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Abstrakt: Kluznd loziska, ktera se jiz pouzivaji po tisice let a provazeji nasi civilizaci
stejné jako kolo, mohou byt zobrazena jako excentrické mezikruzi, vyplnéné tekutinou.
V této jednoduché geometrii zkoumame proudéni ne-Newtonovské kapaliny.

V prvé ¢asti popisujeme geometrii, model tekutiny, teoretické vysledky a piedchozi prace,
které se k tomuto problému vztahuji.

V druhé ¢ésti dokdzeme existenci feSeni zobecnénych Navier-Stokesovych rovnic s visko-
zitou zavislou na tlaku a na gradientu rychlosti, opatienych nehomogenni Dirichletovou
okrajovou podminkou. Ukazeme také dalsi vysledky existence a jednoznacnosti.

V posledni ¢asti provedeme numerické simulace proudéni v lozisku za pouziti metody
kone¢nych prvkt implementovanych v numerickém softwaru featflow. Srovname vysledky
klasickych Navier-Stokesovych rovnic s nagimi zobecnénymi a budeme diskutovat parame-
try modelu na nékolika dalsich ptikladech.
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Abstract: Journal bearings that have been used for thousands of years and that go along
with our civilization as well as the wheel, could be imagined as two eccentric cylinders,
separated by fluid. Within this simple geometry we investigate the flow of non-Newtonian
fluid.

In the first part, we describe the geometry, the fluid model, related theoretical results and
previous investigations.

In the second part, we establish the existence of solution of the generalized Navier-Stokes
equations with both the pressure- and the shear- dependent viscosity, completed with the
non-homogeneous Dirichlet condition. We also present other existence and uniqueness
results.

In the third part, we provide numerical simulations of the flow within the journal bearing
using the finite element software package featflow. We compare the classical Navier-
Stokes model and the generalized one and provide several example simulations discussing
the parameters of the model.

Keywords: weak solution for nonlinear PDEs, non-Newtonian fluids, shear dependent
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1 Introduction

Lubrication generally, and the journal bearings as well, have been helping mankind for
thousands of years. Basic laws of friction were first correctly deduced by da Vinci (1519),
who was interested in the music made by the friction of the heavenly spheres. The scien-
tific study of lubrication began with Rayleigh, who, together with Stokes, discussed the
feasibility of a theoretical treatment of film lubrication.

The journal bearings are heavily used in these days, and they are designed and stud-
ied on the mathematical basis and by numerical computations for a long time. Even by
browsing the Internet you can find web sites where simple computational simulations are
provided by an automatic software for free. (Mostly based on the Reynolds approxima-
tion.)

This thesis does not aspire to present any kind of directly applicable numerical re-
sult or method at all. The intentions of this work are rather to follow one of the lines
of today’s investigation; to study mathematically one of the recent generalizations of the
Navier-Stokes model of fluid motion and present it in the context of journal bearing lu-
brication problem.

The considered generalized Navier-Stokes model, as it is in more details described in
sections 2.3 and 3.3, is based on the assumption that the viscosity depends both on the
pressure and the shear rate. We note that theoretical results concerning the existence of
solutions for such a class of fluids are rare. This work mostly follows the results by Franta,
Milek, Rajagopal [1], where the existence for the homogeneous Dirichlet condition is es-
tablished. Herein, we generalize this statement for the non-homogeneous Dirichlet condi-
tion in two dimensions. We do so without any “smallness” restriction, just incorporating
another result from Kaplicky, Malek, Stard [2] applied to models with shear-dependent
viscosities under the assumption that there is no inflow and outflow through the boundary.

In the second part, in section 4, several numerical simulations are provided for the
fluid model that meets the condition assumed in the theoretical part. We use the software
package featflow initially developed as a solver for Navier-Stokes equations and modified
in order to solve the flow of non-Newtonian fluids. We show both the pressure-thickening
and the shear-thinning capability of the chosen viscosity form and we compare the obtained
results with those for the classical Navier-Stokes model.



2 Description of the investigated problem

Friction, Lubrication'

If two solid bodies, in direct or indirect surface contact, are made to slide relative to one
another, there is always a resistance to the motion called friction. Friction can be beneficial
in many instances, however, in other cases it is energy consuming and we endeavor to
decrease it, although it may be never eliminated entirely.

Friction is present in all machinery, and it converts part of the useful kinetic energy
to heat, thus decreasing the overall efficiency of the machine. About 30% of the power in
an automobile is wasted through friction. In 1951, G. Vogelpohl estimated that one-third
to one-half of the world’s energy production is consumed by friction ([12]). Friction could
be represented by the coefficient of friction f = %, F being the resisting force (parallel to
direction of motion) and W being the applied load (the force perpendicular to surfaces).

Lubrication is used to reduce/prevent wear and lower friction. The behavior of sliding
surfaces is strongly modified with the introduction of a lubricant between them. When
the minimum film thickness exceeds, say, 2.5um, the coefficient of friction f = % is small,
(on the contrary to the case of lower film thickness), and depends on no other material
property of the lubricant than its viscosity. (For a lightly loaded journal bearing the
Petroff's law f ~ uN/P is approximately obeyed, N being the shaft speed, P = W/LD
the specific load, L is the length of journal/bearing and D is the diameter of the journal,
see [12].) This type of lubrication is called thick-film lubrication and it is in many respects
the simplest and most desirable kind of lubrication to have.

Fluid film bearing’

Bearings are machine elements whose function is to promote smooth relative motion at low
friction between two solid surfaces. The lubricant film separating surfaces can be liquid,
gaseous or solid.

When there is a continuous fluid film separating the solid surfaces we speak of fluid
film bearings. There are two principal ways of creating and maintaining a load-carrying
film between solid surfaces in relative motion. We call a bearing self-acting, and say
that it operates in the hydrodynamic mode of lubrication, when the film is generated and
maintained by the viscous drag of the surfaces themselves, as they are sliding relative to
one another. The film could be also created and maintained by an external pump that
forces the lubricant between solid surfaces, then we call the bearing externally pressurized,
operating in the hydrostatic mode; but we are not going to study this case here.

The oil required for hydrodynamic lubrication can be fed from an oil reservoir under
gravity, it may be supplied from a sump by rings, discs, or wicks. The bearing might
be even made of a porous metal impregnated with oil, which “bleeds” oil to the bearing
surface as the journal rotates.

Hydrodynamic bearings vary enormously both in their size and in the load they sup-
port. At the low end of the specific-load scale we find bearings used by the jeweler, and
at the high end we find the journal bearings of a large turbine generator set, which might
be 0.8m in diameter and carry a specific load of 3MPa, or the journal bearings of a rolling
mill, for which a specific load of 30MPa is not uncommon.

2.1 Geometry

Journal bearing’

If the motion which the bearing must accommodate is rotational and the load vector
is perpendicular to the axis of rotation, the hydrodynamic bearing employed is journal
bearing. In their simplest form, a journal and its bearing consist of two eccentric, rigid,

t Many of what is written in these paragraphs can be found in the Fluid film lubrication book by A. Z.
Szeri, [12].



cylinders. The outer cylinder (bearing) is usually held stationary while the inner cylinder
(journal) is made to rotate at an angular velocity w.

2.1.1 Restriction to two dimensions

If the bearing is “infinitely” long, there is no pressure relief in the axial direction. Axial
flow is therefore absent and changes in shear flow must be balanced by changes in cir-
cumferential pressure flow alone. This condition will also apply in first approximation to
finite bearings, leading to the so-called long-bearing theory (see the Reynolds Equation,
see e. g. [9] or [12]) if the length/diameter ratio L/D > 2. We remark that the aspect
ratio of industrial bearings is customarily in the range 0.25 < L/D < 1.5; neither the
short-bearing (see [12]) nor the long-bearing approximation apply to these bearings. Yet,
in this work, we follow this assumption, which allows us to restrict our further considera-
tions to two-dimensional plane perpendicular to the axial direction. We do so for several
reasons:

e The CPU time required for simulations in three dimensions would not allowed us to
perform so many numerical experiments.

e We have in our disposal the finite element method software package featflow (visit
www.featflow.de), developed as an efficient multigrid solver for the incompressible
Navier-Stokes problem. It includes also the modification for solving two-dimensional
equations with viscosity depending on the symmetric part of the velocity gradient
D(v) and on the pressure.

e In two dimensions, we will show the existence of a solution to the generalized Navier-
Stokes equations with both the pressure- and the shear- dependent viscosity, without
any “small data” restriction, assuming that only the tangential velocity is prescribed
on the boundary and the velocity in normal direction is held to be zero.

We thus consider the geometry as it can be seen in figure 1. The domain of the flow is
an eccentric annular ring, the outer circle with the radius Rp, the inner circle radius being
Ry, the distance between their centres is denoted by e. The inner circle rotates around
its centre with (clock-wise) rotational speed w, or we can say, with tangential velocity vy.

It is customary to define the radial clearance C' = Rp — Ry. As the possible values of e
are in the range e € (0,C) we denote ¢ = ¢/C, ¢ € (0, 1) the eccentricity ratio. Hereafter,
we shall say “eccentricity” talking about . We can clearly set Rp = 1 such that the
geometry of our problem is described by two characteristic numbers € and Rj.

2.2 Basic equations
2.2.1 Steady-state problem

In practice, the journal is not fixed at all but flows in the lubricant, driven by the applied
load on one hand, and by the forces caused by the lubricant on the other hand. Therefore,
in the time dependent case the geometry would not be fixed, the journal axis would observe
some non-trivial trajectory in the neighbourhood of the bearing axis. The simulation would
then look somehow as follows: we could set all fluid parameters, the radii of both the
bearing and the journal cylinders, prescribe the velocity of rotation and the load applied
on the journal (the load could also be changing with time) and then we could study the
trajectory of journal axis in time. Such an approach could be seen e. g. in [10] with
many important outcomes concerning the operational regime. One of these observations
is that in some cases the motion of journal axis can cease and can become stable in some
“equilibrium” position. The position of course depends on the applied load.

In the steady-case approach, which we will present in this work, the position of journal
is prescribed and from the solution of lubricant motion we compute the force applied to
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Figure 1: Simplified geometry of the journal bearing.

the journal by the fluid. By this procedure we obtain the reaction force depending on the
eccentricity of cylinders, without performing the complex and more time consuming time-
dependent simulations. Thus we can effectively study the influence of both geometrical and
fluid parameters on the resulting operational regime. The disadvantage of this approach
is that knowing the position of the journal and the corresponding reaction force, we still
do not know anything about the stability of such a configuration. In other words, we do
not know whether such a case could happen in reality or not. Anyway, this questions are
out of the scope of this work.

2.2.2 Notation
Hereafter, we use the following notation in the text:

Q ... bounded domain in R? (d = 2,3) with a boundary 0€;

x ... spatial coordinates in RY, £ = (z1,...,z4);

v ... velocity field, v = (v1,...,vq);

p ... pressure;

T ... Cauchy stress tensor;

p ... density of the fluid, here p is a positive constant;
b ... specific body force (force acting on a mass unit).

Since we deal with time-independent problem all quantities as v, p, T and b are func-
tions of the actual position z.
We denote the gradient of some vector field, say, ¢ € R by V¢, i. e.

0
- oz’

(V) iji=1,....d.

The symmetric part of the gradient is defined through

D(¢) = 5 (V¢ +(VO)T).



where (V¢)T means the transposed matrix to V¢. For A € R¥*? the symbol |A| is used
to define the euclidean norm of A, i. e.

d
AP = Ayl

=1

2.2.3 Constitutive equations

Hereafter, we consider a motion of a homogeneous incompressible fluid in a bounded
domain © in R? with boundary Q. We do not consider any cavitation in the model,
treating only full film of lubricant. The circumstances and effects of cavitation can be
found e. g. in [10]. The motion is described by the equations expressing the balance of
mass (recall that p is a constant)

divv =0 inQ (2.1)

and the balance of momentum
2
ov ov ) .
pE—FpZ_EIUZa—%:dIVT—pr 1mn Q

As we have decided to study the steady-state problem, the balance of momentum takes
the form

2
ov . .
PZW% =divT +pb in Q. (2.2)

i=1 ¢
We can see that as soon as we would consider low velocities of the motion, the other
terms would dominate to the convective term vi%. Together with the fact that the
nonlinear convective term makes the analysis more difficult, this motivates us to simplify

the problem and study the system
0=divT +pb in (2.3)

where the convective term is neglected.

