f ′ ̸= 0 in P (0, δ), f2 = f−w has exactly p simple zero points in P (0, δ).

2Eugène Rouché (18 August 1832, Sommières, Gard, France – 19 August 1910, Lunel, Hérault)
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3 THE MITTAG-LEFFLER THEOREM [NMMA410] COMPLEX ANALYSIS

Corollary 2.9. Let G ⊆ S be a domain, f ∈M(G) not constant on G. Then f : G→ S is an open mapping.

Proof. Let Ω ⊆ G be open, w0 ∈ f(Ω). Then there is a z0 ∈ Ω and p ∈ N such that f(z0) = w0 p-times. Choose
δ0 > 0 such that U(z0, δ0) ⊆ Ω. By the Theorem there are ε > 0, δ ∈ (0, δ0) such that P (w0, ε) ⊆ f(P (z0, δ)),
so U(w0, ε) ⊆ f(U(z0, δ)) ⊆ f(Ω).

Remark 2.10. The Corollary is true for H(G).

Corollary 2.11. Let f be holomorphic at z0 ∈ C. Then f ′(z0) ̸= 0 ⇐⇒ there is U(z0) neighbourhood of z0
such that f |U(z0) is one-to-one.

Proof. =⇒ : Let f ′(z0) ̸= 0. Then f(z0) = w0 just once. Choose δ0 > 0 such that f ̸= w0 on P (z0, δ0). By
Theorem 2.8, choose ε > 0, δ ∈ (0, δ0), due to continuity choose δ1 < δ such that f(U(z0, δ1)) ⊆ U(w0, ε). Then
f |U(z0,δ1) is one-to-one.
⇐= : Let f ′(z0) = 0 and f be not constant on any neighbourhood of z0. Then f(z0) = w0 at least twice.

By previous Theorem, f is not one-to-one on any neighbourhood of z0.

Example 2.12. ⇐= is not true in R: f(x) = x3 is smooth one-to-one, but f ′(0) = 0, f−1(x) = 3
√
x is not

smooth.

Theorem 2.13 (On holomorphic inverse). Let G ⊆ C be open and f : G→ C be a conformal (i.e. one-to-one
holomorphic) function on G. Then f ′ ̸= 0 on G, Ω :− f(G) is open and f−1 : Ω→ G is onto and holomorphic.
In addition, (f−1)′ = 1

f ′◦f−1 on Ω.

Remark 2.14. The statement is not true in R.

Proof. WLOG G ⊆ C is a domain, otherwise consider connected components of G. By Corollary 2.9, f is an
open mapping, so Ω is in fact open and f−1 is continuous. Let z0 ∈ G and w0 = f(z0). By Corollary 2.11,

we have f ′(z0) ̸= 0 and 1
f ′(z0)

= lim
z→z0

z−z0
f(z)−f(z0) = lim

w→w0

f−1(w)−f−1(w0)
w−w0

= (f−1)′(w0), where the equality of the

limits follows from the Theorem on limit of composition: f−1(w)→ f−1(w0) for w → w0 and f
−1(w) ̸= f−1(w0)

for w ̸= w0.

Theorem 2.15 (Hurwitz3). Let G ⊆ C be a domain, fn ∈ H(G), fn
loc

⇒ f on G and f ̸≡ 0. Let z0 ∈ G and
f(z0) = 0. Then there are {zn} ⊆ G and {fkn} such that zn → z0 and fkn(zn) = 0.

Proof. Choose δ > 0 such that U(z0, δ) ⊆ G and f ̸= 0 on P (z0, δ). For n ∈ N put ρn :− δ
n+1 and φn(t) =

z0 + ρne
it, t ∈ [0, 2π]. Of course, τn :− min⟨φn⟩ |f | > 0. For a given n, there is kn ∈ N such that ∀z ∈

⟨φn⟩ : |fkn(z)− f(z)| < τn ≤ |f(z)|. By Rouché’s theorem (2.3), there is zn ∈ U(z0, ρn) such that fkn(zn) = 0.
We can choose {kn} to be increasing.

Remark 2.16. The statement does not hold in R. The assumption f ̸≡ 0 is necessary. Indeed, take fn(z) =

z
n

loc

⇒ 0 on C.

Corollary 2.17. Let G ⊆ C be a domain, fn be conformal functions on G and fn
loc
⇒ f on G. Then f is either

conformal or constant on G.

Proof. For contradiction assume there is w0 ∈ C such that f(z′) = w0 = f(z′′) for some z′, z′′ ∈ C, but
f ̸≡ w0. WLOG w0 = 0. Choose δ > 0 such that U(z′, δ) ∩ U(z′′, δ) = ∅. By the Hurwitz theorem, there are
{z′n} ⊆ U(z′, δ) and {fk′n} ⊆ {fn} such that z′n → z′ and fk′n(z

′
n) = 0. By the Hurwitz theorem again, there

are {z′′n} ⊆ U(z′′, δ) and {fk′′n} ⊆ {fk′n} such that z′′n → z′′ and fk′′n (z
′′
n) = 0. Every fk′′n has at least two zero

points, which is a contradiction.

3 The Mittag-Leffler theorem

Recall 3.1. Let f ∈M(C). We know:

(i) Pf has no limit points in C. Hence Pf is either finite or Pf = {sj : j ∈ N} and sj →∞.

(ii) Let s ∈ Pf . Then the principal part of Laurent expansion of f around s is of the form Hs(z) =
a−k

(z−s)k +

· · ·+ a−1

z−s = Ps(
1
z−s ), where a−k ̸= 0 and Ps is a polynomial, Ps(0) = 0 and Ps ̸≡ 0.

3Adolf Hurwitz (26 March 1859, Hildesheim, Kingdom of Hanover – 18 November 1919, Zürich, Switzerland)
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4 ZERO POINTS OF HOLOMORPHIC FUNCTIONS [NMMA410] COMPLEX ANALYSIS

Question 3.2. Let P ⊆ C have no limit points in C. Is there f ∈M(C) such that Pf = P? Can we prescribe
the principal part for f at points of P? YES! YES! For finite P this is obvious.

Theorem 3.3 (Mittag-Leffler4). Let (sj) ∈ CN be one-to-one, sj → ∞ and |s1| ≤ |s2| ≤ · · · , s0 = 0. Let
P0, P1, . . . be a sequence of polynomials such that Pj(0) = 0, j ≥ 0. Then the function

f(z) :− P0

(
1

z

)
+

∞∑
j=1

(
Pj

(
1

z − sj

)
−Qj(z)

)
,

for some polynomials Qj satisfies

(i) the series converges locally uniformly on C, i.e. on any compact K ⊆ C the series converges uniformly if
we omit finitely many terms which have poles in K;

(ii) f ∈M(C) and f has poles at s0, s1, . . . , while at sj the function f has its principal part equal to Pj

(
1

z−sj

)
;

(iii) if g ∈M(C) satisfies (ii), then there is h ∈ H(C) such that g = f + h on C.

Proof. Let k ∈ N. Then Hk(z) :− Pk

(
1

z−sk

)
∈ H(U(0, |sk|)), so Hk(z) =

∑∞
n=0 c

k
nz
n, |z| < |sk|. There is

nk ∈ N such that Qk(z) :−
∑nk

n=0 c
k
nz
n satisfies

|Hk(z)−Qk(z)| <
1

2k
, |z| ≤ |sk|

2
. (B)

Let K ⊂ C be compact. Choose k0 ∈ N such that K ⊆ U(0, |sk0 | /2). If k ≥ k0, (B) holds true on K,
which implies (i). (ii) is obviously valid. (iii) follows from the fact that g − f ∈ M(C) which has all isolated
singularities removable.

Remark 3.4. The Mittag-Leffler theorem is a generalization of the decomposition of rational functions (≡
M(S)) into simple partial functions.

Example 3.5. π cot(πz) = 1
z +

∑∞
k=1

2z
z2−k2 , z ∈ C \Z. f(z) :− π cos(πz)

sin(πz) has simple poles at integers, res±kf =

1, k ∈ N. Then f(z) = 1
z +

∑∞
k=1

(
1

z−k + 1
z+k

)
+ h(z) for some h ∈ H(C). In exercises it will be shown that

h ≡ 0.

Theorem 3.6. Let Ω ⊆ C be open, A ⊆ Ω have no limit points in Ω, m : A → N and for a ∈ A Pa =∑m(a)
j=1

ca,j

(z−a)j . Then there exists meromorphic function f whose principal part at each point a ∈ A is equal to

Pa. f has no other poles in Ω.

Proof. The theorem was formulated and proved as part of the exercises.

4 Zero points of holomorphic functions

Recall 4.1. Let G ⊆ C be a domain, f ∈ H(G) and f ̸≡ 0. Then Nf :− {z ∈ C : f(z) = 0} has no limit points
in G (uniqueness theorem for holomorphic functions).

Question 4.2. Let N ⊆ G have no limit points in G. Is there f ∈ H(G) such that Nf = N?

4.1 The case N = ∅
Proposition 4.3. Let f be nonzero holomorphic function on a simply connected domain G ⊆ C . Then there
is L ∈ H(G) such that f = eL on G.

Proof. Since G is simply connected and f ′/f ∈ H(G), by Cauchy’s5 theorem there is L0 ∈ H(G) such that
L′
0 = f ′/f . On G we have (fe−L0)′ = e−L0(f ′ − L′

0f) = 0 on G, hence fe−L0 = ec for some c ∈ C. Put
L = L0 + c.

Remark 4.4. Nonzero ⇐⇒ f ̸= 0 on G, simply connected means G is a domain and S \G is connected, e.g.
C, convex, star-like.

4Magnus Gustaf “Gösta” Mittag-Leffler (16 March 1846, Stockholm – 7 July 1927, Djursholm)
5Augustin-Louis Cauchy (21 August 1789, Paris – 23 May 1857, Sceaux, France)
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4.2 The case |N | < ω

The polynomial f(z) = Πnj=1(z − zj) has zero points just at points zj , . . . , zn with corresponding multiplicities.

If g ∈ H(C) has some roots with the same multiplicities as f , then there is L ∈ H(C) such that g = feL on C -
use the previous Proposition for g/f .

4.3 The case |N | = ω

Let (zj) ∈ CN, zj →∞. The näıve approach of setting f(z) = Π∞
j=1(z− zj) does not work, simply because were

the product convergent, one would have z − zj → 1, which is nonsense. Better approach would be to consider

f(z) = zkΠ∞
j=1

(
1− z

zj

)
for some k ∈ N. What can be said about convergence of this infinite product?

Theorem 4.5. Let M be a set (in C), uj : M → C, j ∈ N be bounded functions and suppose that
∑∞
j=1 |uj |

converges uniformly on M . Then Pn = Πnj=1(1 + uj) converge uniformly to a function f : M → C and it
holds true that f = Π∞

j=1(1 + uπ(j)) for any permutation π on N. If z0 ∈ M , then f(z0) = 0 if and only if
∃j0 ∈ N : uj0(z0) = −1.

Proof. Denote P ∗
n = Πnj=1(1 + |uj |). Then (1) P ∗

n ≤ exp
(∑n

j=1 |uj |
)
, which follows from the fact that 1 + x ≤

ex, x ≥ 0, and (2) |Pn − 1| ≤ P ∗
n − 1. This we prove by induction on n. The case n = 1 is obvious. Assume (2)

holds for n ∈ N. Then Pn+1 − 1 = Pn(1 + un+1)− 1 = (Pn − 1)(1 + un+1) + un+1, and so we conclude by

|Pn+1 − 1| ≤ (P ∗
n − 1)(1 + |un+1|) + |un+1| = P ∗

n+1 − 1.

Since
∑∞
j=1 |uj | is bounded on M , ∃n0 ∈ N such that

∑∞
j=n0+1 |uj | < 1. By (1) P ∗

n is bounded and by (2)
Pn is bounded, so there is C > 0 such that |Pn| ≤ C, n ∈ N.