As we have established these equations for the steady flow of an incompressible fluid,
the crucial step is to set the model for the Cauchy stress tensor T' and then to complete
the system with boundary conditions.

2.3 Fluids with shear- and pressure- dependent viscosity

A fluid is called Newtonian if the dependence of the stress tensor on the spatial variation
of velocity is linear. This model was introduced by Stokes in 1844* (see [8]), and already
Stokes remarked that the model may be applicable to fluid flows at normal conditions. For
instance, while the dependence of the viscosity on the pressure does not show up in certain
common flows, it can have a significant effect when the pressure becomes very high.

As the lubricant in journal bearing is forced through a very narrow region, of order
of micrometers, the pressure becomes sometimes so high that the fluid obtains a “glassy”
state. Moreover, since the shear-rate becomes also high, the viscosity of lubricant does
not suffice to be considered constant with respect to the shear-rate.

Another generalization of the Navier-Stokes fluid goes by the name Stokesian fluid.
(In fact, Stokes derived a more general model and after that made simplification to obtain
the popular Navier-Stokes model.) In such a fluid the material moduli can depend on the

*

model was earlier introduced also by Navier and Poisson

10



symmetric part of the velocity gradient through its principal invariants Ip, llp, and Ilip,
defined as

1 1
lp=trD, llp= 5[(trD)2 —trD? = —§trD2, and Illp = det D.

This model can describe both shear-thinning and shear-thickening fluids, it is custom-
ary to use the shear-thinning fluids in the context of journal bearings.

Incorporating the pressure- and the shear- dependence of the viscosity into the lubri-
cant model could have a significant impact on the dynamics, and hence on the load bearing
capacity, of a journal bearing. One of the cases can be seen e. g. in [10] where is, among
others, demonstrated the stabilization effect of the piezoviscous lubricant on the journal
motion in a contrast to the constant-viscosity case.

In this work we consider a model that takes into account both types of generalization
discussed above, i. e. the material moduli depend on the symmetric part of the velocity
gradient as well as the pressure. Since we talk about incompressible fluids only, we require
the constraint

trD =divy =0

to be met in all motions of the fluid. In accordance with the representation theorem, the
Cauchy stress T is given by

T = —pI + o (p, lip, lllp)D + az(p,lip, llp)D?, (2.4)

where —pl is the indeterminate part of the stress due to the constraint of incompressibility.
We assume that the constraint response ensures that the incompressibility is met, therefore
the material moduli depend also on the Lagrange multiplier, i. e. «; and as depend
upon p.

Note that due to tr D = 0 there holds p = —% tr T and p has thus the meaning of mean
normal stress.

Since there is no experimental work for fluids that would support the presence of the
term as(p, llp, lllp)D?, we restrict ourselves to a subclass of models of (2.4), namely

T = —pI + p(p, |D*)D, (2.5)
where

|D|? = tr D* = —2llp.

2.3.1 Viscosity models in practise

The dependence of the viscosity on the pressure has been studied for quite a long time.
For instance in the magisterial treatise of Bridgman (1931) ([13]) there is a discussion of
the studies up to 1931. Andrade suggested (on the basis of experiments), see [13], the
dependence of the viscosity p on the density p, the pressure p and the temperature o, of
the form

1 s
p(p,,p) = Ap> exp ((p + pQT)g) ;
A, r and s being constants. This approximation however works well only for a certain

temperature range and it is not clear that it works for all liquids (see [1]). Passing over
the dependence on the density p, as the variation in the densities is indeed not very large,

we can come to the form
Cp
=B —
" exp < ) ,

11



where B and C' are constants. The popular model used in lubrication theory is the Vogel’s
formula

a
K = Ko €Xp (m) )

a, b are constants.
The dependence of the viscosity on the pressure is almost at all events considered to
be exponential, simple form

1 = exp(yp)

is also often used. In quite a recent work of Gwynllyw, Davies and Phillips (1996) [10] on
the dynamics of a journal bearing with the piezoviscous lubricant there is considered the
model

po= | proo + ——0— Heo x exp(ap),
1+ (Kv2trD?)m

where K is a function of the pressure
K = K(p) = exp(ap + E),

140, Moo, M, @, @ and E are material parameters estimated by best-fitting the experimental
data. (The parameters are said to be taken from [11] and [14].)

As a representative of models where the viscosity depends only on the shear-rate we
cannot forget the power-law model

H’:N’0|D|p72a p€(1,2).

In this work, we are going to take into account models described above keeping the
form (2.5). Nevertheless, we will introduce some different viscosity formulas, in order to
be able to show the existence of the solution to our system of equations, which is the main
aim of this work. More details concerning the specific forms of y are provided in section 3.

2.4 Boundary conditions
2.4.1 Dirichlet boundary condition

Having the fluid motion equations (2.1) and (2.2) and the specification of the stress ten-
sor (2.5), we need to complete the system of governing equations by the suitable set of
boundary conditions.

As we have proposed in section 2.1, we consider a flow in a two-dimensional domain
that can be viewed as an eccentric annular ring. Each circle then means a fixed wall,
the outer wall being fixed meanwhile the inner one rotates around its own axis. On both
walls we set the no-slip condition such that the resulting Dirichlet boundary condition is
prescribed:

v=0 onT'p C 9N (the outer circle), (2.6)
v =vy7T on ['; C 02 (the inner circle), '

where vy is given and 7 = 7(z) is the (clock-wise) unit tangential vector to the inner
circle I'y.

We notice that there is no inflow or outflow, i. e. the normal part of velocity n.v
is equal to zero everywhere on the boundary 0€2. We will strongly use this fact when
proving the existence of solution to the Navier-Stokes-like problem, referring to the result
by Kaplicky, Malek, Stard [2]. This will allow us to establish the existence without any
restrictions on the greatness of vy.

12



However, since we present also other theoretical results such as existence of solutions to
the Stokes-like problem or the uniqueness of solution, in the section 3 we consider Dirichlet
boundary condition of the more general form

v=¢ on 0f,

where ¢ will be specified.

2.4.2 Mean value of the pressure

There is a quite important difference between analysis of the equations governing the flow
of incompressible fluid with constant viscosity or with the viscosity depending only on the
D(v) on the one hand, and analysis of the equations with the viscosity depending also on
the pressure, on the other hand.

In the first case the solution is never unique considering the values of pressure, since
the pressure can be somehow ‘shifted’ by an arbitrary constant. Even if the boundary
conditions include the pressure values, these can be changed by some constant and the
nature of the solution (namely the velocity field) will be exactly the same. Tt is a direct
consequence of the fact that there is only Vp in the equations. However, nobody is confused
prescribing this constant in order to obtain a physically suitable solution because there
is no need to care about that. In order to compare the values of the pressure field with
experimental data the pressure field can be arbitrarily increased or decreased after the
computation, so the common manner is e. g. to fix the meanvalue to be a zero (by clear
numerical reasons).

On the contrary, considering the viscosity depending on the pressure this approach
changes totally. The pressure have to be somehow fixed even in the sense of a constant
and giving different values, e. g. prescribing the meanvalue of the pressure in the whole
domain or in some of its part, we can obtain significantly different solutions. To give an
example, let us take the viscosity of the form v = vyexp(8p) in (2.5) and assume that
we have a solution (v,p) to equations (2.1) and (2.2) (in fact, we have no theory about
the existence for such a problem, but it is the simplest example) meeting the condition
Jqpdz =0, and a solution (9,p), of same equations but meeting [, pdz = py # 0. Then
writing the equations with p — pg we see that it fulfills the condition of meanvalue being
zero as in the first case and, moreover, it meets the same equations as soon as we set
vy - exp(—pp) instead of 1y. In this simple case, to prescribe a different meanvalue of
the pressure has the same effect on the velocity field as to change the constant 14 in the
viscosity term.

We notice that, in a real journal bearing, there is often an inflow of the lubricant
provided by some channel or groove. We do not reflect this inflow, since the flow is
negligible, and moreover because such a detail would make our considerations quite more
difficult. For example, we assume that bearing infinitely long and thus the flow two-
dimensional where, in fact, as soon as there is the inflow, there must be also the outflow,
by most provided by the ends of a bearing which are free. In such a case the pressure
should be probably best prescribed being equal to some value at the inflow and being
equal to zero (or, say, to the atmospherical pressure) at the ends of journal bearing. This
is no more a long bearing approximation and it is no more two-dimensional conception.

On the other hand, there are some consequences of e. g. the position of the inflow
channel, which should be important. Let us consider a small inflow channel in the outer
wall somewhere close to the narrow gap between the eccentrical cylinders. It is easy to
imagine (and it will be seen in numerical simulations below) that the pressure of the fluid
after it has got through the narrow gap is significantly lower than it is upstream the gap.
Maintaining some pressure level at the inflow channel we can obtain entirely different flow
solutions in the case when the channel is located downstream, in comparison to the case
when it is located upstream to the narrow gap.
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However, in this work we prescribe the pressure level by setting the meanvalue over
whole domain. This suffices to provide interesting numerical experiments and to show
the role of dependence of the viscosity on the pressure. Moreover, we will avoid possible
troubles concerning the proof of existence.

We thus complete our system of equations by the mathematically natural condition

1
@/deaz = po. (2.7)

2.5 Governing equations of the investigated problem

In our theoretical considerations all functions will act on an open bounded domain Q C R?,
d = 2,3, with a smooth boundary 992. As we have explained in the previous sections, we
focus on a fluid whose Cauchy stress is of the form

T=-pl+pvD with v=v (1—), |D|2> , (2.8)
p

(we give pu(%, |D|?) instead of u(p,|D|?) in (2.5)). Hereafter, we shall write only p instead
of % since in our considerations p is a constant, but remember that originally the viscosity
term depends on 2 in fact.

The balances of mass (2.1) and momentum (2.2) give the equations

dive =0 inQ (2.9)

w?+w%mWWWWMmeQ (2.10)
T

while neglecting the convective term such as in (2.3) we write

dive =0 inQ (2.11)
Vp — div[v(p, |D|*)D] = b in Q. (2.12)

We complete the equations by the non-homogeneous Dirichlet boundary condition
v=¢ on 0f) (2.13)

and finally, we shall suppose that the pressure p meets

1
@/dex:po, (2.14)

where pg € R is given and |2| denotes the d-dimensional Lebesgue measure of Q. As I will
discuss later, we can choose py = 0 without any restriction.

We shall denote the system of equations (2.9)-(2.10),(2.13)-(2.14) by (P) and the sys-
tem (2.11)-(2.12),(2.13)-(2.14) by (Pg). It is not surprising that problem (Pg) is much
easier to solve and the existence to (Pg) is proved under more general conditions on the
viscosity v in comparison to the conditions needed for the existence proof to (P).
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3 Theoretical results

In this section we present our existence and uniqueness results concerning the steady
flow of fluid with both the pressure- and the shear- dependent viscosity, with the non-
homogeneous Dirichlet boundary condition prescribed. The main result is included in
Theorem 3.13 that establishes the existence of a weak solution to equations (P) under the
assumption that there is no flow through the boundary (the normal component of velocity
at the boundary is zero) meanwhile the tangential velocity is prescribed and could be
arbitrary large (in the chosen functional space). Our result is a generalization of the result
by Franta, Mélek, Rajagopal [1] where the homogeneous Dirichlet condition problem was
solved and the result by Kaplicky, Malek, Stara [2] where the shear-dependent fluid model
with nonzero tangential component of the velocity on the boundary is treated. We also
present the existence theorem for the Stokes-like system (Pg) where we do not need the
condition on the normal-component of the velocity on the boundary nor the condition of
two-dimensionality. Next, also the uniqueness of a weak solution is proved, in the case of
(P) only for small data.
First of all, we introduce notations, definitions and present several useful lemmas.

3.1 More notation, preliminaries

We introduce a notation of function spaces. Let X (Q2) be a Banach space of scalar functions
defined on Q, equipped with the norm || - ||x. By (X(€))* we denote its dual space, while
the brackets (-,-) mean the corresponding duality pairing. For vector functions spaces
we use the notation X(Q)? := {u : Q@ — R%u; € X(Q),5 = 1,...,d} and similarly
X Q). ={T:Q — Rdxd,T” € X(Q),i,5=1,...,d}.

Let © C R? be a domain with Lipschitz boundary Q. Then D(€) denotes the space
of smooth C*°-functions with a compact support in  and D*(Q) denotes the space of
distributions. We define % € D*(Q), the distributional derivative for f € D*(2), by the
identity

of

(o) = —f, 5

), Vo € D(Q).

We then define operators grad and div in the sense of distributions
e u € D*Q)

ou ou

=gradu=|—,...,— D*(Q)¢
Vu = gradu <8x1’ ’(936,1)6 ()

e u c D*(Q)¢

dive = Z gul D*(Q
T

Let @ = (a1,...,04), a; € NU {0}, be a multiindex, |a| = E?Zl a;. We then define
operator D® in the sense of distributions

e u € D*(N)

o
Doy ="M
0%y ...0%xy T

1
Forr € (1,00), weset || fllr = ([ |/ (z)|" dz) " and for r = 0o, || f|lso = ess supgcq |u(z)|-
The Lebesgue spaces are defined as

L"(Q) ={f:Q — R, f is measurable on Q, || ||, < oo},
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and the Sobolev spaces are then defined as

WET(Q) = {f : Q = R, f is measurable on Q, || f||x.» < oo},
1
for r > 1 and k € N, where we set || f||x, = (ngk ||D0‘f||;) "

For r € (1,00) there exists a bounded linear operator (trace) Tr : W17 (Q) — L"(99)
such that

Tr(u) = ulsgq  if u € WH(Q)NC(Q).
Hereafter, we rather write
F=f ondQ
instead of Tr(F) = f.

We introduce the zero-trace space Wé’r(Q) = {u € WL (Q); Tr(u) = 0 at 00}, the
space of divergence-free functions WéiZ(Q)d = {u € W (Q)% dive =0 a. e. in Q} and,
finally, the dual space to W(l)’r(Q)d, (WL (@) ||| 1) = (Wé’r(Q)d)* where ' = L.

In what follows, we use sometimes the notation (v,p) for the ordered pair of the

velocity- and the pressure- part of solution, another time we denotes (a, b) an open interval
in R, but most often (f,g) means

(f.9) = /Q f(z) g(x) de,

providing that f.g € L'(©2). We believe that this polyvalence might not lead to any
misunderstanding.
Next, we introduce some standard lemmas. See for example Evans [18] or Lions [17].

Lemma 3.1 (Gauss-Green Theorem) Suppose u € C'(Q). Then

ou
o O;

dxz/ un;dS (1=1,...,d),
onN
where n = (ny,...,ng) is the outer unit normal vector to ON).

Lemma 3.2 (Holder’s inequality) Let 1 -I-% =1 1<pandq<ooorp=1and
g = 0o. Then, for u € LP(Q) and v € L7(Q

o uv € LY(Q),
o [luvfly < flullpllvllg-
Lemma 3.3 (Korn’s inequality) Letp € (1,00), then there exists k, = k,(2) such that
lulip < kp|D@)llp,  for all w € Wy ()",

Lemma 3.4 (Vitali’s theorem) Let Q be a bounded domain in R? and f : Q — R be
integrable for every n € N. Assume that

o lim, o f™(z) exists and is finite for almost all x € 2,

o for every € > 0 there exists 6 > 0 such that

sup/ If"(z)|dz <e VYQ CQ,|Q| <é. (3.15)
noJQ
Then

lim [ f"(z) dx:/ lim f"(z)dx.
Q

n—o0 Q n—oo
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Lemma 3.5 (Imbeddings) Let 1 < p < d, then there holds an imbedding

W!P(Q) < LIQ) for all1 < q < dd—p
-D

and a compact imbedding (2 is a bounded set)
1 dp
WP (Q) > LI(Q) foralll <qg< i

Lemma 3.6 (Brouwer’s Fixed Point Theorem) Assume
M : B1(0) — B1(0)

is continuous, where By(0) denotes the closed unit ball in R™. Then M has a fixed point;
that is, there exists a point ¢ € B1(0) such that M(c) = c.

In section 3.7 we establish a small modification of this theorem.

3.2 Weak formulation, definition of the problem
Let b satisfy

be (w};’“(Q)d)* (3.16)
and the Dirichlet boundary condition (2.13) be given by
o ="Tr(®), ®cW-(Q)? div®=0 inQ. (3.17)
Then we use the folowing definitions:

Definition 3.7 (Weak solution of (Pg)) A pair (v,p) is called the weak solution to the
problem (Ps) if (v,p) fulfills

v e Wi (Q)4, v=¢ on 01,
pel’(Q), =", Jopdz =0

r—

(3.18)

and

(v(p, ID()*)D(v), D(3)) — (p,divep) = (b,%)
for all p € W™ (Q)<.

Definition 3.8 (Weak solution of (P)) A pair (v,p) is called the weak solution to the
problem (P) if (v,p) fulfills

v e Wi (Q)4 v=¢ on 01,
pE L’"’(Q), =25, [opdz=0

r—

(3.19)

and

(vi5—%) + (v(p, ID))D®), D)) — (p,dive)) = (b, ),

2

for all p € W)™ (Q)<.
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3.3 Structure of the viscosity

Following the results in [1], [3], [4], etc., we shall consider the viscosities meeting the
following general conditions:

(1) For a given r € (1,2), there are positive constants C; and C5 such that for all sym-
metric linear transformations B, D and all p € R

— dlv(p,|DJ?)D]

C(1+|DP") T |Bf < =5 52— - (B® B) < Cy(1+|DP) 7 |BP,

where (B ® B);jj = B;jBy.

(2) For all symmetric linear transformations D and for all p € R

(91/ ) D2D r—2
22 P02 < 01+ 1DP) T <0
p
1
with vy < C1

<
Caiv2 C1 +Co  Cgiv2

Now we just refer two useful lemmas, both presented for example in [1]:

Lemma 3.9 Let (1) and (2) hold. For arbitrary D', D? € REE and p', p?> € R we set

ym

r—2

1
2 ::/ (1+ |D?+ (D' — D?)]?)"2"|D' — D?|? ds.
0

Then
Ci 12 1 pl 2 P2 1 2 73 1 22
S 1" <[S(p D) =Sp",D7)]: (D" —=D%) + ~-lp —p|".
2 2Ch
Lemma 3.10 Let (1) holds for r € (1,2). Then for allp € R and D € Rgl;nﬁl
2 Gy r
v(p.|DID D > Sy~ 1) (3.20)
and
v(p, IDI*)D| < L(l +[D))t- A (3.21)
’ T 1-(2—-1r)A '
foralldx: 0 <AL,
In this paper (3.21) is used only with A =1, i. e.
2 Cs r—1
(p. D)D) < -1 1 D)y (3:22)

3.4 Survey of known results

Although the fluid models with the pressure- and/or the shear- dependent viscosities are
studied and used at least from the first third of the last century, mathematical results
concerning the existence of solutions are rare. To our knowledge (see e. g. [1]) there is no
global-in-time existence theory available for the case that the viscosity depends only on
the pressure. In recent studies by Renardy (1986), Gazzola (1997) and Gazzola & Secchi
(1998) (see [19], [20] and [21]) either the kinematical viscosity satisfies

@—)0 as p — oo,

p

18



a condition contradicting by experiments, or authors established only local-in-time exis-
tence of smooth solutions for small data on very restrictive “smallness” conditions both
on b and the initial data.

Recently, the global-in-time existence of solutions for a class of fluids with the viscosity
depending not only on the pressure but also on the shear rate was established — see Mélek
et al. (2002) [15] and [16], and Hron et al. (2002) [4]. These results have been established
under a quite artificial assumption that the flow is spatially periodic.

The existence of solutions for the steady flows of fluids with the pressure- and the
shear- dependent viscosities, meeting the assumptions (1) and (2) stated in section 3.3,
for homogeneous Dirichlet condition is presented in Franta, Malek, Rajagopal [1]. Here,
dealing with the two-dimensional model, we generalize this result to the non-homogeneous
Dirichlet condition, provided that only a tangential component of the velocity is nonzero
on the boundary, i. e. under the condition that

v.n=0 on JdQ (3.23)

(n means a normal vector to ).

3.5 Existence of solutions

The main result of this work is the proof of existence and uniqueness of weak solution
to the problem (P), i. e. to the equations (2.9)-(2.10) governing the flow of fluid with
both the pressure- and the shear- dependent viscosity (meeting (1) and (2)). The system
is completed by the non-homogeneous Dirichlet boundary condition (2.13) and by the
condition concerning the pressure level

1
— dz = py.
|Q|/QP33 Po

It is easy to see that as asoon as we prove the existence of solution to the case py =0,
we can accept this result for arbitrary py € R at once. We just need to see, that there
is no constraint on the value of the pressure in conditions (1) and (2) but there is only
constraint on the derivative of the viscosity with respect to the pressure. Seeking for the
solution with the non-zero pressure meanvalue we can just write p — py everywhere and
consider o(p,|D(®)|?) = v(p — po, |D(v)|?), which fulfills the conditions (1) and (2) in the
same way as v(p, |D(v)[?).

In this section, we first prove the existence of weak solution to the system (Pg), where
the convective term is neglected. The reason is to show more clearly the technique used
to cope with the non-homogeneous boundary condition in a context of the chosen form
of stress tensor and, additionally, to establish the existence theorem under more general
conditions than we will obtain for the problem (P).

As the next step, an important lemma introduced in Kaplicky, Mélek, Stard [2] is
stated and the existence to the Navier-Stokes-like system (P) is proved in two dimensions,
provided that (3.23) holds but without any “smallness” restriction concerning the tangen-
tial velocity prescribed on 0. Finally, the uniqueness of solutions to both (P) and (Pg)
is proved.

In order to prove the existence of a solution to (P) or (Pg) we use the approximate
systems of equations in 2

—eAp® +ep® +dive® =0 (3.24)
Vg gi + Vp© — div(v(p®, |D(v°)|?)D(v°)) = b (3.25)
or
—eAp® + ep® +dive® =0 (3.26)
vy — div(v (s, |D(°)[2)D (7)) = b (3.27)
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subjected to the boundary conditions

op®

o =0 and v =¢ on JN. (3.28)
From (3.24) or (3.26), (3.28) and Gauss theorem it follows that
)
— | p*dz =0.
€2 Jo

We shall denote the system of equations (3.24),(3.25) and (3.28) by (P¢) and (3.26),(3.27)
and (3.28) by (Pg).

3.5.1 Existence of solutions for the generalized Stokes system

Theorem 3.11 (Existence of solutions for the system (Pg)) Let Q C R? be an open
bounded set with the Lipschitz boundary 02, d = 2 or 3. Let the assumptions (1) and (2)
be satisfied with r fulfilling

S <r<? (3.29)

and let (3.16) and (3.17) hold.
Then there is at least one weak solution (v,p) to the problem (Ps) in the sence of
Definition 3.7.

PROOF. The structure of the proof is following: we recall the problem (Pg) and assume
that it has a solution. We derive the energy estimates and estimates for the pressure p®
uniform with respect to e. Then for some sequence ¢, — 0 we find weakly converging
subsequence {(v",p°")} to the limit (v, p) in the spaces stated in (3.18) and, in addition
to that, we show the strong convergence of {(v°",p")}. Finally, we prove the existence of
weak solutions to the approximate problem and thus vindicate our assumption.

Weak solution of (Pg)

We suppose that for r fulfilling (3.29) and all € > 0 there is a weak solution (v°,p®) of the
problem (Pg) such that

v —® e W' ()¢ and p* e WHE(Q) (3.30)
satisfying
e(Vp®,VE) +e(p®,€) + (dive®,€) =0 for all ¢ € WH2(Q) (3.31)
and
(v(p°,|D(v)]*)D(v°), D(#)) — (p°, divep) = (b,9) (3.32)

for all ¢ € W(l)’r(Q)d.