Let ε ∈ (0, 12 ). Choose n0 ∈ N such that (3)
∑∞
n=n0

|un| < ε on M . Pick π ∈ S∞ and put Qm =
Πmj=1(1 + uπ(j)),m ∈ N. Let n ≥ n0 and m ∈ N be such that {π(1), . . . , π(m)} ⊇ {1, . . . , n}. Then

|Qm − Pn| =

∣∣∣∣∣∣∣∣Pn
 ∏
π(j)>n
j≤m

(
1 + uπ(j)

)
− 1


∣∣∣∣∣∣∣∣
(2)

≤ |Pn|

 ∏
π(j)>n
j≤m

(
1 +

∣∣uπ(j)∣∣)− 1

 (1),(3)

≤ C(eε − 1) ≤ 2Cε. (4)

Consider π = Id. Then Pm = Qm. By (4) Pn ⇒ f and for n ≥ n0 we have |Pn − Pn0 | ≤ 2ε |Pn0 |, and so
|Pn| ≥ |Pn0

| − |Pn − Pn0
| ≥ (1− 2ε) |Pn0

|. For n→∞ we get |f | ≥ (1− 2ε) |Pn0
|. Hence f(z0) = 0 if and only

if Pn0
(z0) = 0. From (4) Qm ⇒ f on M .

Corollary 4.6. Let G ⊆ C be open, fn ∈ H(G), fn ̸≡ 0 on any component of G. Assume (I)
∑∞
n=1 |1− fn|

loc

⇒

on G. Then f =
∏∞
n=1 fn

loc

⇒ on G, f ∈ H(G) and the infinite product does not depend on the order of the
functions fn. Moreover, (N) nf (s) =

∑∞
k=1 nfk(s), s ∈ G (nf (s) = 0 if f(s) ̸= 0).

Remark 4.7. The series in (N) contains only finitely many non-zero terms for any s ∈ G.

Proof. (N): Let s ∈ G. There is a neighbourhood U of s such that fn
loc
⇒ 1 on U . Choose n0 ∈ N such that

fn ̸= 0 on U for n > n0. By the theorem, we get
∏∞
n=n0+1 fn ̸= 0 on U . Since f =

∏n0

n=1 fn ·
∏∞
n=n0+1 fn, we

get nf (s) =
∑n0

n=1 nfn(s). The rest follows easily from the theorem.

HW: Under the assumptions of the corollary, prove that f ′

f =
∑∞
n=1

f ′
n

f on G \Nf .

Example 4.8. sin(πz) = πz
∏∞
k=1

(
1− z2

k2

)
(Euler6)

Back to our problem. Weierstraß7: (1− z)e− log(1−z) on |z| < 1 and − log(1− z) =
∑∞
n=1

zn

n .

Lemma 4.9 (Weierstraß factors). Let E0(z) = (1−z), Em(z) = (1−z) exp
(
z + · · ·+ zm

m

)
, z ∈ C,m ∈ N. Then

|1− Em(z)| ≤ |z|m+1
for |z| ≤ 1.

6Leonhard Euler (15 April 1707, Basel, Swiss Confederacy – 18 September 1783, Saint Petersburg, Russian Empire)
7Karl Theodor Wilhelm Weierstraß(31 October 1815, Ennigerloh, Kingdom of Prussia – 19 February 1897, Berlin, Kingdom of

Prussia)
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Proof.

E ′m(z) = exp

(
z + · · ·+ zm

m

)(
−1 + (1− z)(1 + z + · · ·+ zm−1)

)
= −zm exp

(
z + · · ·+ zm

m

)
= −zm

∞∑
k=0

bkz
k,

where b0 = 1 and bk ≥ 0 (exp(· · · ) = ez · ez2/2 · · · · · ezm/m, all Taylor series have positive coefficients). Hence
1− Em(z) = −

∫
[0,z]
E ′m(w) dw =

∑∞
k=0 ckz

k+m+1, ck = bk
m+k+1 ≥ 0. If z ∈ B(0, 1) \ {0}, then

∣∣∣∣1− Em(z)

zm+1

∣∣∣∣ =
∣∣∣∣∣
∞∑
k=0

ckz
k

∣∣∣∣∣ ≤
∞∑
k=0

ck = 1− Em(1) = 1.

Theorem 4.10 (Weierstraß factorization in C). Let k ∈ N0 and 0 ̸= zj → ∞. Then there are {mj}∞j=1 ∈ NN
0

such that

f(z) = zk
∞∏
j=1

Emj

(
z

zj

)
(W)

converges locally uniformly on C, f ∈ H(C) and f has at 0 a zero point of multiplicity k and ”non-zero” zero
points just at z1, z2, . . . and their multiplicities correspond to the number of their occurrences in {zj}. We can
always take mj = j− 1, j ∈ N. If g ∈ H(C) has the same zero points as f including multiplicities, then g = feL

for some L ∈ H(C).

Proof. By Corollary 4.6, we know (W)
loc

⇒ on C if
∑∞
j=1

∣∣1− Emj
(z/zj)

∣∣ loc⇒ on C. By Lemma 4.9 that is true if

(K)
∑∞
j=1

∣∣∣ zzj ∣∣∣mj+1 loc

⇒ on C. Let r > 0 and |z| ≤ r. Choose j0 ∈ N such that r
|zj | <

1
2 , j ≥ j0. If mj = j − 1,

then
∣∣∣ zzj ∣∣∣j ≤ 1

2j , j ≥ j0, so (K) ⇒ on {|z| ≤ r}.

Remark 4.11. If
∑∞
j=1

1
|zj | <∞, one can take mj = 0. If

∑∞
j=1

1
|zj |2

<∞, one can take mj = 1, etc.

Theorem 4.12 (Weierstraß factorization in a general open set). Let G ⊊ S be open, N ⊆ G have no limit
points in G, n : N → N. Then there is f ∈ H(G) such that Nf = N and nf (s) = n(s), s ∈ Nf .

Remark 4.13. H(S) = {constant functions}.

Proof. Without loss of generality ∞ ∈ G \N . Then K :− S \G = C \G is compact. For N finite the claim is
obvious. Assume |N | = ω. Enumerate the points of N as {s1, s2, . . . } in such a way that any s ∈ N occurs in
the enumeration n(s) times. For any n ∈ N take tn ∈ K such that |sn − tn| = dist(sn,K). Then |sn − tn| → 0:
Assume there is ε > 0, {nk}∞k=1 ∈ NN such that |snk

− tnk
| ≥ ε, i.e. dist(snk

,K) ≥ ε. If s∞ is a limit point of
{snk
}, then dist(s∞,K) ≥ ε implying s∞ ∈ G which is a contradiction.

Put f(z) =
∏∞
n=1 En

(
sn−tn
z−tn

)
, z ∈ G. The infinite product

loc

⇒ on G. In fact, let L be compact in G. Denote

d :− dist(L,K) > 0 and pick n0 ∈ N such that |sn − tn| < d/2, n ≥ n0. For any z ∈ L we have |z − tn| ≥ d and
thus

∞∑
n=n0

∣∣∣∣En(sn − tnz − tn

)
− 1

∣∣∣∣ L 4.9
≤

∞∑
n=n0

∣∣∣∣sn − tnz − tn

∣∣∣∣n+1

≤
∞∑

n=n0

(
d/2

d

)n+1

<∞.

Hence the sum
∑∞
n=1

∣∣∣En ( sn−tnz−tn

)
− 1
∣∣∣ converges uniformly on L and by Theorem 4.5 the infinite product f(z)

converges uniformly on L.

Theorem 4.14. If G ⊆ C is open and f ∈M(G) then there are g, h ∈ H(G) such that f = g
h on G.

Proof. Let Pf be the set of poles of f . By Weierstraß factorization (4.12) we construct h ∈ H(G) such that
Nh = Pf and nh = pf on Pf . Put g = fh. Then g ∈ H(G), because g has removable singularities at the points
of Pf .

Remark 4.15 (Algebraic). Recall that Z is an integral domain, Q is the field of fractions of Z. If G ⊆ C is
open, then H(G) is an associative commutative ring, if G is a domain, then H(G) is an integral domain and its
field of fractions isM(G).

Example 4.16. For any nontrivial domain ∅ ̸= G ⊆ C there is f ∈ H(G) which cannot be extended holomor-
phically to any bigger domain (Exercises).
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5 The space H(G)

Recall 5.1. The space C(K): LetK be a compact (topological) space, then C(K) = {f : K → C; f continuous}
endowed with the ∥·∥∞ is a Banach8 space, fn

C(K)→ f ⇐⇒ fn ⇒ f in K.
The Arzelà9-Ascoli10 theorem: Let F ⊆ C(K) be equibounded (∃M > 0 ∀f ∈ F : |f | ≤ M) and equicon-

tinuous (∀ε > 0 ∃δ > 0 ∀f ∈ F ∀x, y ∈ K : d(x, y) < δ =⇒ |f(x)− f(y)| < ε). Then every (fn) ∈ FN has
a uniformly convergent subsequence. Note that F ⊆ C(K) is equibounded if and only if it is bounded in the
sense of Banach spaces. One possible reformulation is that F is compact in C(K) if and only if it is equibounded
and equicontinuous.

5.1 The space C(G)

Let G ⊆ C be open, we consider the space C(G) = {f : G → C; f is continuous} with the topology given by

fn
C(G)→ f ⇐⇒ fn

loc
⇒ f on G. For f ∈ C(G) and K ⊆ G compact we denote ∥f∥K = sup

K
|f |. Clearly ∥·∥K is

a seminorm on C(G).

Fact 5.2. Let fn, f ∈ C(G) and Km ⊆ G be compacta such that
⋃∞
m=1Km = G and Km ⊆ IntKm+1. Then

the following conditions are equivalent.

(i) fn
loc
⇒ f on G.

(ii) ∀K ⊆ G compact : ∥fn − f∥K → 0.

(iii) ∀m ∈ N : ∥fn − f∥Km

n→∞→ 0.

(iv) σ(fn, f)→ 0, where σ(fn, f) =
∞∑
m=1

1

2n
·
∥fn − f∥Km

1 + ∥fn − f∥Km

is a metric on C(G).

Proof. (i) ⇐⇒ (ii) =⇒ (iii) are obvious.
(iii) =⇒ (ii): Let K ⊆ G be compact. Then K ⊆ Km0 for some m0 ∈ N and ∥fn − f∥K ≤ ∥fn − f∥Km0

.

(iii) ⇐⇒ (iv) is left as an exercise to the reader.

Remark 5.3. (C(G), σ) is a complete metric space and H(G) is a closed subspace. The metric σ is not
canonical. σ depends on the choice of Km’s and normalization method. The topology on C(G) is given by the
system of seminorms ∥·∥K for all K ⊆ G compact.

Theorem 5.4 (Montel11). Let G ⊆ C be open and (fn) ∈ H(G)N be locally equibounded (i.e. ∀K ⊆ G compact
(fn|K) is equibounded). Then there is (fnk

) which converges locally uniformly on G.

Proof. Let z0 ∈ G, r > 0, U(z0, 2r) ⊆ G and φ(t) = z0 + 2reit, t ∈ [0, 2π]. Let z1, z2 ∈ U(z0, r). Then by the

Cauchy formula we get fn(zj) =
1

2πi

∫
φ
fn(z)
z−zj dz. There is M > 0 such that ∀n ∈ N : |fn| ≤M on ⟨φ⟩. We have

|fn(z1)− fn(z2)| =
1

2π

∣∣∣∣∫
φ

fn(z)

(
1

z − z1
− 1

z − z2

)
dz

∣∣∣∣ ≤ 2π2r

2π
M
|z1 − z2|

r2
=

2M

r
|z1 − z2| ,

where in the inequality we have used that∣∣∣∣ 1

z − z1
− 1

z − z2

∣∣∣∣ = ∣∣∣∣ z1 − z2
(z − z1)(z − z2)

∣∣∣∣ ≤ |z1 − z2|r2
.

Hence (fn) are equicontinuous on U(z0, r). So by the Arzelà-Ascoli theorem there is (fnk
) which is ⇒ on

U(z0, r).
Let us cover G by discs Uj = U(zj , rj), j ∈ N such that U(zj , rj) ⊆ G (for this we use separability of C).

Then we use a diagonal choice argument. First we choose (fn1
k
) ⊆ (fn) such that fn1

k
⇒ on U1, then we choose

(fn2
k
) ⊆ (fn1

k
) such that fnr

k
⇒ on U2 and so on. Then (fnk

k
) converges uniformly on any Uj meaning the

sequence converges locally uniformly on G.

8Stefan Banach (30 March 1892, Kraków, – 31 August 1945, Lviv, Ukrainian SSR)
9Cesare Arzelà (6 March 1847, Santo Stefano di Magra, La Spezia, Italy – 15 March 1912, Santo Stefano di Magra, Italy)

10Giulio Ascoli (20 January 1843, Trieste – 12 July 1896, Milan)
11Paul Antoine Aristide Montel (29 April 1876, Nice, France – 22 January 1975, Paris, France)
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Definition 5.5. Let E be a (complex) linear space and P be a system of seminorms on E. Then (E,P ) is called
a locally convex space (LCS). In (E,P ) we define convergence as fn → f ⇐⇒ ∀p ∈ P : p(fn − f)→ 0 (i.e. the
weakest topology such that all p ∈ P are continuous). F ⊆ E is bounded ⇐⇒ ∀p ∈ P : p(F ) is bounded. The
dual space E∗ is defined in the standard fashion.

Remark 5.6. The space C(G) is Fréchet, so is H(G) (which is closed in C(G)). The topology on C(G) is
generated by seminorms {∥·∥K : K ⊆ G compact}. U ⊆ C(G) is a neighbourhood of f ⇐⇒ ∃K ⊆ G compact
∃ε > 0: U ⊇ UK,ε(f) = {g ∈ C(G) : ∥f − g∥K < ε} ( ⇐= is obvious, =⇒ : ∃n ∈ N,K1, . . . ,Kn compacta,
ε1, . . . , εn > 0 such that U ⊇

⋂
UKj ,εj , take K =

⋃
Kj , ε = min εi).

5.2 Compacta

Let X = Rn (Cn). Then F ⊆ X is compact if and only if F is closed and bounded. Let X = H(G). Then, in
the sense of LCS, F ⊆ H(G) is bounded if and only if F is locally equibounded on G. By Montel’s theorem
(which states that F ⊆ H(G) is compact iff F is bounded and closed in the sense of LCS) we get F is compact
in H(G). Thus the above characterization holds true even in H(G). But in C(G) it fails (HW).

Our next aim is to describe the dual space H∗(G) = (H(G))∗.

5.3 Hahn-Banach theorem

Before we continue, let us quickly mention the Hahn-Banach theorem. In what follows we will consider E ∈
{H(G), C(G) : G ⊆ C open}. For more detailed information on the Hahn-Banach theorem in the setting of
general locally convex spaces see for example the lecture Functional Analysis 1.

Lemma 5.7. Let L : E → C be linear. Then L is continuous if and only if there are K ⊆ G compact and
M > 0 such that |L(f)| ≤M ∥f∥K , f ∈ E.

Proof. ⇐= : By continuity of ∥·∥K .
=⇒ : Since U :− L−1({z ∈ C : |z| < 1}) is a neighbourhood of 0 in E, there are K ⊆ G compact and ε > 0

such that U ⊃ UK,ε = {f ∈ E : ∥f∥K < ε}. Let f ∈ E. First, if ∥f∥K > 0 then
∣∣∣L( f

∥f∥K

ε
2

)∣∣∣ < 1 implying

|L(f)| < 2
ε ∥f∥K . Put M = 2

ε . Second, if ∥f∥K = 0, then ∀n ∈ N : ∥nf∥K = 0, so |L(nf)| < 1 ⇐⇒ |L(f)| <
1
n → 0.

Theorem 5.8 (Hahn12-Banach). Let A be a linear subspace of E. Then

(i) If L ∈ A∗, then there is L̃ ∈ E∗ such that L̃|A = L.

(ii) If A is closed and b ∈ E \A, then there is L ∈ E∗ such that L(b) = 1 and L|A = 0.

(iii) A = E if and only if ∀L ∈ E∗ : L = 0 on A =⇒ L = 0 on E.

Proof. (i): Use the lemma and the algebraic version of Hahn-Banach theorem.
(ii) and (iii): can be proved in the same way as for Banach spaces.

5.4 The dual space H∗(G)

In this section we consider E∗ = {L : E → C continuous and linear}. First we consider the case G = D where
D = {z ∈ C : |z| < 1}.

Theorem 5.9 (Dual of the unit disc). Let L : H(D) → C be linear. Then L ∈ H∗(D) if and only if there is
a unique (bn) ∈ CN such that lim sup

n→∞
n
√
|bn| < 1 and

L(f) =

∞∑
n=0

anbn for f(z) =

∞∑
n=0

anz
n ∈ H(D) (Q)

In addition, bn = L(zn), n ∈ N.

Proof. =⇒ : Let L ∈ H∗(D), f ∈ H(D), f(z) =
∑∞
n=0 anz

n, z ∈ D and 1

lim sup
n→∞

n
√

|an|
≥ 1. Then

L(f) = L

(
z 7→

∞∑
n=0

anz
n

)
=

∞∑
n=0

anL(z 7→ zn) =

∞∑
n=0

anbn,

12Hans Hahn (27 September 1879, Vienna, Austria-Hungary – 24 July 1934, Vienna, Austria)
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where bn = L(z 7→ zn). In the following we will often omit the ”z 7→” part of notation.
We show r :− lim sup

n→∞
n
√
|bn| < 1. For contradiction assume that r ≥ 1. If r > 1, then consider an = 1, n ∈ N0

for which
∑∞
n=0 anbn is divergent. If r = 1, there is a subsequence {bnk

} such that 0 ̸= nk

√
|bnk
| → 1. Then

putting aj = 1/bnk
for j = nk and aj = 0 otherwise, we get that

∑∞
n=0 anbn is divergent (the function f is well

defined since |
∑∞
n=0 anz

n| ≤ C |z|+
∑∞
n=n0

|anzn| ≤ C |z|+ 2
∑∞
n=n0

|z|n). Thus, a contradiction.
⇐= : Let L satisfy (Q). Pick ε > 0. We want find δ > 0 and K ⊆ G compact satisfying ∀f ∈

H(G) : ∥f∥K < δ =⇒ |L(f)| < ε. Find R < 1 and n0 ∈ N such that ∀n ≥ n0 :
n
√
|bn| < R. Pick

R < R′ < 1. Find C ≥ 1 satisfying n
√
|bn| < CR,n ∈ N. Put K = U(0, R′) and δ = ε

Cn0
∑∞

n=0( R
R′ )

n . For

f(z) =
∑∞
n=0 anz

n ∈ H(D), ∥f∥K < δ we then use Cauchy’s inequality to get

|L(f)| =

∣∣∣∣∣
∞∑
n=0

anbn

∣∣∣∣∣ ≤
∞∑
n=0

|an|max{1, Cn0}Rn
Cauchy

≤
∞∑
n=0

(
(R′)−n sup

|z|=R′
|f(z)|

)
max{1, Cn0}Rn

≤ ∥f∥K C
n0

∞∑
n=0

(
R

R′

)n
< ε.

Now we will try to find an integral form of L. For this we will use the following notation.

Notation 5.10. Let A ⊆ S. Function f is holomorphic on A if f is holomorphic on an open superset of A. Let
f1, f2 be holomorphic on A. We say that f1 ∼ f2 if there are open sets U1, U2 ⊆ S such that A ⊆ U1 ∩ U2, f1
resp. f2 is holomorphic on U1 resp. U2 and f1 = f2 on U1 ∩U2. Denote H(A) = {[f ] : f is holomorphic on A},
where [f ] is an equivalence class for ∼. As usual, we often don’t distinguish between [f ] and f .

Theorem 5.11 (Dual of the unit disc, integral form). H∗(D) ≃ H0(S \ D). In particular, L ∈ H∗(D) if and
only if

∃!λ ∈ H0(S \ D) : L(f) =
1

2πi

∫
φ

f(z)λ(z) dz, f ∈ H(D). (K)

In this case we moreover have

L(z 7→ zn) =
λ(n+1)(∞)

(n+ 1)!
, n ∈ N0 and λ(w) = L

(
z 7→ 1

w − z

)
, |w| ≥ 1.

Proof. =⇒ : Let (bn) ∈ CN satisfying r :− lim sup
n→∞

n
√
|bn| < 1 be as in the previous theorem. Define λ(z) =∑∞

n=0
bn
zn+1 , |z| > r. Of course, λ ∈ H(S \ U(0, r)), λ(∞) = 0 and bn = λ(n+1)(∞)

(n+1)! = (λ(1/z))(n+1)(0)
(n+1)! , n ∈ N0.

Here λ(k)(∞) is defined as (λ(1/z))
(k)

(0). Let R ∈ (r, 1), φ(t) = Reit, t ∈ [0, 2π]. Let f ∈ H(D) and f(z) =∑∞
n=0 anz

n, z ∈ D. Then

1

2πi

∫
φ

f(z)λ(z) dz =
1

2πi

∫
φ

( ∞∑
n=0

anz
n

)( ∞∑
n=0

bn
zn+1

)
dz =

1

2πi

∫
φ

∞∑
n,m=0

anbmz
n−m−1 dz

=

∞∑
n,m=0

anbm
1

2πi

∫
φ

zn−m−1 dz =

∞∑
n=0

anbn = L(f),

where in the second to last equality we use the fact that
∫
φ
zn−m−1 dz = 2πiδmn (Kronecker13 delta).

We have that λ ∈ H0(S \ D) :− {µ ∈ H(S \ D) : µ(∞) = 0}. Moreover, (K) holds and L(zn) = λ(n+1)(∞)
(n+1)! ,

n ∈ N0 and λ(w) = L
(

1
w−z

)
, |w| ≥ 1 because

1

w − z
=

1

w

1

1− z
w

=

∞∑
n=0

zn

wn+1
, z ∈ D =⇒ L

(
1

w − z

)
= L

( ∞∑
n=0

zn

wn+1

)
=

∞∑
n=0

bn
wn+1

.

⇐= : Is left to the reader as an exercise.

The next case we shall discuss is the case when G =
⋃n
j=1Dj , where Dj = U(zj , rj), Dj ∩Dk = ∅ for j ̸= k.

Let L ∈ H∗(G). For 1 ≤ j ≤ n put Lj(f) = L(f̃), where f̃ = f on Dj and f̃ = 0 on Dk, k ̸= j for f ∈ H(Dj).
Then

L(f) =

n∑
j=1

Lj(f |Dj
), f ∈ H(G). (1)

13Leopold Kronecker (7 December 1823, Liegnitz, Province of Silesia, Prussia – 29 December 1891, Berlin, German Empire)
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By the first case there are r̃j < rj and λj ∈ H0(S \ U(zj , r̃j)) such that

Lj(f) =
1

2πi

∫
φj

f(z)λj(z) dz, f ∈ H(Dj), φj(t) = zj +Rje
it, t ∈ [0, 2π], Rj ∈ (r̃j , rj). (2)

In addition we have Lj(z
n) =

λ
(n+1)
j (∞)

(n+1)! , n ∈ N0. If f ∈ H(G), then L(f)
(1), (2)
=

∑n
j=1

1
2πi

∫
φj
f(z)λj(z) dz.

Using the fact that
∫
φj
f(z)λk(z) dz = 0 for k ̸= j (f ·λk ∈ H(Dj), Cauchy) we get (3) L(f) =

1
2πi

∫
Γ
f(z)λ(z) dz,

where Γ = {φ1, . . . , φn} and λ =
∑n
j=1 λj . We have (4) L(zn) = λ(n+1)(∞)

(n+1)! , n ∈ N0. The conclusion is that

H∗(G) ≃ H0(S \ G). Indeed, L ∈ H∗(G) if and only if there is a unique λ ∈ H0(S \ G) such that (3) and (4)
hold.

Before continuing to the case of a general open set G, let us mention one application of the previous case.

Theorem 5.12 (Special Runge14). Let G ⊆ C be a finite union of pairwise disjoint open discs. Then for each

f ∈ H(G) there are polynomials Pn, n ∈ N such that Pn
loc

⇒ f on G.