Note that all integrals in our weak formulation are finite: From Hoélder inequality we
see it for (3.31) as soon as r > d2—f2, since dive® € L(Q) and £ € W'2(Q) — L™ (). (We
have made things easier by assuming r > dQ—fZ:
¢ e Wh2(Q)NL" () in (3.31) and we could come to problems when we try to set & := p°
where we would need p¢ € L” (2).) The viscous term is finite from (3.22).

The existence of solution (v, p) fulfilling (3.30)-(3.32) for £ > 0 fixed will be proved

in the end of this section.

without that assumption we should need
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Energy estimates and their direct consequences

We shall define u® by
v° =® +u°,
where according to the boundary condition and (3.17) clearly
ut € Wl ()7
Let us set £ := p® in (3.31) and 9 := «° in (3.32), then it follows

ellvVp™ll3 + ellp” I3 + (dive®,p°) = 0
(v(@",|D(®")|*)D(v°), D(u)) — (p°,dive’) = (b,u").

Note that such a £ is a possible test function due to (3.30). Summing these equations and
using the assumption div® = 0 (3.17) we find

e Vo©ll3 + ellpll5 + (v(p°, ID(v7)[*)D(v°), D(u)) = (b,u"). (3.33)
Since

(v(»",|D(®")|*)D(v"), D(u))

[
X
i
‘.m
o
=
-

we obtain (applying (3.20) and (3.22)):

(3.20)
(v, D7) D). D7) = 5 [ (D) - 1o =
= D@l ~ Sl
and
(3:22)
v, [DEIPDO).D@) < [ (141D D(®)| s <
T D)l D@ <
< D@)l, (2 + D)),
(v, D)D), DY) > SHIDE — SH0l — - D@)], (21 + D))

(3.34)

Using then the inequality [(b,u®)| < ||b]|_1,
Korn’s inequality, we conclude from (3.34) and (3.33):

wllir < crllbll-1p

|D(u®)||,, due to the

Ci Ci
ellVp©ll5 + ellp”ll5 + ;HD(”E)H? - §|Q| -

Co

1 ID@)[1 (12" + ID@)])"™" < ellbll -1 (1D @)l + |D(®)]]),

which implies the estimate

ellp*|I 2 + CIID (%) 7 < € < oo, (3.35)
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or the equivalent one (using the Korn’s inequality)
£||p5||%,2 + C|Vu?||; < C < oc. (3.36)

(Here C denotes generally different, positive constants).
Using again (3.22)

Co

€ £\|2 ey r’ (3.22)
v (P, [D(@)[")D (%) [l <

£ r C r £ r
[ [+ D)) ds < 200"+ D@, + ID@)])
we obtain
(v, D)) D) < € < oo, (3.37)

In order to obtain the estimates for p independent of € we set 9 := %° in (3.32) where
9 solves:

’ 1 !
diV’l/)E — |p£|r —2p£ _ _/ |pa|r —2pa dr =:hf in Q
2] Ja
% =0 on
95|15 < Caiv,sllp]ls  for all s € (1,00), (3.38)

in particular, for s = r

_1
[ ll1.r < Caive Pl (3.39)

as it is showed in [1] and [3]. The existence of %° is to be seen e. g. in [6] or [7]. We can
then conclude, using the fact that [, p*dz =0,

Il = (", |D@)*)D(°), D)) — (b,%°) <
(3.22) Cs ey[\r—1 € €
< T /Q(l + D))" D) dz + [|b]| -1, [[%" 1, <
Holder - 1 . .
< a1+ (D)7 1D @) | + (1Bl -1 191, <
(3.39) -
< allp?ll,
(3.35)
which gives us (as r > 1)
[p°]l < C < o0, (3.40)

Letting € tend to zero, the estimates (3.35), (3.36), (3.37) and (3.40) allow us to find
a sequence £ \, 0, {(v°,p%)} and (v,p) € Wi ()¢ x L (Q)

D(v°") — D(v) weakly in L"(9)%x4,

Vo*r — Vo weakly in L"(€)4*¢, (3.41)
pen —p weakly in L’",(Q), '
v(p=,|D(w*))D(w*") — x  weakly in L" (@)%,
and moreover, from compact imbedding we conclude
v" — v strongly in L°(Q)% for all s: 1 < s < ddr . (3.42)
—r
Let us note that from (3.31) and (3.35) it directly follows that

dive =0 a. e. in , (3.43)
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and we can also pass to the limit in (3.32): we need to show is that for n — oo

/Q v(p°", D) [2)D(v") : D) dzr — /Q v(p.|D@)2)D(v) : D) dz.  (3.44)
at least for all ¢ € C*°(9).

In order to see (3.44), it is enough to show at least for a subsequence the convergences:

P = p a. e. in Q, (3.45)
D(v**) —» D(v) a.e. in (. (3.46)

Once we prove (3.45) and (3.46) the limit (3.44) follows using the Vitali’s theorem (for-
mulated in lemma 3.4) as soon as (3.15) holds: but for any @ C @, |Q| < § we can
write

(3.22)
/IV(pg",ID(vE”)IQ)D(vg”):D(«/J)Idx < IID(¢)||ooC/(1+ID(vg”)I)’“_ldm
Q Q

Holder
Oge C|Q|1/r<061/7‘
(3.35)

and (3.15) then follows.

oo

Strong convergence of {p*}°°, and {D(v*")}2,.

n=1

We will put to use Lemma 3.9, denoting

1 —_—
yn :// (1+D@) + s(Dw™) — D@)]?) T |DO) — D) dsde  (3.47)
QJ0
it impies that
Gy < /[5( -, D)) —S(p,D(v))] : (D(v™") —D(v))d$+7—gl| o —pll3, (3.48)
9 = o p, b, . 201 p Pil2, .

where S(p,D(v)) = v(p,|D()?)D(v). It can be seen in Lemma 3.17 below, that our
estimates [[D(v"") |, [D(v)]l; < K imply

ID(v"") - D) |2 < C(K)Y™. (3.49)
If we set ¢ :=v*" —v =u*" —u in (3.32) it gives us
/Q[S(pg",D(vg")) —S(p,D(v))] : (D(v™) — D(v))dz =
= —/ S(p,D(v)) : (D(v»*") — D(v))dz + / pr div(v®™ —v)dx + (b,v*» —wv). (3.50)
Q Q

Using that dive = 0 a. e. and neglecting [, p* dive®™ dz = —|[p*||3 — |[Vp™||3 < 0 it
follows from (3.50), (3.49) and (3.48) that

2
Gynya-0@ L Ipp) - D)< o7 = pl3 + (.07~ v)
- /Q 8(p.D@)) : (Dw™) — D(v)) dz

for any « € (0,1). Considering the weak convergences (3.41) we get

C 2
a5 Y" + (1= a)C|D®™) — D)||} < 27—6(11|ng” = pll5 + d1(en), (3.51)
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where 0;(e,) — 0 as e, — 0. In order to handle the term ||p* — p||o we test (3.32) with
9 = 9™ where Y™ solves
divep"” =p*» —p in Q
$" =0 on I (3.52)

[%" 11,4 < Caivgllp™ —pllg forall g € (1,00).

Note that [, (p*" — p)dz = 0 and from p» — p weakly in L’",(Q) it follows that

P" — 0 weakly in W' ()
dr'

Y™ — 0 strongly in LY(Q)%, Vq € (1, ’—d)
r’ —

This gives us
Ip™ —pll5 = —(p,p™ —p) — (b,9") +
+/Q[3(10£”,D(v€")) —S(p,D(v))] : D(¢p") dz + /QS(p,D(v)) :D(¢p") dz =
= /9[3(108”,1)(”8")) —S8(p,D())] : D(@") dz + 02(en)-

Let us denote p* :=p + s(p*™ — p), D* := D(v) + s(D(v*") — D(v)) and consider

1 s S
847 D) - S(.Dw)] = [ WD) pyyen) — D)) ds +

oD
1
oS(p®,D%) , .
+/ 7@8 (5~ — p) ds
0 p
=: I} + Is.
Since the derivatives of S are supposed to fulfil (1) and (2) we conclude

r—2

r |D(v*") — D(v)|ds

@ )
01 < o [ (+IDP)
0
and
Y
[I2] < ylp™ —pl,

which implies

1o = pliZ < o /Q " — plID")| do +

r—2

7 |D(v™) — D(v)| [ D")|ds dz +

1
+ Cs /Q/[) (1+ |D(v) + s(D(v°") — D('v))|2)
+ 62(571)-

r r—2

Recalling the definition of Y from (3.47) and using the fact that (1+w?) < (14+w?)7
as r < 2, the Hélder inequality (once used on the integral over  x (0,1)) gives

I = I3 < vllp™ = pll2 V" [l2 + CoVY ™[ V"2 + b2(en).
The estimate in (3.52) with ¢ = 2 then leads to

lp*" = plI3 < %0 Caivllp™ = pll3 + CoCaivaVY " [p°" = pll2 + d2(en),

(1 = 70Caiv,2) [P = plla < C2Cliv2VY™ + d3(en)- (3.53)
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Putting this estimate into (3.51) we obtain

Cl 9 ’)/g C%Cglv 2
“lyno o = D(»*") —D < : ’
a5 + (1 —a)C|D(v™") @)l < 201 (1 —%Caiv,2)?

YY"+ (54(8n).

Recalling vy < ﬁ% from the assumption (2) we can choose « € (0,1) such that

Yo < ﬁ%{ai\%a, which is enough to show that

aﬁ B v O304, >0
2 201 (1 =70Cuiv,2)? ’

thus we can conclude

lim ||[D(»*") —D@)|?> =0 (3.54)
n—oo
and
lim Y™ = 0. (3.55)
n—o0

The last fact and (3.53) then imply that
Jim {[|p* = pll2 = 0. (3.56)
The convergences (3.45) and (3.46) then follow and the proof is complete.

Existence of approximations

In this section we show that for ¢ > 0 fixed there is a solution (v,p) = (v, p°) fulfilling
(3.30)-(3.32). Since £ > 0 is fixed the dependence of the quantities on ¢ is not designated
in what follows. The proof is via Galerkin approximations, following step by step the
proof given in [1]

Let {a*}2°, be a basis in WH2(Q) and {a¥}2° | be a basis of Wé’r(Q)d. We look for

approximations p” and vV in the form
N N
pN:chNak and vN:<I>+Zd,]€vak,
k=1 k=1
where ¢ = (¢1,...,cn) and dY = (di,...,dy) solve the Galerkin system

e(VpN,Vok) +e(pV,or) — WV, VaF) =0, k=1,...,N, (3.57)
/ v(p",|D™)H)D®") : D(a') dz +/ Vp" -aldz = (b,a!), 1=1,...,N(3.58)

Q Q
This is a system of 2N nonlinear algebraic equations with 2N unknowns. The solvability
follows from the Brouwer fixed point theorem formulated below and the apriori estimates
which we are going to derive just now. Let us multiply the k-th equation in (3.57) by c,év

and sum all equations for k = 1,..., N, then multiply I-th equation in (3.58) by d} and
sum them over [ = 1,..., N. We obtain

ellVp™ 13 +ellp™ [z + (dive™,p™) = 0 (3.59)
(S(",D@")), D)) - (diva™,p") = (B,u"). (3.60)

Summing these two equations we conclude (as div® = 0)

ellp™ 172 + (S, DY), D(u")) = (b,u"), (3.61)
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from which it follows in the exactly same way as on page 21, using (1), (2), Korn’s and
Young’s inequalities, that

elp™7 o + VO[] < C < 0. (3.62)
From (3.22) it follows that
lv(p™, ID@Y)*)D@Y)||, < C < oo. (3.63)

We can therefore find a subsequence (which we denote same as the original sequence) such
that

vV~ weakly in W1 (€)? (3.64a)
vV s strongly in LI(Q)? for ¢ < % (3.64b)
N —p weakly in W12(Q) (3.64c)
N = strongly in L?(Q) (3.64d)
v(p",|DEN) DY) — x weakly in L” (Q)7%9, (3.64¢)
which allows us to pass to the limit in (3.57)-(3.58). We obtain
£(Vp,VE) +£(p, &) + (dive,p™) =0 VE € WH(Q) (3.65)
(x, D(#)) — (p,divep) = (b,9) v € Wy (Q)". (3.66)