Proof. Let P = span{(z 7→ zn) : n ∈ N} be the space of complex polynomials. Then P ⊆ H(G). Let L ∈ H∗(G)
and L = 0 on P. We know there is λ ∈ H0(S \G) such that (3) is valid. By (4) λ(n)(∞) = 0, n ∈ N0. By the
uniqueness theorem we get λ ≡ 0, so L = 0 on H(G). By the Hahn-Banach theorem then P = H(G).

Example 5.13 (Birkhoff). There is a universal entire function, i.e. f ∈ H(C) such that {τγf : γ ∈ C} = H(C),
where τγf(z) = f(z − γ).

Example 5.14. There are polynomials Pn, n ∈ N such that Pn
loc

⇒ 0 in {ℜz ≤ 0} and Pn
loc

⇒ in {ℜz >

1}. By Runge, there are polynomials Pn such that |Pn| < 1
n on U(−n2, n2 + 1

n ) and |Pn − 1| < 1
n on

U(n+ 2, n+ 2− 2
n ).

Example 5.15. LetM = {f ∈ H(D) : lim
r→1−

f(reiθ) doesn′t exist for any θ ∈ R}. If f ∈ M, then f cannot

be extended holomorphically (not even continuously) to a bigger domain. By Runge’s TheoremM ≠ ∅ and it
is known that H(D) \M is of first category (HW).

We end this section by giving the description of H∗(G) for a general G ⊆ C .

Theorem 5.16 (Description of H∗(G)). Let G ⊆ C be open. Then H∗(G) ≃ H0(S \G). Precisely:
Let L ∈ H∗(G). Then there are compact K ⊆ G and λ ∈ H0(S \K) such that

L(f) =
1

2πi

∫
Γ

f(z)λ(z) dz, f ∈ H(G),

where Γ is a cycle in G \K such that K ⊆ Int Γ ⊆ G and IndΓ z0 = 1 for z0 ∈ Int Γ.
In addition, λ is uniquely determined as an element of H0(S \G) by the properties

(a) λ(k+1)(∞)
(k+1)! = L(z 7→ zk), k ∈ N0,

(b) λ(k)(z0)
k! = −L(z 7→ 1

(z−z0)k+1 ) for z0 ∈ C \G, k ∈ N0.

Before proving the theorem, we need to do some preparatory work.

Theorem 5.17 (Cauchy’s formula for compacta). Let G ⊆ C be open and K ⊆ G be compact. Then there is
a cycle Γ in G such that K ⊆ Int Γ and ∀a ∈ Int Γ: IndΓ a = 1. In addition we have that for all f ∈ H(G) holds

(1)

∫
Γ

f = 0 and (2) ∀a ∈ Int Γ: f(a) =
1

2πi

∫
Γ

f(z)

z − a
dz .

Proof. (1) and (2) follow from the properties of Γ and Residue theorem for cycles, but we will prove them
directly.

Let 0 < δ < 1
2 dist(K, ∂G) if G ⊊ C. If G = C, set δ = 1. For m,n ∈ N let Qm,n be the closed square

with edges parallel to the axes which have the length of δ and mδ + inδ is the lower left corner. Denote
Q∗ = {Qm,n : Qm,n ∩K ̸= ∅} and U = Int

⋃
Q∗. Of course, K ⊆ U ⊆

⋃
Q∗ ⊆ G. We understand ∂Qm,n as

a positively oriented piecewise linear curve. Let Γ be the cycle given by the edges of Γ1, . . . ,Γk of squares of
Q∗, where we omit the edges which appear twice in the opposite direction. Of course, U =

⋃
Q∗ \ ⟨Γ⟩.

14Carl David Tolmé Runge (30 August 1856, Bremen, German Confederation – 3 January 1927, Göttingen, Weimar Republic)
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Let f ∈ H(G). Then ∫
Γ

f
def
=

k∑
j=1

∫
Γj

f =
∑

Qm,n∈Q∗

∫
∂Qm,n

f = 0 (N)

by Cauchy’s theorem. Γ can be viewed as a cycle. In fact, we prove the edges Γ1, . . . ,Γk form finitely many
closed simple piecewise linear curves. For 1 ≤ j ≤ k put Γj = [aj , bj ]. We’ll show that Γ has the property (p):
Every c ∈ C is the starting point of some edge of Γ as many times as it is the ending point of some such edge.

Take a polynomial P such that P (c) = 1, P (a) = 0 if a ̸= c and [a, b] ∈ Γ, P (b) = 0 if b ̸= c and [a, b] ∈ Γ
(existence as HW). By (N) we have

0 =

∫
Γ

P ′ =

k∑
j=1

∫
Γj

P ′ =

k∑
j=1

P (bj)−
k∑
j=1

P (aj),

but
∑k
j=1 P (bj) is the number of edges ending at c and

∑k
j=1 P (aj) is the number of edges starting at c.

Let L be the longest simple piecewise linear curve consisting of edges of Γ which begin with Γ1, i.e.

• L = [c1, c2, . . . , cl]
def
= [c1, c2]

·
+ [c2, c3]

·
+ · · ·

·
+ [cl−1, cl],

• Γ1 = [c1, c2], [cj−1, cj ] ∈ Γ for 3 ≤ j ≤ l,

• cj ̸= ck for j ̸= k,

• l is maximal.

Since we have (p), there is j ∈ {1, . . . , l − 2} such that [cl, cj ] ∈ Γ. Then L′ = [cj , cj+1, . . . , cl, cj ] is a closed
simple piecewise linear curve. The proper subsystem Γ′, which we get from Γ by omitting edges of L′ has again
the property (p). We proceed in the same way for Γ′ and finish after finitely many steps. Thus we can treat Γ
as a cycle.

Finally let f ∈ H(G) and a ∈ U = Int(
⋃
Q∗). Let a ∈ Int Q̃ for some Q̃ ∈ Q∗. Then

1

2πi

∫
Γ

f(z)

z − a
dz =

∑
Qm,n∈Q∗

1

2πi

∫
∂Qm,n

f(z)

z − a
dz =

∑
Qm,n∈Q∗

{
f(a), if Qm,n = Q̃ (by Cauchy)

0, Qm,n ̸= Q̃
= f(a).

Let a ∈ ∂Q̃ for some Q̃ ∈ Q∗, but a /∈ ⟨Γ⟩. We take points (aj) ∈ (Int Q̃)N such that aj → a. Then

1

2πi

∫
Γ

f(z)

z − a
dz← 1

2πi

∫
Γ

f(z)

z − aj
dz = f(aj)→ f(a),

where the left convergence follows from the continuity of the integral with respect to aj . So we have f(a) =
1

2πi

∫
Γ
f(z)
z−a dz. Now we show U = Int Γ. Let a ∈ C \ (U ∪ ⟨Γ⟩). Then a ∈ C \

⋃
Q∗. As previously, we show

IndΓ a = 0. If a ∈ U , then by the calculation above we get IndΓ a = 1.

Lemma 5.18 (“Fubini15”). Let K1,K2 ⊆ C be compact, Lj ∈ C(Kj)
∗, j = 1, 2 and F ∈ C(K1 ×K2). Then

L1(z 7→ L2(w 7→ F (z, w))) = L2 (w 7→ L1 (z 7→ F (z, w))) . (B)

Sketch of proof. Obviously (B) holds for functions of the form F (z, w) = f(z)g(w) for f ∈ C(K1), g ∈ C(K2).
Now we can use the Stone-Weierstraß theorem which implies that

span{(z, w) 7→ f(z)g(w) : f ∈ C(K1), g ∈ C(K2)} = C(K1 ×K2).

Lemma 5.19 (Hole filling). Let G ⊆ C be open and K ⊆ G compact. There is a compact K1 such that
K ⊆ K1 ⊆ G and each component of S \K1 contains some component of S \G.

Proof. Take n ∈ N such that K1 = {z ∈ G : dist(z,C \ G) ≥ 1
n} ∩ U(0, n) ⊃ K. We have S \ K1 =⋃

z0∈S\G U(z0,
1
n ). Let V be a component of S \ K1. There is a point z0 ∈ S \ G such that U(z0,

1
n ) ⊆ V .

If W is a component of S \G containing z0, then W ⊆ V .

15Guido Fubini (19 January 1879, Venice – 6 June 1943, New York)
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Proof of theorem 5.16. Let L ∈ H∗(G). We show there is a compact K ⊆ G and L1 ∈ C(K)∗ such that
L(f) = L1(f |K), f ∈ H(G). From Lemma 5.7 we know that there are compact K ⊆ G and M ∈ (0,∞) such

that ∀f ∈ H(G) : |L(f)| ≤ M ∥f∥K . By the Hahn-Banach theorem (5.8) we can extend L as L̃1 ∈ C(G) such
that L = L̃1|H(G) and

∣∣∣L̃1(f)
∣∣∣ ≤M ∥f∥K , f ∈ C(G). For each f ∈ C(K) we define

L1(f) :− L̃1(f̃), where f̃ ∈ C(G) and f̃ |K = f.

The definition is correct, because by Tietze theorem ∀f ∈ C(K) ∃f̃ ∈ C(G) : f̃ |K = f and if f̃1, f̃2 ∈ C(G), f̃1 =

f̃2 on K, we have |L1(f1)− L1(f2)| ≤ M ∥f1 − f2∥K = 0. Note that by the Riesz representation, for each
L1 ∈ C∗(K) there is a unique complex Borel measure µ on K such that L1(f) =

∫
K
fdµ, f ∈ C(K).

By the Cauchy theorem for compacta (5.17), there is a cycle Γ in G such that K ⊆ Int Γ ⊆ G, ∀a ∈
Int Γ: IndΓ a = 1 and for each f ∈ H(G) holds f(z) = 1

2πi

∫
Γ
f(w)
w−z dw, z ∈ K. Denote

L2(g) =
1

2πi

∫
Γ

g(w) dw, g ∈ C(⟨Γ⟩) and F (z, w) =
f(w)

w − z
∈ C(K × ⟨Γ⟩).

Of course, L2 ∈ C(⟨Γ⟩)∗ and f(z) = L2(w 7→ F (z, w)), z ∈ K.

For a given f ∈ H(G), L(f) = L1(f |K) = L1(z 7→ L2(F (z, ·)))
L 5.18
= L2(w 7→ L1(F (·, w))), hence L(f) =

1
2πi

∫
Γ
f(w)λ(w) dw where λ(w) = L1(z 7→ 1

w−z ), w ∈ C \K. We want to show that λ ∈ H0(S \K) satisfies (a),
(b).

(a): Let U(∞, ε) = {z ∈ C : |z| > 1
ε} ∪ {∞} ⊆ S \K. in particular, ∀z ∈ K : |z| ≤ 1

ε . For u ∈ P (0, ε) we
have

λ

(
1

u

)
= L1

(
z 7→ u

1− uz

)
= L1

(
z 7→

∞∑
k=0

zkuk+1

)
⇒
=

∞∑
k=0

uk+1L1(z 7→ zk),

hence λ(∞) = 0, ∀k ∈ N0 :
λ(k+1)(∞)

(k+1)! = L1(z 7→ zk). The sum on the right hand side converges for small enough

ε since there is R > 0 such that K ⊆ U(0, R) and

∣∣L1(z 7→ zk)
∣∣ ≤M ∥∥z 7→ zk

∥∥
K

=M

(
max
z∈K
|z|k
)

=MRk.

(b): Let U(w0, ε) ⊆ C \K. Then ∀w ∈ U(w0, ε) : λ(w) = L1(
1

w−· ).

∀z ∈ K :
1

w − z
=

1

(w − w0)− (z1 − w0)
= − 1

z − w0

1

1− w−w0

z−w0

= −
∞∑
k=0

(w − w0)
k

(z − w0)k+1
,

which implies

λ(z2) = −L1

(
z1 7→

∞∑
k=0

(w − w0)
k

(z − w0)k+1

)
⇒
= −

∞∑
k=0

(w − w0)
kL1

(
z 7→ 1

(z − w0)k+1

)
.

Hence λ(k)(w0)
k! = −L1

(
z 7→ 1

(z−w0)k+1

)
, k ∈ N0.

Let λ1, λ2 ∈ H0(S \G) satisfy (a), (b). Then there is a compact K ⊆ G such that λ1, λ2 ∈ H0(S \K). By
Lemma 5.19, without loss of generality assume that each component V of S \K intersects S \G. We will show
λ1 = λ2 on S \K. Let V be any component of S \K. Then there is z0 ∈ V ∩ (S \G) ̸= ∅. By (a), (b) we have

λ
(k)
1 (z0) = λ

(k)
2 (z0), k ∈ N0. By the uniqueness theorem λ1 = λ2 on the domain V . So λ1 = λ2 on S \K.

6 Runge’s theorem

Notation 6.1. Let E ⊆ S and m : E → N ∪ {∞}. We call m(e) the multiplicity of e ∈ E. We say that (E,m)
has a limit point e ∈ S if e is a limit point of E or (e ∈ E and m(e) =∞).

Denote by F(E,m) the smallest system of functions which contains:

(i) z 7→ 1
z−e if e ∈ E ∩ C,m(e) <∞,

(ii) z 7→ 1
(z−e)k , k ∈ N if e ∈ E ∩ C,m(e) =∞,

(iii) z 7→ zk, k ∈ N0 if ∞ ∈ E,m(∞) =∞.
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Theorem 6.2 (Runge, modern formulation). Let G ⊆ C be open, E ⊆ S \G and m : E → N ∪ {∞}. If (E,m)
has a limit point in every component of S \G, then span F(E,m) = H(G).

Proof. We will use the Hahn-Banach theorem (5.8). Let L ∈ H∗(G) and L = 0 on F(E,m). We need to show
L = 0 on H(G). Let λ ∈ H0(S \ G) represent L in the sense of previous chapter. If e ∈ E ∩ C,m(e) < ∞,

then λ(e) = −L( 1
z−e ) = 0. If e ∈ E ∩ C,m(e) = ∞, then λ(k)(e)

k! = −L
(

1
(z−e)k

)
= 0, k ∈ N0. If ∞ ∈ E and

m(∞) =∞, then λ(k+1)(∞)
(k+1)! = L(zk) = 0, k ∈ N0. We show λ = 0 in H0(S \G). There is a compact set K ⊆ G

such that (i) λ ∈ H0(S \K) and (ii) every component of S \K contains some component of S \G. Let V be any
component of S \K. Then V is a domain and by (ii) V contains a limit point e of (E,m). By the uniqueness
theorem we get λ = 0 on V (either zero points of λ have a limit point or at some point λ has all coefficients in
its sum representation equal zero) and so on S \K.

Theorem 6.3 (Runge, classical formulation). Let G ⊆ C be open, and let f ∈ H(G).

(a) Then there are rational functions Rn, n ∈ N with poles outside G such that Rn
loc
⇒ f on G.

(b) If, in addition, S \G is connected, there are polynomials Pn, n ∈ N such that Pn
loc
⇒ f on G.

Proof. (a): Let E ⊆ S \ G contain at least one point of every component of S \ G. Put m ≡ ∞ on E. Then
spanF(E,m) is a dense subset of rational functions with poles outside of G.

(b): Let E = {∞}, put m(∞) =∞. Then F(E,m) = {z 7→ zk : k ∈ N0}. Hence polynomials are dense.

Theorem 6.4 (Cauchy, for simply connected domains). Let G ⊆ C be open and S\G be connected. If f ∈ H(G)
and φ is a closed regular curve in G, then

∫
φ
f = 0.

Proof. By Runge’s theorem (6.3), there are polynomials Pn such that Pn
loc

⇒ f on G. Then
∫
φ
Pn →

∫
φ
f , but

the former integrand has a primitive function and thus the integral is zero.

Theorem 6.5 (Cauchy, for cycles). Let G ⊆ C be open and Γ be a cycle in G (i.e. ⟨Γ⟩ ⊆ G). Then
∫
Γ
f = 0

for each f ∈ H(G) if and only if Int Γ ⊆ G.

Proof. =⇒ : If z0 ∈ C \G, then f(z) = 1
z−z0 ∈ H(G) and the condition implies that IndΓ z0 = 1

2πi

∫
Γ
f = 0.

⇐= : Let f ∈ H(G). Then by Runge’s theorem (6.3), there are rational functions Rn with poles outside of

G such that Rn
loc

⇒ f . Then
∫
Γ
Rn →

∫
Γ
f . We prove the former integrals are zero.

Let Γ = {φ1, . . . , φk}, where φj are closed regular curves in G. Then∫
Γ

Rn =

k∑
j=1

∫
φj

Rn
Residue thm

=

m∑
j=1

2πi
∑

Rn(s)=∞

ressRn · Indφj
s = 2πi

∑
Rn(s)=∞

ressRn · IndΓ s = 0.

In the computation we have used the Residue theorem for star-like domains in C and the fact that IndΓ s = 0
for s /∈ G.

Theorem 6.6 (Runge, for compacta). Let K be a compact in C and let S ⊆ S \K contain at least one point
of any component of S \ K. Let f ∈ H(K). Then there are rational functions Rn with poles in S such that
Rn ⇒ f on K.

For the proof we will use the technique known as pushing poles.

Recall 6.7. Each rational function R can be uniquely expressed in the following form:

R(z) =

n∑
k=1

nk∑
j=1

Akj
(z − zk)j

+ C0 + C1z + · · ·+ Cmz
m,

where the first summand is the principal part of Laurent expansion around the pole zk and the rest is the
principal part of Laurent expansion around the pole ∞, n,m ∈ N0, zk ∈ C and Aknk

̸= 0, Cm ̸= 0. Then zk is
a pole of the function R of multiplicity of nk and ∞ is a pole of R of multiplicity m.

A rational function is a polynomial if and only if R has a pole at most at ∞.

Notation 6.8. Let K be a compact in C, U ⊆ S and U ∩ K = ∅. Define the function space B(K,U) =
{R|K : R rational function with poles in U}. Here, the closure is taken with respect to the topology of C(K).

Theorem 6.9 (Pushing poles). Let K be a compact in C, U ⊆ S be a domain, K ∩ U = ∅ and z0 ∈ U . If R is
a rational function with poles in U , then R ∈ B(K, {z0}).
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Remark 6.10. By the theorem we have B(K,U) = B(K, z0) (= B(K, {z0})). This follows from the fact that
any rational function with poles in U can be approximated by rational functions with a pole at just z0.

Proof. Put V = {ξ ∈ U : (z 7→ 1
z−ξ ) ∈ B(K, z0) if ξ ∈ C; (z 7→ z) ∈ B(K, z0) if ξ = ∞}. B(K,U) is a closed

subalgebra of C(K) (HW).
First we show that B(K, z0) = B(K,V ). Indeed, if ξ ∈ V , then 1

z−ξ ∈ B(K, z0) for ξ ∈ C. Since B(K, z0)

is an algebra, 1
(z−ξ)k ∈ B(K, z0) for ξ ∈ C, k ∈ N. Also zk ∈ B(K, z0) for ξ = ∞. Then each rational R with

poles in V is contained in B(K, z0). Hence B(K,V ) ⊆ B(K, z0). Since z0 ∈ V , we have B(K, z0) ⊆ B(K,V ).
Now we will prove that V is closed in U . Let ξn ∈ V, n ∈ N, ξn → ξ0 ∈ U . We need to show that ξ0 ∈ V .

Without loss of generality assume that ξn ∈ C, n ∈ N. First, let ξ0 ∈ C. Then put δ = dist(ξ0,K) > 0. Choose
n0 ∈ N such that dist(ξn,K) ≥ δ/2 for n > n0. Then

1
z−ξn ⇒ 1

z−ξ0 for z ∈ K, because∣∣∣∣ 1

z − ξn
− 1

z − ξ0

∣∣∣∣ = |ξn − ξ0|
|z − ξn| |z − ξ0|

≤ 4

δ2
|ξn − ξ0| → 0

if n > n0 and z ∈ K. Hence 1
z−ξ0 ∈ B(K, z0), so ξ0 ∈ V .

Second, let ξ0 = ∞. Then ξnz
ξn−z = −ξn

(
ξn
z−ξn + 1

)
∈ B(K, z0) since B(K, z0) is an algebra. Take C > 0

with |z| ≤ C for any z ∈ K. Take n0 ∈ N such that |ξn| > C for any n > n0. Then ξnz
ξn−z ⇒ z for z ∈ K,

because ∣∣∣∣ ξnz

ξn − z
− z
∣∣∣∣ = |z|2

|ξn − z|
≤ C2

|ξn| − C
→ 0

for n > n0 and z ∈ K. Hence z ∈ B(K, z0) and thus ∞ ∈ V .
The next step is to show that V is open. Let ξ0 ∈ V . Again, first we assume ξ0 ∈ C. Put δ = dist(ξ0,K) > 0.

Let ξ ∈ U(ξ0, δ/2). Then

1

z − ξ
=

1

(z − ξ0)− (ξ − ξ0)
=

1

z − ξ0
1

1− ξ−ξ0
z−ξ0

=

∞∑
k=0

(ξ − ξ0)k

(z − ξ0)k+1

for
∣∣∣ ξ−ξ0z−ξ0

∣∣∣ < 1. The sum converges uniformly because∣∣∣∣ (ξ − ξ0)k

(z − ξ0)k+1

∣∣∣∣ ≤ (δ/2)k

δk+1
=

1

δ2k

for z ∈ K and k ∈ N. Hence 1
z−ξ ∈ B(K, ξ0) ⊆ B(K,V ) = B(K, z0) and so U(ξ0, δ/2) ⊆ V .

Second, we let ξ0 = ∞. Take C > 0 such that |z| ≤ C for any z ∈ K. Let ξ ∈ C with |ξ| > 2C. Then
1
z−ξ = − 1

ξ
1

1−z/ξ = −
∑∞
k=0

zk

ξk+1 converges uniformly for z ∈ K because∣∣∣∣ zkξk+1

∣∣∣∣ ≤ Ck

(2C)k+1
=

1

C2k+1

for z ∈ K and k ∈ N0. Hence 1
z−ξ ∈ B(K,∞) ⊆ B(K, z0), so U

(
ξ0,

1
2C

)
⊆ V .

To finish the proof, we realize that V = U , because V is a non-empty clopen subset of the domain U .

Proof of Runge’s theorem for compacta. Let f be a holomorphic function on an open set G ⊃ K. Using Runge’s
theorem for open sets (6.3) there are rational functions R̃n, n ∈ N with poles outside G such that R̃n ⇒ f on

K. It is enough to show that R̃n ∈ B(K,S), because then we have f ∈ B(K,S).

Fix n ∈ N. All poles of R̃n are contained in finitely many components C1, . . . , Ck of S \ K. Express

R̃n = Q̃1 + · · ·+ Q̃k where Q̃j is a rational function with poles in the domain Cj . For each j ∈ {1, . . . , k} take
sj ∈ S ∩ Cj . By pushing poles we have that Q̃j ∈ B(K, sj). For a given ε > 0 and j ∈ {1, . . . , k} there is a

rational function Qj with a pole at sj such that
∣∣∣Qj − Q̃j∣∣∣ ≤ ε/k on K. Put Rn = Q1 + · · · + Qk ∈ B(K,S).

Then
∣∣∣Rn − R̃n∣∣∣ ≤ ε on K. Hence R̃n ∈ B(K,S).

7 Characterization of simple connectedness

Recall 7.1. A domain G ⊆ C is called simply connected if S \ C is connected.

We will start by introducing the notion of homotopic loops and proving some of their basic properties. This
will allow us to later give “the right” topological definition of simple connectedness. Without loss of generality
we can assume that all curves are defined on the interval [0, 1] (otherwise we can take a linear reparametrisation).
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Definition 7.2. Let G ⊆ C be open. A continuous closed curve φ : [0, 1]→ G is called a loop in G. We say that
two loops φ,ψ are homotopic (in G) if there is a continuous map H : [0, 1]2 → G such that for φs(t) :− H(s, t)
holds φ0 = φ, φ1 = ψ and φs(0) = φs(1), s ∈ [0, 1].