In particular, testing £ := p in (3.65) and % :=u in (3.66) and summing the equations we
obtain

ellplli 2 + (x, D(w)) = (b,u). (3.67)

All we need in order to complete the proof is to identify x as S(p, D(v)). We do it as soon
as we show that

DwY) - D) and pY —=p ae inQ (3.68)

at least for a subsequence. From Vitali’s theorem (formulated in lemma 3.4) we again
conclude

N Ny 2 — : xZ.
/Qu<p D@™)P)D@") : D dxﬁ/sp, D(y) dz = /Qx.D(«p)d

In order to conclude (3.68) it is enough to show, at least for a subsequence, that

lim |[D(@") - D), = 0.
N—oo

Since we know (3.64d), (3.68) then follows.
Let us recall (3.48) and (3.49) with p» = p" and D(v®") = D(v""). We have
CID@") - D)} <
< / M. DY) = 8(p,D(v))] : (DY) — D(v))dz + 602;1 Ip™ —pll3 =
_ /s (", D dx—/S’p, . (DY) — D(v)) dz —

- [ 86¥.D6"): Dwyas + B — pi =
Q 1
2
2 o) — ellpV I3 — <l I + - lp™ -
- [ 8.Dw) : (DW") - D) do ~ [ 6", DY) : Dlwd,
Q Q
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Using limy o0 || VPN |12 > liminfy o0 |V |12 > || Vp||3 we obtain
el Vpl3 +C- lim DY) - D()|; < (b,u) —ellpl5 — / X : D(u)dz.
—00 Q

Then from (3.67) directly follows

C- lim DY)~ D@)|? <0
N—o0
which implies (3.68) and the proof is thus complete. O

3.5.2 Existence of solutions for the generalized Navier-Stokes system

In order to handle the convective term we introduce the following Lemma, which can be
found in Kaplicky, Mélek, Stara [2]. It strongly takes an advantage of that the boundary
condition ¢ fulfills p.n = 0 at 02 and gives an extension of ¢ which could be arbitrary
small. Moreover, it gives a control of its gradient.

Lemma 3.12 (An extension of boundary conditions) Let r € (1,2), 9Q € C3, ¢ =
Tr(®), ® € W39(Q) for some q > 2, and ¢ satisfy

p-n=0 at o (3.69)

(where n denotes the outer normal vector to 0X2).

Then for each n > 0 there exists ®7 € WH°(Q) such that

div®" =0 in Q and Tr(®") =¢ at 09, (3.70)
0" -
/ui—ﬂuj dz| <7 ul?, Vue Wi(Q) (3.71)
o O ’
1
. 1
197lly < Cn 1, forallq € (1,00) (3.72)
@714 < Cne

PROOF. A proof of this lemma is provided in [2].

I believe that Lemma 3.12 could be in some special cases (as axial symmetry) gen-
eralized into three dimensions, so far as ¢ retains its two-dimensional nature. Such an
extension is a future project.

The construction of ®" is not difficult in such a simple geometry as the case of eccentric
annular rings with constant tangential velocity vy prescribed on the inner circle. Let us
define the function ©7 which fulfills both (3.70) and the estimate (3.72) in a few following
lines:

Let © C R? be the eccentric annulus such as we can see in figure 1. For a while, let us
consider the cartesian coordinates £ = (z1,72) € R? with the origin located in the centre
of the inner circle. Denote r = r(z) = ||z|| = /7% + 23 the distance from the centre,
the unit “tangentiall” vector field 7 := 7(z) = 1(z2, —z1) and the unit “axial” vector field

T

r:=r(z) = ol = ~(z1,22). Tt is easy to see that any function ©" of the form

meets the equation
div®" =0, for ||z| > R;.

We define

Fr) = 0, for r > Ry+n
o Z—Q(RJ'-I-U—T’)Q for Ry <r <Rj+n.
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We then see, for n > 0 small enough, that the form ©" € C*>() satisfy the boundary
condition ¢ = vo7 on the inner circle (and ¢ = 0 on the outer circle) such that (3.70) is
fulfilled. Tt follows from definition that for r < Ry +n

0o

ﬁ(x) =Y,
8@” 2’00
=5 @) = —?(RJ +n—r),

meanwhile ©" = 0 for » > Rj; + 7. We thus easily obtain |@"] < vy and |[VO"| <
C(Ry, vg)%. Realizing the fact that ©" is non-zero only on the area of dimension w(R; +

n)? — mR% < Cn we conclude that (3.72) also holds.

Theorem 3.13 (Existence of solutions for the system (P)) Let Q@ C R? be an open
bounded set with the boundary 0Q € C3, d = 2. Let the assumptions (1) and (2) be satisfied
with r fulfilling

3 3d
R el 2 .
2= 112 <r< (3.73)
and let (3.16) and (3.17) hold together with
®c W) for some q > 2 (3.74
p-n=0 at o, (3.75)

where n denotes the outer normal vector to 0S).
Then there is at least one weak solution (v,p) to the problem (P) in the sence of
Definition 3.8.

PROOF.

The proof follows the same steps as the proof for Stokes system above. The only
difference concerns the convective term, but in order to show the whole proof clearly and
without question, I have decided to repeat it all, not only the differences.

We recall the problem (P?) and assume that it has a solution. We derive the energy
estimates and estimates for the pressure p® uniform with respect to €. Then for some
sequence ¢, — 0 we find weakly converging subsequence {(v°",p°»)} to the limit (v,p) in
the spaces stated in (3.19) and, in addition to that, we show the strong convergence of
{(v®",p")}. Finally, we proof the existence of weak solutions to the approximate problem
and thus vindicate our assumption.

Weak solution of (P°)

We suppose that for r fulfilling (3.73) and all € > 0 there is a weak solution (v, p®) to the
problem (P?) such that

v —® e W, ()¢ and p° e WH(Q) (3.76)
satisfying
e(Vps,VE) 4+ e(p®, &) + (dive©, &) =0 for all £ € WH2(Q) (3.77)

and

(o7 58) + 5 ((aivoryor )+

+(v(p%, [D(°)[")D(v°), D()) — (p°, divep) = (b,%) (3.78)
for ally € W(l)’r(Q)d.
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Let us note that all integrals in our weak formulation are finite: from Holder inequality
we see it for (3.77) as soon as r > d2—f2, the viscous term is finite from (3.22). For the

finiteness in the convective term we need the assumption r > %.
The existence of solution (v, p) fulfilling (3.76)-(3.78) for £ > 0 fixed will be proved
in the section 3.5.2.

Energy estimates and their direct consequences

In order to handle the convective term, we define 4" by
v° = @7+ u"" (3.79)
where ®" is taken from the Lemma 3.12; it fulfills div®"7 = 0 and can be estimated by

1
127l < Cne,

VeI, < C 1 for all ¢ € (1, 00). (3.80)
q n ’

Clearly, due to (3.70)
ut" € Wl ()%

Let us set £ := p® in (3.77) (note that such a £ is a possible test function as soon as
p° € WH2(Q)) and 4 := u®" in (3.78), then it follows

ellVpelI3 + ellp|I3 + (divo®,p°) = 0
ov° 1
€ e,n - . ENpsE nsE57N
<vz 8xi’u >—|—2((d1vv s, u") +

+ (w(p*,|D(v°)*)D(v°), D(u™")) — (p°, divu™") = (b,u"").

Summing these equations and using the assumption div®” = 0 we find
Ic +el|VP°[3 +llp*[l3 + (v(°, [ID(®°)P)D(v°), D(u™")) = (b,u""), (3.81)
£ 1
,u”’) + 3 ((divo®)v®,u>").

where I = <vf o
ox;

Let us estimate I¢. Recalling (3.79), we have

8'1)" Bu o 1
IC:/ v 8332 ’ndaz-l-/ v; 8332 ’ndaz+2/9(divvg)v;‘7uj’ndx.

Thus, Green’s theorem (as u™" = 0 on 9Q) implies [, v5 57~ (|u62n‘2) = —1 [ (dive®)[u|?

Then,

6(1)" 1
_ ,77 3 n,,&n —
I = /vfa dx+2/g(dlvv5)<1>juj dz =
au 57 1
Green : n, €M n : N, M 1,
= —/Q(dlvvg)CI)juj d:zc—/Q Ui P —— 8331 dx+2/9(d1vvg)<1>juj dz =

v 1
= — [ (dive")@Tvidz — [ o] 2l g /d' )@ d
/Q( ivo)®lv; dz / 8 3:+2 Q( ivo®)®lv; dr +

2 |Q77|2 1 : € 2
(dlvv )| @7 dx + 8 )dz — 3 (dive®)|®"|” dz,
0

2

which finally, using the Green’s theorem and div®" = 0, leads to

1 v 1 oo
— . U n 9% Ngn__J
Ic = —5/9(d1vv€)<1>]-v]€-daz—/g R o2; dz + 2/ /0 — s dz.
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Using the Holder inequality and the Lemma 3.12 we conclude that

3 1
Io| < SIVOS|l o]l 2o @7 2 + = [1®7][5,[I VR4 <
2 P 3r—4 2
(3.80) 3r—4 1,1
< eillt[2,n" oty =
Korn e\ 12 9 3r—4
< (D)7 + dal®[F,)n = + C, (3.82)

where C,dy,d, are some (positive) constants depending on €, r.
Considering the viscous term, using (3.20) and (3.22) we conclude analogously as in
the Stokes case (3.34)

£ € € € C € T C r € r—
(v ID () D), D) > LD (w) ~C'—~Z [V (2 |D(w7) |,
(3.83)
and from (3.80) we obtain
€ ey|2 £ en Ch g\||” 1=r 1/r £ r—1
(w(p%, D) )D(v7), D)) 2 - [D@7)I; — € — dun (127 + 1D (7)[l:)",
(3.84)

where C, d; are again some positive constants.
The right-hand side term can be estimated using Korn’s inequality and Lemma 3.12:

[(B,u™") [ < [[bl|—1,[lv" — @7[|1,r <
Korn
< Clbll—1 ([P — @), <
< Clbll—1 7 [D@) 7 + (Bl -1, V"], <
(3.80) . 14
< Clbll-1 v [[D@)|lr + dslB|-1,mm7 (3.85)

From (3.81) and (3.82), (3.84),(3.85) we obtain

e Cy e\ || 1=r r € r—
elpllfa + 5 D@l —din > (1M + 1D " -

3r—4

—don 7 [D@O)|I7 — d3|bl|-1,m

1—

= = C <l |D@)lly,  (3.86)

where by C we denote generally different positive constants.

We wouldn’t obtain any useful result by just setting n small enough, say n ~\, 0, because
as r > 1 the term with 771% would become infinitely large. But for each ||D(v®)||, (greater
then some constant D which doesn’t depend on €) we can find n > 0 such that it fulfills
both

1=r _ 1—r 1C
din 7 (197 + ID@) )"~ + dllbl| 10T < 52—;||D(UE)||27 and  (3.87)
dr—4 € 101 e\
dan 2 (|ID(°)[|7 + da|| @7 ,) < 33, 1P @)l (3.88)

_r_ _2r
Indeed, denoting dy := (i g—;) " and dy = (i g—;) =" we can equivalently write

r

~ r%r _ d 1—r
n > di||D(v") ]’ [(|Q|1/T +[ID(w)[|,)" " + d—?HbHLr'] (3.87)

~ 7-2_7‘ _2r
1 < dof|D (") [ (ID@°)[I7 + dall@]T,)”* 7, (3.88)
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1

then considering ||D(v®)|], > |Q|"/" and ||D(v®)||, > % (g—beH_l’r,) "' it is enough to find

2
=
r

~ r2 r ~ -
n > d27-1||D(v°) =d 2" 1||D(@°)||; " (3.89)

instead of (3.87), and assuming ||D(v®)||, > v/d4||®]| it is enough to find

~ r r—2) 2
n< b2 7D (3.90)
instead of (3.88). Our goal is to show that
s 2 i ~ __2r (r—2) -2
4277 D) < dy2 T Do) D, (3.91)

But as soon as
r> =

there holds

r 2r
-2
1—7"<(r )37"—4’

and (3.91) is thus true for all |D(v®)||, > D, D being a constant which depends on r,
dy and dy. Moreover, considering D large enough, we can see that always n < dy (this is
needed to apply Lemma 3.12.)

We conclude that for each ¢ > 0 either

ID@")]l- <D
or
€12 1C4 e\[|T €
ellp*lliz + 55 D@7 < Clbll 1D (%)l + C,
which together lead to the estimate
ellp*|IF 2 + CIID (%)} < € < oo, (3.92)

or the equivalent one (using the Korn’s inequality)
elp°lli 2 + ClIVY°|) < C < oo. (3.93)
Using again (3.22)

€ £\|2 ey’ (3.22) C E\I\T
(", D@D < — Q(1+|D(v )" dz

we obtain
lv(p°, D) *)D(v°)||» < C < oo (3.94)

We remark that estimates (3.92) and (3.93) could be observed alternatively in a dif-
ferent way. Proving the existence of e-approximations (see below) we notice (3.120), i. e.
that || D(v) V)|, and therefore also ||D(v?)||, (from the lower semicontinuity of the norm)
are bounded by a constant independent of . Estimates (3.92) and (3.93) then follows di-
rectly from (3.86) without any extra fitting of 7. However, the “n-procedure” provided
above is used in the same way in the proof of existence of Galerkin approximations that
goes before (3.120).
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In order to obtain the estimates for p® independent of £ we set 4 := 9° in (3.78) where
9 solves:

’ 1 !
diV’l/)E — |p£|r —2p£ _ _/ |pa|r —2pa dr =:hf in Q
2] Ja
% =0 on
[%°|l1,s < Cavsllp]ls  for all s € (1,00), (3.95)

in particular, for s = r

_1
[ ll1.r < Caivr Pl (3.96)

as it is showed in [1] and [3]. The existence of %° is to be seen e. g. in [6] or [7]. We can
then conclude, similarly as in (3.40), using the fact that fQ p° dx = 0, Holder inequality,
Sobolev imbedding and (3.22),

Pl = (", ID°)*)D®°), D)) — (b,%°) +
o° 1
€ € + v oS )ut t) <
+ (0r 5 + 5 ((aivoryor ) <
C _
< -2 [ @ P Wl ds + (bl 97+
3
F20 | 1907 ) e <
< allL+ D@D @)y + 1611 1% 11, + callw® 17, 19° )11 <
(3.96) o
< osliplly
which gives us (as r > 1)
[p°]l < C < 0. (3.97)

Letting € tend to zero, the estimates (3.92), (3.93), (3.94) and (3.97) allow us to find
a sequence £ \, 0, {(v°,p%)} and (v,p) € W3 ()¢ x L (Q)

D(v°") — D(v) weakly in L"(£2)%x4

),
Vo*r — Vo weakly in L"(€)4*¢,
(@
Q

P —p weakly in L" (3.98)

),
v(p™, |D(v=") [2)D(vr) — x weakly in L (Q)

|
(
and moreover, from compact imbedding we conclude

dr

v*" — v strongly in L(Q)% for all s: 1 < s < y (3.99)

_lr"‘

Asr > %, (3.99) and (3.78) suffice to show that
ov ov;
e o da — / i 2% 4 d
/sz axiwj x Qvaxiwj x

/Q(divvg)v;d;j dx—)/g(divv)vjz/)j dz

for all ¢ € D(Q). (3.100)

Let us note that from (3.77) and (3.92) it directly follows that
divo =0 a. e in©, (3.101)

and we can also pass to the limit in (3.78), only we need to show is that for n — oo

/Q v(p°", |D(*)[2)D(v"") : D) dzr — /Q v(p.|D@)*)D(w) : D) dz.  (3.102)
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In order to see (3.102), it is enough to show at least for a subsequence the convergence:

P’ = P a. e. in Q, (3.103)
D(v**) —» D(v) a.e. in{. (3.104)

Once we prove (3.103) and (3.104) the limit (3.102) follows using the Vitali’s theorem
(formulated in lemma 3.4) in the same way as in the Stokes case.

oo

Strong convergence of {p°"}>° | and {D(v°")}>°,.

n=1

We will put to use Lemma 3.9, denoting
1 r—2
Yo // (1+|DW) + (D) — D)) * |D@™) — D) dsde  (3.105)
QJ0

it says that

2
%Y" < /Q[S(psn,D(v%)) = 8(p, D)) : (D) = D(w)) do + 5 & ™ — p3;
(3.106)

where S(p,D(v)) = v(p,|D(®)?)D(v). It can be seen in Lemma 3.17 below, that our
estimates [[D(v"") |, [D(v)]l; < K imply

ID@™) - D)|2 < C(K)Y™. (3.107)

If we set 9 :=v°» — v in (3.78) it gives us

/Q[S(pg",D(vE”)) —8(p,DW))]: (D(v™") — D(v))dz =

- / S(p, D(®))(D(v"") — D(v)) dz + / P div(v™ —v)dz + (3.108)
Q Q
. Oven 1 )
+(b,v°" —v) — / v (0 —v)dr — < / (divo)u - (v°" —wv)dz.
o ' Oz 2 Ja
Using that dive = 0 a. e. and neglecting [, p* dive™ dz = —|[p™||3 — [Vp™ |13 < 0 it
follows from (3.108), (3.107) and (3.106) that
Ch ¢ 1 > Y 2
“lyn f(1—a) 2 |D@"™) — D)2 < 0 ||p= — b,v"" —v) —
e
— | S(p,D(w)) : (D(v°") — D(v))dx — / v (v —v)dz —
Q o ' Oz

for any a € (0,1). Considering the weak convergence (3.98) and (3.99) we get

C 2
a5 Y" + (1= a)CD@™) - D)|; < %Hpan —pl3 + b1 (en), (3.109)

where 0;(e,) — 0 as e, — 0. In order to handle the term ||p* — pll2 we test (3.78) with
b = 9™ where 9™ solves

divep” =p*» —p in Q
P" =0 on 00 (3.110)
19" l1,4 < Cliv,gllp™ —pllg for all g € (1, 00).
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Note that [,(p*" — p)dz = 0 and from p*» — p weakly in L™ (Q) it follows

P" =0 weakly in WH' (Q)?
dr'

Y™ — 0 strongly in LI(Q)4, ¢ € (1, o d)'

This gives us
lp* = pll3 = —(p,p™ —p) — (b,9") +

£ a’vgn n 1 : £ £ n
+ [ v P dr + < [ (diveT)v -y dx +
o' 0 2 Ja

€Ty

+/[3(p8",D(vE“)) —8(p,D(v))] :D(¢")dx+/3(p,D(v)) :D(y") =
Q Q
= /Q[S(pg”,D(vg”))—3(p,D(v))] : D(§") dz + d2(en)-

Let us denote p® := p + s(p°» — p), D* := D(v) + s(D(v°") — D(v)) and consider
1 s s
8.0 -0, Dw)] = [ LLL) D) - D)y ds +

0
1 s DS
o [ 08D
0

=: I} + Is.
Since the derivatives of S are supposed to fulfil (1) and (2) we conclude

—2

(2) 1 -
L] < 02/ (1+|D*[*) = |[D(»™) — D(v)| ds
0
and
W
[Ia| < 7yolp™ — pl,

which implies

o™ — pl < 70 /Q " — plID")| d +

r—2

> |[D(v™") = D(v)||D(%")| ds dz +

1
e /Q / (1+|D@) + s(D(™) — D@))]?)
-|-52(8n).

r—2

Recalling the definition of Y from (3.105) and using the fact that (1+w?) < (14+w?) =
as r < 2, the Holder inequality (once used on the integral over Q x (0,1)) gives

Ip** = pl3 < 70llp™ — pll2l| V" [l + Cov'Y ™[ V4" |2 + b2(en).-
The estimate in (3.110) with ¢ = 2 then implies

Ip"" = plI5 < %Caiv2llp™ — plI5 + CoCaiv2aVY " P — pll2 + d2(€n),
which leads to
(1 =7Caiv2) P —pll2 < C2Cliv2VY™ + 3(en)- (3.111)

Putting this estimate into (3.109) we obtain

Cl 9 ’)/g Cgoglv 2
“lyn 1— D(v") — D < ’
o 9 + ( a)C||D(v") @)l < 20y (1 — ’YOCdiv,2)2

YY"+ 64(572)-
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Recalling vy < ﬁ% from the assumption (2) we can choose o € (0,1) such that

Yo < ﬁmﬁ‘fi\%a, which is enough to show that

aﬁ B v O304, >0
2 2C1 (1 =70Caiv,2)? ’

thus we can conclude

lim || D(v"") — D@)|? =0 (3.112)
and
lim Y = 0. (3.113)
n—o0

The last fact and (3.111) then imply that

lim ||p*™ —p|l2 = 0. (3.114)
n—oo
The convergence (3.103) and (3.104) then follow and the proof is complete.

Existence of approximations

In this section we show that for ¢ > 0 fixed there is a solution (v,p) = (v, p°) fulfilling
(3.76)-(3.78). Since € > 0 is fixed, the dependence of the quantities on ¢ is not designated
in what follows. The proof is via Galerkin approximations, similarly as in the Stokes case.

Let {a"}22, be a basis in W2(Q) and {a*}2° | be a basis of W(l)’r(Q)d. We look for

approximations p” and vV in the form

N N
pN:ZcéVak and vN:q)"-I-Zd,]ﬁVk:@"-l-uN,
k=1 k=1
where ®" goes from Lemma 3.12, and ¢V = (¢q,...,cn) and dY = (dy,...,dy) solve the
Galerkin system
e(VpY,Vak) + e(p”, oF) — (wV,VeF) = 0, (3.115)
k=1,...,N,
™ 1
N ! oo N\ N
: aldr+ = [ d .
/sz awiaaz+2/g(1vv)v a +
+/ v(p",|D@N)?) DY) :D(al)dx+/ Vp -aldz = (b,a), (3.116)
Q Q
I=1,...,N.

This is a system of 2N nonlinear algebraic equations with 2N unknowns, the solvability
for some 7 follows from the Brouwer fixed point theorem formulated below and from the
following considerations.

Let us define a continuous mapping P : RV — R?N:

Pr([e",dN]) := e(VpV, V) + (pV,oF) — @V, VaF), k=1,...,N,
Prsi(e”,dV]) == (ugv ‘2’;?,&) + 5 ((ive™)",a') + (86N, DY), D(a)) +

+(vp",a') — (ba"), 1=1,...,N.

Then we see that
P(eV,d")) - [V, d¥] = Io +elp™ |2, + (S@™, D)), Du™)) — (b.u), (3.117)

where I = via—xi,u +§((1vv t,ut) .
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We can derive the same estimates as in section 3.5.2 and conclude

3r—a
Ic| < do(ID@M)|17 + dal|®I7 ,)n = +C,

(8", D@")),DE")) > %HD(UN)IIZ? —C = di(|"" + D))

1-_T
(b, u™)| < @™)llr + d3)Ibll -1

and thus
P(e",d)) - [V, d"] >
2t SHID@Y); — dy(12 + DMLY
™)l — dalbll1m = —C.

(C being some generally different constants, which don’t depend on 7). Similarly as in
section 3.5.2 we can see that for each p > pg, po > 0 great enough we can find such an
n > 0 such that

> e|p™

3r—4
~dy(ID@M)|7 + dall®[IF )72

r r—1 20y, ,
(1277 + ol 0"+ da(lof? + dal|@[1F )5 + ol < S5 Iel”
Then it is clear (as r > 1) that setting p great enough there holds
1 Ci,
ol = ClBll 11l = C >0,
and thus
P, d") - ¥,V 2 0 (3.118)

for |[dV| = p and all ¢". Moreover, for each |[d"| < p (3.118) holds for ¢V great enough,
say || > o(|d"|), where o is bounded.

Applying the Brouwer fixed point theorem 3.16 formulated below we thus obtain a
solution (v, p") fulfilling

1PN l12 + D@, < C (3.119)

C being a constant which doesn’t depend on N.
We would like to make a remark that from Theorem 3.16 also follows the estimation

ID@M)|, < c(p), (3.120)

where ¢(p) doesn’t even depend on e (note that p also doesn’t depend on ¢). This fact
could be used in passing the limit ¢ — 0.