Remark 7.3. Here φs are “continuous deformations” of φ onto ψ.

Example 7.4. If G ⊆ C is a star-like domain, then every loop in G is homotopic to a constant loop.

Proof. Indeed, let z0 ∈ G be such that for each z ∈ G the line segment [z, z0] ⊆ G. Let φ be a loop in G. Then
φ is homotopic to the constant loop ψ(t) = z0, t ∈ [0, 1] because we can take H(s, t) = sz0 + (1− s)φ(t).

Fact 7.5. Let Ω ⊆ C be open and let every loop in Ω be homotopic to a constant loop. If G ⊆ C is homeomorphic
to Ω, then G has this property as well.

Proof. Let h be a homeomorphism of G onto Ω. Let φ be a loop in G. Then φ̃ :− h ◦φ is homotopic in Ω with
a constant loop (with H̃), and so is φ (with H :− h−1 ◦ H̃).

Let φ : [0, 1] → C be a loop and z0 ∈ C \ ⟨φ⟩. There are regular closed curves φn : [0, 1] → C such that
φn ⇒ φ. Indeed, using the uniform continuity of φ, φ can be uniformly approximated by piecewise linear
closed curves with vertices on φ given by sufficiently fine partition of [0, 1]. Define Indφ z0 = lim

n→∞
Indφn z0.

By Lemma 2.2, the definition is correct because there is n0 ∈ N such that Indφn
z0 are constant for n ≥ n0

and Indφ z0 does not depend on the choice of {φn}. Alternatively one could use a continuous branch of the
argument of φ.

Theorem 7.6. Let φ,ψ be two loops homotopic in an open set G ⊆ C . Then Indφ z0 = Indψ z0 for any
z0 ∈ C \G.

Proof. First we show that Lemma 2.2 holds for loops as well. Indeed, let loops φ1, φ2 satisfy the condition from
the lemma. Then there are φ̃1, φ̃2 which are regular, satisfy the assumptions of the Lemma and Indφj z0 =
Indφ̃j

z0, j = 1, 2.
Let H : [0, 1]2 → G be continuous mapping such that φ0 = φ,φ1 = ψ and φs(0) = φs(1), s ∈ [0, 1], where

φs(t) = H(s, t). Put ε = dist(z0, H([0, 1]2)) > 0 (H([0, 1]2) is a compact set). Since H is uniformly continuous,
there is n ∈ N such that for each k = 0, . . . , n− 1 and t ∈ [0, 1] we have∣∣∣φ k

n
(t)− φ k+1

n
(t)
∣∣∣ = ∣∣∣∣H (kn, t

)
−H

(
k + 1

n
, t

)∣∣∣∣ < ε.

In particular, φ k
n
and φ k+1

n
satisfy the assumptions of Lemma 2.2. Hence

Indφ0
z0 = Indφ 1

n

z0 = Indφ 2
n

z0 = · · · = Indφ1
z0.

Theorem 7.7. Let G ⊆ C be open. Then the following statements are equivalent:

(SC1) If φ is a closed (regular) curve in G, then Intφ ⊆ G.

(SC2) S \ C is connected.

(SC3) ∀f ∈ H(G) ∃ polynomials Pn : Pn
loc
⇒ f on G.

(SC4) ∀f ∈ H(G) :
∫
φ
f = 0, where φ is an arbitrary closed regular curve.

(SC5) ∀f ∈ H(G) ∃F ∈ H(G) : F ′ = f on G.

(SC6) ∀f ∈ H(G), f ̸= 0 on G ∃g ∈ H(G) : f = eg on G.

(SC7) ∀f ∈ H(G), f ̸= 0 on G ∃h ∈ H(G) : f = h2 on G.

(SC8) Every loop φ in G is homotopic in G to a constant loop. (”Every loop in G can be shrinked inside G into
a point”).

18
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Proof. (SC1) =⇒ (SC2): Assume that S\G is not connected. Then there are disjoint closed sets ∅ ≠ K,L ⊆ S
such that S \ G = K ∪ L. Without loss of generality ∞ /∈ K. Then K is a compact in the complex plane,
G0 :− G∪K is open in C (C\G0 = L) and, by Theorem 5.17 there is a cycle Γ in G0 such that K ⊆ Int Γ ⊆ G0.
Let z0 ∈ K. Since IndΓ z0 ̸= 0, there is φ ∈ Γ with Indφ z0 ̸= 0. Of course, z0 ∈ (C \G) ∩ Intφ.

(SC2) =⇒ (SC3): Proof is the same as for the classical version of Runge’s theorem 6.3.
(SC3) =⇒ (SC4): See the proof of Cauchy theorem for simply connected domains 6.4.
(SC4) ⇐⇒ (SC5): We know from Introduction to Complex analysis.
(SC5) =⇒ (SC6): See the proof of Proposition 4.3.

(SC6) =⇒ (SC7): Put h = e
1
2 g.

(SC7) =⇒ (SC8): Let φ be a loop in G. Let G0 be a component of G containing ⟨φ⟩. If G0 = C, then
by Example 7.4, φ is homotopic to a constant loop. If G0 ⊊ C, then G0 is a non-trivial proper subdomain of
C which also satisfies the condition (SC7). By Riemann’s theorem 8.1, G0 is homeomorphic to the unit disc,
which satisfies the condition (SC8) by Example 7.4 and so we can conclude using Fact 7.5.

(SC8) =⇒ (SC1): Of course, every constant loop ψ has Intψ = ∅. Hence this implication follows from
Theorem 7.6.

8 The Riemann theorem

In this section we will prove the Riemann theorem. This is probably the most important result proved on this
lecture.

Theorem 8.1 (Riemann). Let ∅ ≠ G ⊊ C be a domain such that ∀f ∈ H(G), f ̸= 0 on G ∃h ∈ H(G) : h2 = f
on G. Then there is a holomorphic bijection f : G→ D.

Remark 8.2.

(i) f−1 : D onto→ G is conformal.

(ii) The condition we require of G is exactly condition (SC7) from the characterization of simple connectedness
(Theorem 7.7). By this, we finish the proof of said theorem.

Theorem 8.3 (Schwartz16 lemma). Let f ∈ H(D), f(D) ⊆ D, and f(0) = 0. Then

(i) |f(z)| ≤ |z|, z ∈ D,

(ii) |f ′(0)| ≤ 1.

If equality occurs in (i) for some z ∈ D \ {0} or in (ii), then f is a rotation, i.e. f(z) = λz, z ∈ D for some
λ ∈ SC.

Proof. Put g(z) = f(z)
z , z ∈ D \ {0}, g(0) = f ′(0). Note that g ∈ H(D). Let 0 < r < 1. Then |g(z)| ≤ 1

r , |z| = r.
By the maximum modulus theorem we get (p) |g(z)| ≤ 1

r , |z| ≤ r. Let z ∈ D. For r ∈ (1− δ, 1) for some δ small
enough, we have (p) and letting r → 1− we obtain |g(z)| ≤ 1. If |g(z)| = 1 for some z ∈ D, then by maximum
modulus theorem g is constant on D.

Lemma 8.4. For α ∈ D put φα(z) =
z−α
1−αz . Then

(i) φα is one-to-one and φ−1
α = φ−α,

(ii) φα ∈ H(C \ { 1α}), φα(D) = D, φα(T) = T, where T = {z ∈ C : |z| = 1},

(iii) φα(α) = 0, φ′
α(α) =

1
1−|α|2 , φα(0) = 1− |α|2.

Proof. (i):

w =
z − α
1− αz

w − αwz = z − α
w + α = z(1 + αw)

z =
w + α

1 + αw
= φ−α(w)

16Laurent-Möıse Schwartz (5 March 1915, Paris – 4 July 2002, Paris)
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(ii): If z ∈ T, then using 1 = |z|2 = zz we get

|φα| =
∣∣∣∣ z − α1− αz

∣∣∣∣ = ∣∣∣∣ z − αzz − αz

∣∣∣∣ = |z − α|
|z − α| |z|

= 1.

Hence φα(T) ⊆ T. The same is true for φ−1
α = φ−α, so φα(T) = T. By the fact φα(T) = T and maximum

modulus principle, we get φ−α(D) ⊆ D, so φα(D) = D.
(iii):

φ′
α(α) = lim

z→α

φα(z)

z − α
=

1

1− |α|2
and φ′

α(0) =
1− αz + (z − α)α

(1− αz)2

∣∣∣∣
z=0

= 1− |α|2 .

Theorem 8.5 (Conformal transformations of D). A fucntion f is conformal map of D onto D if and only if
there are θ ∈ R and α ∈ D such that f(z) = eiθ z−α1−αz , z ∈ D.

Proof. ⇐= : Follows from the previous lemma.
=⇒ : Let α ∈ D and f(α) = 0. Then g :− f ◦ φ−α is a conformal map of D onto D and g(0) = 0. By

the Schwartz lemma (8.3), for z ∈ D we have |g(z)| ≤ |z|,
∣∣g−1(z)

∣∣ ≤ |z|, so |g(z)| = |z|. By Schwartz, g is
a rotation.

Lemma 8.6 (Schwartz-Pick17). Let F ∈ H(D), F (D) ⊆ D and F (α) = β. Then |F ′(α)| ≤ 1−|β|2

1−|α|2 . If equality

occurs, then F (z) = φ−β(λφα(z)), z ∈ D for some λ ∈ T. In particular, |F ′(0)| < 1 unless F is a rotation.
Here φα are mappings defined in the previous lemma.

Proof. Use the Schwartz lemma (8.3) for the function f :− φβ ◦F ◦φ−α to obtain |f ′(0)| ≤ 1 and use Lemma 8.4
to calculate

f ′(0) = φ′
β(β) · F ′(α) · φ′

−α(0) =
1

1− |β|2
· F ′(α) · (1− |α|2) =⇒ |F ′(α)| =

∣∣∣∣∣1− |α|21− |β|2
f ′(0)

∣∣∣∣∣ ≤ 1− |α|2

1− |β|2
.

If α = 0 = β and F is not a rotation, then |F ′(0)| < 1.

Proof of the Riemann theorem. Let ∅ ≠ G ⊊ C be a domain with (SC7). Take a point z0 ∈ G. Denote by Σ
the set of all conformal mappings ψ : G→ D. Then we have:

(i) Σ ̸= ∅,

(ii) If ψ ∈ Σ and ψ(G) ̸= D, then there is ψ̃ ∈ Σ such that
∣∣∣ψ̃′(z0)

∣∣∣ > |ψ′(z0)|.

We defer the proof of these properties to the end of this proof.
Put η = sup{|ψ′(z0)| : ψ ∈ Σ}. Take ψ ∈ Σ. Since ψ is one-to-one, we have ψ′(z0) ̸= 0 and hence η > 0. By

the definition of η there are ψn ∈ Σ, n ∈ N such that |ψ′
n(z0)|

n→∞→ η. Since ψn, n ∈ N are uniformly bounded,

by the Montel theorem (5.4) there is a subsequence {ψnk
} such that ψnk

loc

⇒ f on G. By the Weierstraß theorem,
f ∈ H(G) and |f ′(z0)| = η ∈ (0,∞). Since f is not constant, the Hurwitz theorem (2.17) implies that f is
one-to-one. Of course, f(G) ⊆ D, but by openness of f we have f(G) ⊆ D. Hence f ∈ Σ and by the second
property f(G) = D.

Now we prove the properties (i) and (ii).
(i): Let w0 ∈ C \G. Then by (SC7) there is φ ∈ H(G) such that z −w0 = φ2(z), z ∈ G. If φ(z1) = ±φ(z2),

then z1 = z2: Indeed, z1 − w0 = φ2(z1) = φ2(z2) = z2 − w0. So φ is one-to-one and (×) 0 ̸= w ∈ φ(G) =⇒
−w /∈ φ(G). Since ∅ ̸= φ(G) is open, there is 0 /∈ U(a, r) ⊆ φ(G). By (×), we have U(−a, r) ∩ φ(G) = ∅, i.e.
|φ(z) + a| ≥ r, z ∈ G. Put ψ = r

2(φ(z)+a) , z ∈ G. Then |ψ| ≤
1
2 on G, so ψ ∈ Σ.