We can then find a subsequence (which we denote same as the original sequence) such
that

vV~ weakly in W1 (€)? (3.121a)

vV v strongly in LI(Q)? for ¢ < % (3.121b)

N —p weakly in W12(Q) (3.121c)

N> strongly in L2(Q) (3.121d)

v(p", |ID@N))DON) — x weakly in L' (Q)?%¢, (3.121e¢)

which allows us to pass to the limit in (3.115)-(3.116). We obtain

e(Vp, V&) + e(p, &) + (dive,p™) =0 Ve € WH2(Q) (3.122)
(gt + 5 (ivol, ) +

+(x, D)) — (p,divep) = (b, %) Ve WY (3.123)
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In particular, testing £ := p in (3.122) and % := u = v — ®" in (3.123) and summing the
equations we obtain

(ngmu) + 5 (@ivo) 4 clpli, + 06 Dw) = o). (3428

All we need in order to complete the proof is to identify x as S(p, D(v)). We do it as soon
as we show that

Dw") = D) and pV —p a.e inQ (3.125)

at least for a subsequence. From Vitali’s theorem (formulated in lemma 3.4) we conclude,
in the same way as in the Stokes case,

N Ny |2 — : xZ.
/Qu<p D@"))D@") : D dxﬁ/sp, D(y) dz = /Qx-D(w)d

In order to conclude (3.125) it is enough to show, at least for a subsequence, that
lim [D(") — D), = 0.
N—oo

Since we know (3.121d), (3.125) then follows.
Let us recall (3.106) and (3.107) with p*» = p" and D(v°") = D(v"). We have

ClID@") — D()|; <
2
< /[3( N.D")) — 8(p,D(v))] : (D(v™) — D(v))dz + 60, ™ —pl3 =
Q 1

- [ 80".Dw"):D dx—/sp, . (D@") — D(v)) dz -
Q

~ [ $¥ D) : D dr + T s =
Q 1

2
=" (o) —Ic —ellp" |3 — <l VP I3 + (gllle—pllg—

/Sp, . (DY) — D(v))daz—/QS(pN,D(vN)) . D(u) da.

Using limy o0 [ VPV |2 > liminfy o ||V |2 > || V|2 we obtain

elVpls + C - lim DY) -~ D)[I7 < (b,u) — &l|pll3 - /Qx : D(u) dz

Then from (3.124) directly follows

C- lim |[D@Y)-D@)|?><0 (3.126)
N—oo
which implies (3.125) and the proof is thus complete. O

3.6 Uniqueness of solutions
3.6.1 Uniqueness of solution to the generalized Stokes system

Theorem 3.14 (Uniqueness of solution to the system (Pg)) Let Q C R? be an open
bounded set with the Lipschitz boundary 02, d =2 or 3. Let the assumptions (1) and (2)
be satisfied with r € (1,2).

Then the weak solution (v,p)

ve WL () and peL”(Q), ' = — (3.127)

to the problem (Ps) is unique.
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PrOOF. Let (v!,p'), (v2,p?) be two solutions to the same boundary condition. Remind
that there holds (3.127) and each solution (v, p) has to fulfil

(S(p,D (), D(%)) — (p,divep) = (b,9), (3.128)
for all p € W5 ()¢,

where S(p, D(v)) = v(p,|D(v)|*)D(v), and
dive =0 a. e in Q. (3.129)

Subtracting the equations (3.128) for these two solutions we obtain

(S(p",D(v")) = S(p*, D(v*)),D(®)) = (p — p*,dive) (3.130)
for all ¢ € W(l)’r(Q)d.

Let us set 9 := 'J: where 1,7: solves:
diveh = p' —p? in Q
% =0 on dQ
1]z < Caivellp" — p?ll2- (3.131)

It then follows from (3.130) that

(%', D@") = S(p*, D)), D)) = [Ip" - p’|I5- (3.132)
Denoting further p® := p' + s(p> — p') and D* := D(v') + s(D(v?) — D(v')) we can write
(8", D)) - S(p* ,D(v?)) :D(«/3)

1 s ~
= [ =P DCD  pgyas s [FBCLY (D)o (D - D) s,

and assumptions (1) and (2) then lead to

(8", D(") - 8(*, D(v*)),D

< /Qmpl—p?nn |dx+//02 + D)

Holder

< ollp — P ID@)2 + Co (/Q / (1+|DS|2>T2|D(v1)—D(v2>|2dsdx) D&,

*[D(v') - D(v?)|[D ()| ds dz <

using that (14 w?)™2 < (1 + wQ)% as r < 2,

(S(",D(v")) - S(»*,D(v*)),D(#)) <

1

~ 1 r—2
< llp — P[Pz + Co ( [/ (1+|DS|2>2|D<v1)—D(v2>|2dsdm) IDE)]..

(3.133)
Setting 9 := v! —v? in (3.130) we obtain (as dive! = dive? =0 a. e. in Q)
(8", D(")) = 8(»*, D(v*)),D(»') — D(v*)) = 0.
From Lemma 3.9 then follows that
[ [asip=ipw) - pedpasar < Bt -8 @130
i
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which together with (3.133) leads to

(8. D@") 84" D). D)) <
< wlp’ =9’ [ID@) 2 + Co '~ [D@)]|2 =

Ch + Oy

=g Ip* = p* (12| D (#)]|2-
1

Recalling ||D(#)]]2 < ||'¢7)||1,2, (3.131) and (3.132) we finally conclude that

Ci + Cy
Ip" =9I < Y0 —=F—Caivallp’ = P’ll>
Since we assume 7y < ﬁﬁ, this directly implies that
Ip" = p*|2 =0
i e.
1_ .2 .
p =p° a.e inQ. (3.135)

Looking back to (3.134),

1 r—2 2
| [ a+ D) F D! - D) P dsds < B! 5215 =0
aJo Ci
we see that
D) —Dw?*) =0 a. e inQ

which implies, due to Korn’s inequality and since »' and v? fulfil the same boundary
conditions,

vi =02 a. e inQ. (3.136)

0

3.6.2 Uniqueness of solution to the generalized Navier-Stokes system

Theorem 3.15 (Uniqueness of solution to the system (P)) Let Q C R? be an open
bounded set with the Lipschitz boundary 02, d = 2 or 3. Let the assumptions (1) and (2)
be satisfied with r fulfilling

d
—3 <r<2.

Let (', p'), (v%,p?) be two weak solutions to the problem (P),

vt e Wi (Q)? and plp? e L7(Q), ¢ = o
—

both fulfilling

o1, [l0®

|1,r < 57

where § is some small, positive constant, that will be specified.
Then v' =v? a. e. and p' = p? a. e.
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ProOOF. Each solution (v,p) has to fulfill

<”i%’¢> +(8(p,D(v)), D(¥)) — (p,divep) = (b,9h), (3.137)
for all 9 € Wé”"(Q)d,

and

divy =0 a. e. in .

Subtracting the equations (3.137) we obtain
ov' ov’?
1 v?
<v’i 8371 71‘/)>
+(8(', D(")) - 3(;0 ,D(v%)),D(%)) = (p' —p* divep), (3.138)
for ally € W(l)’r(Q)d,

where the first term can be rewritten as

1 v2)

ov; (v} —
/Q(vz1 —v?) 833]~ P dx +/Q’Ui2%i/)j dz. (3.139)

Let us set 4 = v! —v? and we conclude (as dive! = dive? = 0) that

(S, D@") - S¢*. D), D' —v*)) =

vl 1 0
1. %% 1 2 2 1 2\2
—/Q(vi _“i)axi(”j —vj)dx—kg/ﬂvi 83:¢(Uj —wvj) dz.

The last integral vanishes due to the Green theorem, and Holder inequality then implies

(8", D(")) - S(*, D®?)),D(v" —v?)) < [|[Vo'|[lv' —v°|[3,.

Applying the imbedding theorem, using the fact that 2r' = 215 < ﬂ as soon as r > d 3
we see that

o' = v?||or < Crupar|v' — 2|1,
and we can thus write
(S(p', D@") - S(3%, D©?)), D" —v%)) < Chypo V0 0" =022, (3.140)
The Lemma 3.9 shows that

2
N Jlp! = 213 + 2 (', D)) — S, D)), D' —v)

Y
012 Cy

<
(3.140) . 2P

< 02 ||p -’13 + Clun 2 o ||V’U [ llot — v7|I7,,
which also means

1
2 2
Y2 < Lpipt — p2lls + Cruip o | = IV0 1y ) 0" = 0211, (3.141)
01 Cl

where we have defined Y as

Y—// 1+ D)

D* + s(D") — D(»?)).

(v —v?) dsde,
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Let us set 4 := 19 where 1 solves:
div'(z =pt—p? inQ
'(7) =0 on 99
lll1.2 < Cavzllp" — p?lla- (3.142)

From assumptions (1) and (2) we deduce in the same way as in (3.133), that

(S(',D@") = 5(p*,D®*)),D($)) < vllp" = p*[l2|D#)l2 + 02Y1/2||D({b)”(27 )
3.143

which together with (3.141) gives

(S(plaD(’Ul)) - S(pQ,D(UQ)),D(fJ))) < yolIp* —p2||2||D('J;)||2 +
+022—i|| — P’ [2ID(#) |2 + C2Crup 2 (C%len,«)inv — 0?1, D)2, (3.144)

Setting 9 = 9 into equation (3.137) (and using (3.139)) we obtain

1

ov ,0(v ! 1)2
/f;(vl_“)ajdfjdw-l'/ (]Tz)¢1d$ +
+(S(p', D(") = S(*,D®*)), D)) = IIp" —p°[13,

where the convective term integrals can be fashioned using the Green theorem, writing

(9(1)1- - 02) ;i
22 9 9 _ 20,1 J
/Qvl oz, Y dz /Qv (v; —vj )8331 dz,

81} - ¢
1 _ 1 19
/Q(v v; )8 dx /Q(v v?)v v; o1, dz,

and with help of Hélder inequality and Korn’s inequality (||ull1,2 < k2|[D(u)||2) and the
imbedding theorem (|||, < Crvp,glle||1,-) each of them can be estimated by

~ Korn ~
[o! +v|lor [0} =3[l VO]l < Kollo! + 02|l [0} — v2[lon | D(%)]l2
Imbedding 9 9
koCrvm v [0t + 0|2y 0! — v lor | D (%) 2
such that
Ip' = P23 < (S(p',D(»")) — S(p*, D(v?)),D(¥)) +
+2kQCIMB’27J||vl +v D('l,[))”g (3]_4:5)

From (3.145) and (3.144) we can see that

Ip" =213 < yollp' — p*[2|| D (% )||2+02 ||p — P22l D®)]|2 +

1

2 2 ~
+C2Crv v <a||Vvlllr> o' = v* 1)l +
+2ksCrpzr 0" +0°[|2r 0" — 02|20 [ID () 2,

and (3.142) then gives us
Y0
Ip" = P13 < Cawwonolp' — P23 + Odiv,202a“pl - p’ll5 +

1
2 2
+ CivaCumar | Co ( ZIV0'I1) +2k2||v1+v2||2,~] o' el 9l (3140
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from which we directly observe
Aillpt = p?lla < Asfl’ — 0?1,

as we have defined

1 Ci+ Cy
A = — 3.147
1 Cdiv,2 Y0 c; ( )

Ay == CvB,2r

1
2 2
Oy (anwln,,) + 2o ! +02||2r] . (3.148)

As soon as the assumption (1) is met and A; is thus positive, we conclude

A
Ip' = p?2 < A—jnvl — 2|y, (3.149)

Introducing this last inequality into (3.141) it follows

yi/2 <

1
vo A 2 2
éA—j + Chyp o (anwlnr) ] [0} — 01,0 (3.150)

Recall then (3.155) from the proof of Lemma 3.17 (we just need to put »' and v? instead
of v*» and v), observe

ID(@") = D@?)|I7 < 1+ DY) + D)7,
and applying the Korn’s inequality [|w||1, < &y ||D(w)||,

o' —v?(I7, < E(QM" + 0"l + [v*])* " Y,
we finally conclude from (3.150), that

lo" —0?[[1; < Asllo’ — v, (3.151)

where Aj is defined as

Az =k (1Q + ot e + 021>

1
A2 2 ol )
O, A, + Civs 2 <01 Vv “r) ] .

When |[vl||1 s, [[v%]]1,» < &, we easily see that

1
202
A2 < CIMB,QT'/ 02 <a> + 4]{,‘2011\/[]3,% 5]
1
2 2 1 1
= CIMB,QT-/ 02 <a> + 4kQCIMB,2T 52] 52

1
202
A3 < kr(|Q|1/r + 26)271" 7 A2 + CIMB,ZT’ <_>

ClAl Cl

so it is clear that setting 0 small enough, we achieve A3 < 1. With that (3.151) gives
ot —v?(|1, = 0, (3.149) then gives |[p! — p?||2 = 0 and the proof is complete. O

42



3.7 Auxiliary lemmas

Lemma 3.16 (Fixed point) Let P : R" — R" be continuous. Let K be an open set,
star-shaped with respect to 0, i. e. there exists a continuous function k : 0B1(0) —
(0,4+00), such that

ZK (%) € K, Ve Bi(0),z#0
zr(z) € OK, Vx € 0B;(0),
(B1(0) being a closed ball in R™). Let P fulfil
(P(z),z) >0, Vze oK. (3.152)

Then there exists £y € K such that P(zg) = 0.