(ii): Pick ψ ∈ Σ and α ∈ D \ ψ(G). Consider the map φα(z) = z−α
1−αz , z ∈ D. Then φα ◦ ψ ∈ Σ and

φα ◦ ψ ̸= 0 on G. By (SC7) there is g ∈ H(G) such that (1) φα ◦ ψ = g2 on G. Then g is one-to-one, because
g(z1) = g(z2) =⇒ φα ◦ ψ(z1) = φα ◦ ψ(z2) =⇒ z1 = z2. Hence g ∈ Σ.

Denote β :− g(z0) and put (2) ψ̃ = φβ ◦ g. Of course, ψ̃ ∈ Σ and ψ̃(z0) = 0. Denoting s(w) :− w2, w ∈ C,
we have by (1) and (2) that (3) ψ = (φ−α ◦ s ◦ φ−β) ◦ ψ̃ = F ◦ ψ̃, where F = φ−α ◦ s ◦ φ−β . We have
F ∈ H(D), F (D) ⊆ D and F is not a rotation (because F is not one-to-one). By the Schwartz-Pick lemma (8.6),

we have |F ′(0)| < 1. Since ψ′(z0) = F ′(0)ψ̃′(z0), we have 0 < |ψ′(z0)| <
∣∣∣ψ̃′(z0)

∣∣∣.
17Georg Alexander Pick (10 August 1859, Vienna, Austria-Hungary – 26 July 1942, Theresienstadt concentration camp,

Czechoslovakia)
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Definition 8.7. Let G ⊆ S be open. We say that f : G→ S is a conformal map if f is one-to-one meromorphic
on G.

Remark 8.8. For meromorphic functions we always assume that f =∞ on the set Pf of its poles.

Definition 8.9. Let Ω, G ⊆ S be open. We say that G and Ω are conformally equivalent (we write G ∼ Ω) if

there is a conformal map f : G
onto→ Ω. This relation is an equivalence (note that conformal mapping onto is

a meromorphic bijection).

Example 8.10. As HW, show that there are just 4 classes of conformally equivalent simply connected domains
in S, namely

(i) ∅,

(ii) S,

(iii) [C] = {S \ {z0} : z0 ∈ S},

(iv) [D] consists of the rest (Riemann’s theorem).

Proof. No two of these sets are conformally equivalent. This is clear for the empty set. S is compact and
conformally equivalent sets are homeomorphic. By Liouville theorem C ̸∼ D. To show S \ {z0} ∈ [C] use the
transformation z 7→ 1

z−z0 .

Remark 8.11. Let G,Ω ⊆ C be open. Then a one-to-one map f : G
onto→ Ω is

• conformal if and only if f and f−1 are both holomorphic;

• diffeomorphism if and only if f and f−1 are continuously differentiable;

• homeomorphism if and only if f and f−1 are both continuous.

We know conformal =⇒ diffeomorphism =⇒ homeomorphism.

9 Preservation of angles

Definition 9.1. For z ∈ C \ {0} put A(z) = z
|z| .

Definition 9.2. Let G ⊆ C be open, f : G→ C, z0 ∈ G and P (z0) ⊆ G be such that ∀z ∈ P (z0) : f(z) ̸= f(z0).
Then we say that f preserves angles (and orientation) at z0 if

∀θ ∈ R : (R) :− lim
r→0+

e−iθA
(
f(z0 + reiθ)− f(z0)

)
∈ C exists and is independent of θ.

Example 9.3. f(z) = z (reflection along the real axis) fails the previous condition, but preserves angles. Hence
the note in the definition regarding orientation.

Example 9.4. Let f be a non-constant holomorphic function in a neighbourhood U(z0) of the point z0. Then
there is p ∈ N such that

f(z) = f(z0) + ap(z − z0)p + · · · , z ∈ U(z0), with ap =
f (p)(z0)

p!
̸= 0.

Then the limit from the definition can be calculated as follows:

(R) = lim
r→0+

e−iθ
apr

peipθ + · · ·
|aprpeipθ + · · ·|

=
ap
|ap|

eiθ(p−1), θ ∈ R.

Conclusion: Such f preserves angles at z0 iff f ′(z0) ̸= 0; in which case the limit is equal to f ′(z0)/ |f ′(z0)|.

Notation 9.5. Let f : R2(C)→ R2(C) have the total differential df(z0) at z0 ∈ R2 = C, i.e.

lim
h→0

f(z0 + h)− f(z0)− df(z0)h
|h|

= 0.

Then df(z0)h = ∂f
∂x (z0)h1+

∂f
∂y (z0)h2, h = (h1, h2) = h1+ih2 ∈ R2 = C. We have h1 = (h+h)/2, h2 = (h−h)/2i

and

df(z0)h = ∂f(z0)h+ ∂f(z0)h, where
∂f(z0) =

1
2

(
∂f
∂x (z0)− i

∂f
∂y (z0)

)
,

∂f(z0) =
1
2

(
∂f
∂x (z0) + i∂f∂y (z0)

)
.

The Cauchy-Riemann theorem states that f ′(z0) exists iff df(z0) exists and ∂f(z0) = 0; in this case f ′(z0) =
∂f(z0).
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Example 9.6. Let f have the total differential df(z0) at z0 ∈ C and df(z0) ̸= 0. We have df(z0)h = αh+βh, h ∈
C with α = ∂f(z0) ̸= 0 or β = ∂f(z0) ̸= 0. Then for θ ∈ R we have

(R) = lim
r→0+

e−iθ
df(z0)(re

iθ) + o(r)

|df(z0)(reiθ) + o(r)|
= e−iθ

df(z0)(e
iθ)

|df(z0)(eiθ)|
=

α+ βe2iθ

|α+ βe2iθ|

if df(z0)(e
iθ) ̸= 0. There are three possible cases:

(i) α = 0, β ̸= 0: (R) depends on θ,

(ii) α ̸= 0, β = 0: (R) = α
|α| ,

(iii) α ̸= 0, β ̸= 0: (R) depends on θ (HW).

Conclusion: Such f preserves angles at z0 iff f ′(z0) exists and f
′(z0) ̸= 0.

By Examples 9.4 and 9.6 we get

Theorem 9.7. Let G,Ω ⊆ C be open. Then f : G
onto→ Ω is conformal if and only if f is a diffeomorphism of G

onto Ω preserving angles at any point of G.

Example 9.8. f(z) = z |z| preserves angles at 0, f ′(0) = 0 = df(0), but f is not holomorphic at any neigh-
bourhood of 0.

9.1 Examples of conformal mappings

Example 9.9. f : S onto→ S is conformal iff

f(z) =
az + b

cz + d
for some a, b, c, d with ad− bc ̸= 0.

Note that ad− bc = det

(
a b
c d

)
= 0 implies f is constant or not well-defined.

⌜ ⇐= is obvious, =⇒ : Since f ∈M(S), f = P
Q rational. Since f is one-to-one, f has just one simple zero

point and one simple pole. ⌟

Example 9.10. By Theorem 8.5 we know that f : D onto→ D is conformal iff there are θ ∈ R and α ∈ D such
that f(z) = eiθ z−α1−αz , z ∈ D.

Example 9.11. f : C onto→ C is conformal iff there are a, b ∈ C, a ̸= 0 such that f(z) = az + b, z ∈ C.
⌜ ⇐= ✓, =⇒ : At ∞ f has an isolated singularity which is not essential. Actually, lim

z→∞
f(z) =∞. Hence

f : S onto→ S and f(∞) =∞. ⌟

10 Linear fractional transformations

Definition 10.1. We say that f : S→ S is a linear fractional transformation if

f(z) =
az + b

cz + d
for some a, b, c, d with ad− bc ̸= 0. (LFT)

Proposition 10.2. The set M2 of all LFT’s endowed with composition forms a group, called the Möbius18

group. The Möbius group is generated by transformations of the following types:

• translation: z 7→ z + b, b ∈ C,

• rotation: z 7→ az, |a| = 1,

• homotheties: z 7→ rz, r > 0,

• inversions: z 7→ 1
z .

Proof. For A =

(
a b
c d

)
∈ C2×2,detA ̸= 0 put fA(z) =

az+b
cz−d . Then fE = Id, fA · fA′ = fAA′ , f−1

A = fA−1 .

If c = 0, the second claim is obvious. If c ̸= 0, then

f(z) =
az + b

cz − d
=

a
c cz +

a
c d−

a
c d+ b

cz + d
=
a

c
+

λ

cz + d
, with λ =

bc− ad
c

.

18August Ferdinand Möbius (17 November 1790, Schulpforta, Electorate of Saxony – 26 September 1868, Leipzig, German
Confederation)
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Definition 10.3. A generalized circle in S = C ∪ {∞} is either a circle in C or a straight line (including the
endpoint ∞). Denote by F the family of all generalized circles in S.

Proposition 10.4. Every LFT preserves F . Via stereographic projection, F corresponds to the family of all
circles on the unit sphere S2 in R3.

Proof. We will show that every generalized circle is given by an equation of the form αzz+ βz+ βz+ γ = 0 for
some α, γ ∈ R, β ∈ C. First, consider a circle given by |z − z0| = r for some z0 ∈ C, r ∈ [0,∞). Then

|z − z0| = r

(z − z0)(z − z0) = r2

zz − z0z − zz0 + z0z0 − r2 = 0.

Thus we can take α = 1, β = −z0, γ = |z0|2− r2. Second, consider a line given by 2aℜz+2bℑz+ c = 0 for some
a, b, c ∈ R. Then adding and subtracting aiℑz and biℜz gives

aℜz + bℑz + iaℑz − ibℜz + aℜz + bℑz − iaℑz + ibℜz + c = 0

(a− ib)(ℜz + iℑz) + (a+ ib)(ℜz − iℑz) + c = 0

(a− ib)z + (a− ib)z + c = 0.

Thus we can take α = 0, β = a− ib, γ = c.
Replacing z with 1

z yields an equation of the same type.

Proposition 10.5. Let (z1, z2, z3) and (w1, w2, w3) be two triples of different points of S. Then there is a unique
LFT f with f(zj) = wj , 1 ≤ j ≤ 3.

Proof. If (z1, z2, z3) ∈ C3, then φz1,z2,z3(z) =
z−z1
z−z3

z2−z3
z2−z1 maps (z1, z2, z3) to (0, 1,∞). Otherwise without loss

of generality z3 = ∞ and we can define φz1,z2,z3(z) = z−z1
z2−z1 . Then f :− φ−1

w1,w2,w3
◦ φz1,z2,z3 is the desired

LFT.

Conclusion: Every generalized circle can be mapped onto every generalized circle by an LFT. In particular,
every circle can be mapped onto every straight line. Also, every open disc can be mapped onto any open
half-space.

Example 10.6. Let H = {z ∈ C : ℑz > 0}. f(z) = z−i
z+i is a conformal mapping of the upper half-plane onto

the unit disc.

Example 10.7. Let Ω = D \ [0, 1]. By Riemann’s theorem, there is a conformal map h : Ω
onto→ D. Find such

an h.
Set, for example, h1 : D \ [0, 1] → {ℜz < −1/2}, h2(z) = 1

z−1 , h2(z) = −(z + 1
2 ), h3(z) = z2, h4(z) = 1

z ,

h5(z) =
√
z − 4, h6(z) =

z−1
z+1 and finally put h = h6 ◦ h5 ◦ h4 ◦ h3 ◦ h2 ◦ h1.

11 Harmonic functions

We study f : C→ C. Since C ≃ R2 we have z = x+ iy, x = ℜz, y = ℑz and f = u+ iv with u = ℜf, v = ℑf .
Observation: If G ⊆ C is a domain, f, g ∈ H(G) and ℜf = ℜg on G, then there is c ∈ R such that

ℑf = ℑg + c on G.
⌜ It follows from the Cauchy-Riemann conditions: ∂v

∂y = ∂u
∂x ,

∂v
∂x = −∂u∂y . ⌟

Question 11.1. What are the real parts of holomorphic functions?

Recall Notation 9.5.

Lemma 11.2. If f ∈ C2(G), G ⊆ C open, then ∂∂f = ∂∂f = 1
4∆f , where ∆ = ∂2

∂x2 + ∂2

∂y2 .

Proof.

∂∂f =
1

4

(
∂

∂x
− i ∂

∂y

)(
∂

∂x
+ i

∂

∂y

)
f =

1

4
∆f.

Definition 11.3. If G ⊆ C is open, we say that u ∈ C2(G) is harmonic if ∆u = 0 on G.
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Example 11.4. If f ∈ H(G), then ℜf and ℑf are harmonic on G.
⌜

0 = ∂∂f =
1

4
∆f =

1

4
(∆(ℜf) + i∆(ℑf)) =⇒ ∆(ℜf) = 0 = ∆(ℑf).

⌟

Example 11.5. If G ⊆ C is a simply connected domain, f ∈ H(G) and f ̸= 0 on G, then log |f | = ℜF for
some F ∈ H(G). In particular log |f | is harmonic by the previous example.

⌜ We know there is a holomorphic branch F of log f , i.e. F is holomorphic and f = eF . But |f | = eℜF . ⌟

Corollary 11.6. If G ⊆ C is open, f ∈ H(G), f ̸= 0, then log |f | is harmonic.

Proof. By Example 11.5 log |f | is harmonic on any open ball U in G. Since “being harmonic” is a local property,
this proves the statement.

Example 11.7. f(z) = log |z| , z ∈ C\{0} is harmonic on C\{0}, but f is not the real part of any holomorphic
function on C \ {0}.

⌜ Assume F ∈ H(C \ {0}) and ℜF = f . On C \ (−∞, 0], ℜF = ℜ(log) implies ℑF = ℑ(log) + c for some
c ∈ R. So we have F = log+ic on C \ (−∞, 0], but unlike F , log+ic is not continuous at, say, z = −1. ⌟

Theorem 11.8. If G ⊆ C is a simply connected domain and u : G → R is harmonic, then there is f ∈ H(G)
such that ℜf = u.

Remark 11.9. (i) Every harmonic function is locally (but not necessarily globally) the real part of some
holomorphic function.

(ii) If f ∈ H(G), then f ′ = ∂f = ∂(f + f), because ∂f = (∂f) = 0. Hence f ′ = ∂(f + f) = 2∂(ℜf).

Proof. We have ∂u ∈ H(G), because ∂(∂u) = 1
4∆u = 0. Then there is f0 ∈ H(G) such that f ′0 = 2∂u. Using

the second remark we get 2∂(ℜf0) = f ′0 = 2∂u, rearranging the terms gives ∂(ℜf0 − u) = 0, but ℜf0 − u is
real and so ∂

∂x (ℜf0 − u) = 0 and ∂
∂y (ℜf0 − u) = 0 on the domain G. Hence u = ℜf0 + c for some c ∈ R. Put

f = f0 + c.

Corollary 11.10. Let G ⊆ C be open and u : G→ R be harmonic. Then u ∈ C∞(G) and u satisfies the mean
value property:

1

2π

∫ 2π

0

u(z0 + reit) dt = u(z0) (MV)

whenever U(z0, r) ⊆ G.

Proof. Let U(z0, r) ⊆ G. Take R ∈ (r,∞) such that U(z0, R) ⊆ G. Then u = ℜF for some F ∈ H(U(z0, R)).
So u ∈ C∞(U(z0, R)) and by the Cauchy integral formula,

F (z0) =
1

2πi

∫
φ

F (z)

z − z0
dz =

1

2πi

∫ 2π

0

F (z0 + reit)
ireit

reit
dt =

1

2π

∫ 2π

0

F (z0 + reit) dt,

where φ(t) = z0 + reit, t ∈ [0, 2π], which implies (MV).

Theorem 11.11 (The maximum principle). Let G ⊆ C be a domain and u : G→ R be a continuous function
satisfying the mean value property. If u is not constant, then u does not attain an extremum in G.

Proof. Let us assume that z0 ∈ G and, say, u(z0) ≥ u on G. Put M = {z ∈ G : u(z) = u(z0)}. Obviously,
∅ ≠M is closed in G. If we show that M is open, then M = G.

Let z1 ∈ M and U(z1, r) ⊆ G. We show that U(z1, r) ⊆ M . Assume there is z2 ∈ U(z1, r) \M . By (MV),

u(z0) = u(z1) =
1
2π

∫ 2π

0
u(z1 + ρeit) dt ≤ u(z0), where ρ = |z1 − z2|. If we show that the last inequality is strict,

we will arrive to a contradiction. It is in fact the case, because u ≤ u(z0) on G and u < u(z0) in a neighbourhood
of z2.

Corollary 11.12. Let G ⊆ C be bounded and open, u ∈ C(G) and u be harmonic on G. Then u attains its
extrema on ∂G, i.e. min

∂G
≤ u ≤ max

∂G
u on G. The assumption of harmonicity can be replaced with the (MV)

property.

Proof. Let z0 ∈ G and u(z0) = maxG u. Then u is constant on the component G0 of G containing z0. So u
attains the maximum on the boundary.
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11.1 The Poisson Integral

Let u : D→ R be harmonic, i.e. u is harmonic on U(0, r) fo some r ∈ (1,∞). Then there is f ∈ H(D) such that
u = ℜf on D and f(z) =

∑∞
n=0 anz

n, |z| ≤ 1. For |z| ≤ 1, z = reiθ, we have

u(z) = ℜf(z) = ℜa0 +
∞∑
n=1

1

2

(
anr

neinθ + anr
ne−inθ

)
.

Hence

u(z) =

∞∑
n=−∞

bnr
|n|einθ, where bn =


ℜa0, n = 0
1
2an, n > 0
1
2an, n < 0

. (1)

In addition, we have

1

2π

∫ π

−π
u(eit)e−imt dt =

1

2π

∫ π

−π

( ∞∑
n=−∞

bnr
|n|eint

)
e−imt dt =

1

2π

∞∑
n=−∞

bn

∫ π

−π
ei(n−m)t dt = bm. (2)

Putting (2) into (1) we get for z = reiθ with r ∈ [0, 1) that

u(z) =

∞∑
n=−∞

r|n|
1

2π

∫ π

−π
u(eit)ein(θ−t) dt

r < 1
=

1

2π

∫ π

−π

( ∞∑
n=−∞

r|n|ein(θ−t)

)
u(eit) dt .

Definition 11.13. We define

(i) the Poisson19 kernel : For 0 ≤ r < 1, θ ∈ R put Pr(θ) =
∞∑

n=−∞
r|n|einθ;

(ii) the Poisson integral :

[Pu](reiθ) =
1

2π

∫ π

−π
Pr(θ − t)u(eit) dt (PI)

for 0 ≤ r < 1, θ ∈ R.

Fact 11.14.

Pr(θ) = ℜ
(
1 + reiθ

1− reiθ

)
=

1− r2

1 + r2 − 2r cos θ
.

Proof.

1

1− z
=

∞∑
n=0

zn =⇒ 2ℜ
(

1

1− z

)
= 2 +

∞∑
n=1

(
rneinθ + rne−inθ

)
= 1 + Pr(θ)

and so

Pr(θ) = ℜ
(

2

1− z

)
− 1 = ℜ

(
1 + z

1− z

)
= ℜ

(
(1 + z)(1− z)
(1− z)(1− z)

)
= ℜ

(
1− z + z − zz
1− z − z + zz

)
= ℜ

(
1− |z|2 + 2iℑz
1− 2ℜz + |z|2

)
.

Theorem 11.15 (Poisson formula). If u is harmonic on D, then u = Pu on D.

Remark 11.16. (i) The Poisson formula is an analogue of the Cauchy integral formula.

(ii) P1 = 1.

Theorem 11.17 (Properties of Poisson integral). Let g ∈ L1(T).

(i) Then Pg is harmonic on D.

(ii) If g is continuous at z0 ∈ T, then lim
z→z0,z∈D

Pg(z) = g(z0). In particular, if g ∈ C(T) and we define

a function u as Pg in D and as g in T, then u is continuous on D and harmonic in D.

(iii) For a.e. θ ∈ R holds lim
r→1−

Pg(reiθ) = g(eiθ) (Fatou).

19Siméon Denis Poisson (21 June 1781, Pithiviers, Kingdom of France – 25 April 1840, Sceaux, Hauts-de-Seine, Kingdom of
France)
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Proof. Without loss of generality assume g is real-valued.
(i): For |z| < 1, z = reiθ we have

Pg(z) =
1

2π

∫ π

−π
ℜ
(
1 + rei(θ−t)

1− rei(θ−t)

)
g(eit) dt = ℜ

(
1

2π

∫ π

−π

1 + rei(θ−t)

1− rei(θ−t)
g(eit) dt

)
=: ℜf.

We have f ∈ H(D) and Pg = ℜf , so Pg is harmonic.
(ii): Without loss of generality assume that g(z0) = 0 (otherwise pass to g−g(z0) and use that P1 = 1). Let

ε > 0 be given and z0 = eiθ0 . Take δ0 ∈ (0, π) such that ∀t ∈ (θ0 − δ0, θ0 + δ0) :
∣∣g(eit)∣∣ < ε. Let z ∈ D, z = reit

and |θ − θ0| < δ/2. Then

Pg(z) =
1

2π

∫ θ0+δ0

θ0−δ0
Pr(θ − t)g(eit) dt+

1

2π

∫
A

Pr(θ − t)g(eit) dt =: I1 + I2,

where A = (−π, π) \ (θ0 − δ0, θ0 + δ0). Of course, Pr > 0 and P1 = 1, hence |I1| < ε.
Next we have

|I2| ≤
1

2π

∫
A

Pr(θ − t)
∣∣g(eit)∣∣dt ≤ Pr (δ

2

)
1

2π
∥g∥1

r→1−→ 0.

since for t ∈ A holds δ
2 ≤ |θ − t| ≤

3π
2 (− δ2 < θ0 − θ < δ

2 and δ < t− θ0 < π) and thus

0 < Pr(θ − t) =
1− r2

1 + r2 − 2r cos(θ − t)
≤ Pr

(
δ

2

)
.

Take r0 ∈ (0, 1) such that |I2| < ε for r ∈ (r0, 1). Then for all z = reiθ with |θ − θ0| < δ/2 and r ∈ (r0, 1) we
have |Pg| ≤ |I1|+ |I2| < 2ε.

(iii): Left without proof.

11.2 The Dirichlet problem

Let G ⊆ C be open and bounded. Let g ∈ C(∂G). The Dirichlet problem (DP) is to find u ∈ C(G) such that
u is harmonic on G and u = g on ∂G.

Remark 11.18.

(i) The DP corresponds to many problems in physics, e.g. a charge distribution g on ∂G gives an electric
potential u on G.

(ii) By the maximum principle (DP) has at most one solution. (Given two solutions u1, u2, consider v = u1−u2,
which is harmonic in G and zero on the boundary).

(iii) The Dirichlet problem does not always have a (classical) solution (e.g. for G = D \ {0}, u = 0 on T and
u(0) = 1 - Zaremba’s example).

(iv) (DP) has a unique solution on “nice” domains, e.g. Lipschitz domains.

(v) In particular, (DP) has a unique classical solution on any open disc in C. For D this follows directly from
the previous theorem. For a general disc use a transformation of the form z 7→ rz + b for r > 0, b ∈ C.

Theorem 11.19. Let G ⊆ C be open and u : G→ R. Then u is harmonic on G if and only if u is continuous
on G and satisfies (MV) from Corollary 11.10.

Proof. =⇒ : We know this.
⇐= : Let u ∈ C(G) satisfy (MV) on G. Let U :− U(z0, r) with U ⊆ G. Let h be the unique solution of

(DP) on U with the boundary data given by u|∂U . Then v :− u−h is continuous on U , satisfies (MV) on U and
v = 0 on ∂U . By the maximal principle, we get that v ≡ 0 on U , so u = h on U , so u is harmonic on U .
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