PROOF. We use the Brouwer theorem formulated in Lemma 3.6, see Evans [18] or Lions
[17]. Assume that such an zy doesn’t exist, i. e.

P(x) #0, Vre K.

Define a mapping a : B;(0) — K:
x
= 0
a(z) = {m (8). =# (3.153)
=0

we see that a is continuous and
a(z) € 0K Vz € 0B1(0). (3.154)
Define a continuous mapping M : B;(0) — B1(0) (in fact, it is on 0B1(0)):

 Plax))
M@ = 1Pl

It then follows from the Brouwer theorem that there exists some ¢ € By(0) such that
M(e) =,

(moreover ¢ € 0B1(0)). We multiply this equality by a(c) and using a(c) € 9K (3.154) we
obtain:

(3.152) 1 (3.153) < c > 9
0 > ——F—F(Plale)),ale)) = (c,alc ="Kk|— )| >0,
which gives the contradiction. 0

Lemma 3.17 Assuming [|[D(v*")|, < K and [|D(v)||, < K, there holds
ID(v"") ~ D) |2 < C(K)Y™. (3.107)
PROOF. Let us recall the definitions
D* (D(»"") — D(v)),

:=D(v) +s
1
no.__ 52% En) 2 sdar.
% ._/Q/O(l+|D|) D) — D(v)[2 dsd
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Then

ID@™) D)} = [ D) ~ D)l s =

= /Q[(1+ID(08")|+ID(0)I)’“ QID(vg")—D(v)IQ]%

(L+ D(™)| + D)) "7 do <

Holder

< (/Q(l +|D(@"")| + [D(v)])"~*|D(v*") — D(v)|” dw) 2

2

([a+1DE)1+ D@57 ds )

For all s € (0,1) clearly (1+ |D(v) + s(D(v*") — D(v))?) < (1 + |D(v®")| + |D(v)|)? and
thus

ID@w™) - D)II; < (Y")? |1+ [D(w™)] + [D@)[[.” .

|D@™) — D)|2 < Y"1 + [D@™)] + |D@)|I1>. (3.155)

From the assumptions then (3.107) follows. O
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4 Numerical results

4.1 Numerical method

For numerical simulations we use the software package featflow, the finite element
method package developed initially to solve the Navier-Stokes equations and modified
in order to solve also the Navier-Stokes-like system with the pressure- and the shear- de-
pendent viscosities. Information about the basic numerical methods used in the package,
about the efficiency and the mathematical background, as well as the software itself, is
available on the Internet on www.featflow.de. We will give just a brief survey, which
mostly retells what can be found in featflow manual [23] and in the book by S. Turek
[22].

4.1.1 The finite elements used

For solving the problem (P) the finite element approach is used. Let T} be a regular
decomposition of the domain 2 into quadrilaterals (see figure 2). An example of decom-

Figure 2: Quadrilateral element geometry

position of the domain can be seen in figure 3. The velocity and the pressure field is
then approximated as follows. The Q1/Q0 Stokes element (see Turek [22]) uses “rotated
bilinear” shape functions for velocity and piecewise constants for the pressure. For each
T € T}, independently we set

Q1(T) := {q € span(x* — 1%, x,n, 1)},

with respect to the coordinate system (x,n) spanned by the directions connecting the
midpoints of sides of T. We define the corresponding finite element spaces Hj and Ly:

T, be a regular decomposition of the domain €2 into quadrilaterals,
Ly, = {qn € L?(Q); gn|r = const.,VT € Ty},
Sh = {vn € L*(Q);vplr € Q1(T),VT € Ty,

vp, continuous w. r. t. the values in midpoints of edges, and

vy, be zero in the midpoints on 90},
Hh = Sh X Sh-
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Since the space H}, is nonconforming, i. e. Hy, ¢ Wé’Q(Q), we have to work with elemen-
twise defined bilinear forms and corresponding energy norms

ah(uh,vh) = Z /Vuh-V'vhdx,
TeT, ' T
lonlln = (ah(”ha”h))1/2a

br(qn,vn) = — Z qh|T/ divwy, dz.

TET, r

There exists jj, : L2(2) — Ly, the operator of piecewise constant interpolation, modified
to preserve the zero-mean value property, which satisfies for ¢ € LZ(Q) N WH2(Q)

lg — jnalla < chllgll 2-
Let 7, : W[l]’2(Q) — H}, be the global interpolation operator, which is determined by
(ipwv)(m;) =wv(m;), in all midpoints.
Then, as it can be found in [22], there holds the optimal error estimate
v — ipwlla + hllv — inolln < ch?|vllag, Yo € WP (Q) N W22(Q),

and, moreover, under the additional assumption that the meshes T}, are sufficiently uni-
form, there holds also the stability estimate

b
Blipnlla < max 2Pr¥h)

) VphELh7/phdx=0-
vieH,  |lvalln Q

where [ is even independent of the mesh aspect ratio.

A convergence analysis for this element pair is refered to [24]. One of the features of
this element choice is that it admits the simple upwind strategies which lead to matrices
with better properties, these methods are included in featflow and we use it without
providing any further description. For details see [22].

4.1.2 Discrete formulation of the problem
The discrete formulation for the classical Navier-Stokes problem customary reads:

an(n,¥n) + bn(Pns¥r) + 06 (Vh, VR, Yn) + bulan,vn) = (b,94),
V{¥n,qn} € Hy X L.

where we use the following bilinear forms:

an(vn, ) ==v Y /TVth/Jh dz,

TeT,

br(pn, ) = Y pulrQr(diveps),
TeT,

Qr(divepy) := Y [Tghn(mr) -nr,
rcor

(nr being an outer normal unit vector to the boundary of an element T, mp being a
midpoint of the edge I") and where the trilinear form 7, is some (upwind, in our case)
discretisation of the trilinear form representing the convective term

Uh(“h,’vha"ﬁh) ~ 77("1'7”,'1/’) = U
Q
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As we solve the generalised Navier-Stokes problem (P), we define a form
TAOTR IRIRTSE=Y / v(pn | D (un)|*) Dij(vn) Dij () da,
TeT, T

which is linear only with respect to v, and 9;,. The definition of the discrete weak solution
to (P) thus reads:

Definition 4.1 The pair (v, pp) € Hy, x Ly, is a discrete weak solution if for all (¥, qn) €
Hh X Lh

oh (Vs Py VR WYR) + 1 (VR V1, %8) + by (DhyPr) = (b,4h),
bn(qn,vn) = 0.

As we look for solution in the form
N N
Vp = Z Vhlaﬁu pbn = ZP}iﬂ';m
i=1 i=1

({ot N, {mi}X, being the bases in Hy, Ly), and as we denote the matrix corresponding
to the two nonlinear terms by N, (V, P}), we get the formula

Nw(Vh, Pp) Vi + BpPp = by,
BV, =o0.
By, is the gradient matrix and —B;; the transposed divergence matrix.

To solve this system of (nonlinear) algebraic equations, the adaptive fixed point defect
correction method is used. The basic iteration looks like:

e Having the previous iterations VZ*I, PZ*I
e calculate the nonlinear residual (defect)

(d31> _ <Nh(vg—1,Pg—1)V;;—1 + B,P} " - bh>
n—1 - n—1 )
@ B, V;

e and solve the Oseen-like subproblem
) 3] (2)- ()
BT 0 Py, d;}_l '
e Choose an appropriate w” ! and obtain Vi, P}

VZ _ Vz_l . n—1 Vh
pr)\prt)"%Y \p)

"=l i5 a step length parameter, which is adaptively computed.

w

Within the fixed point method we choose Nh(VZ_l,PZ_l) = N, (V' P, for more
details see [22].

Linear problems resulting in each step are solved by an efficient multi-grid method,
where Vanka-like block-Gauf}-Seidel scheme is used both as a smoother and a solver. For all
details, documentation and further analysis we refer to www.featflow.de, the featflow
manual [23] and the book [22]. An example of the mesh refinement is given in figure 3.

Since we use the formulation including the deformation tensor D(v) this approach in
itself is unstable due to its failure to satisfy a discrete Korn’s inequality. In the power-law
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Figure 3: An example of the coarse and the fine mesh.

version of featflow the stabilisation technique is thus included. For details we refer to
the paper [25].

We note, that in the featflow version available on the Internet, there is only shear-
dependent problem solver included. Fortunately, the method used in the solver enables us
to add the pressure dependence of viscosity by just a small modification. In fact, we did
change nothing concerning the method used, we only prescribed the pressure dependence
in the computation of the proper viscosity values (that are computed in each nonlinear step
in the course of the nonlinear matrix set-up) and we do one more modification concerning
the mean value of the pressure. Solving the linear subproblem (basically the same as it
would be in the classical Navier-Stokes case) there is no constraint on the pressure level
— the pressure field can be shifted arbitrarily, while it always satisfy the linear equations.
We thus introduce the constraint of the pressure mean value simply by projecting the
pressure field to the prescribed mean value after each nonlinear step.

4.2 Non-dimensional form of generalized Navier-Stokes equations

In the classical Navier-Stokes equations it is custamary to characterize the flow problem
by the non-dimensional Reynolds number, defined as
Re = ﬂ,
v

where U and V' are characteristic length and characteristic velocity, respectivelly, and v
is the viscosity (which is constant in Navier-Stokes case.) This is a consequence of the
fact, that if we introduce these characteristic quantities into equations, writing thus the
equations in the terms of non-dimensional velocity, pressure and length, the only term by
that the equations for different problems would differ, is exactly the Reynolds number.
Therefore, the flow problems specified by similar geometries and by the same Reynolds
numbers result in the same behavior.

As soon as we consider that viscosity depends non-trivially on the pressure and/or on
the velocity gradient, this is not the case in general; at least not without some amendment.
Since the viscosity is not constant, converting the equations into the non-dimensional form
we, in addition to the classical Navier-Stokes case, have to “adapt” the form, by that the
viscosity depends on this non-dimensional quantities.

Let U be the characteristic length (in our journal bearing problem let it be the radius
of the outer circle, i. e. of the bearing), and let V' be the characteristic velocity (in our
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case let it be the velocity prescribed on the inner circle, i. e. on the journal wall). Then
the non-dimensional quantities Z, ¥, p, and b we define by the following formulas:

v =V, p = V?pp,
. 4.1
z = Uz, b= b, (4.156)
Introducing this transformation into the generalized Navier-Stokes equation (P):
v; o +V <I—)> —div [u <I—), |D(v)|2> D(v)] =b
Oz; p P
we obtain the non-dimensional form (the continuity equation doesn’t change)
OV R T Vo N -
vi8—§ci + Vp — v div [u <V2 ,W|D(v)|2> D(v)] =b. (4.157)

In order to compare the results of our pressure- and shear- dependent model with
different parameters set and also with the classical Navier-Stokes model, we redefine our
viscosity formula writing v(p, D) = vy (p, D) such that we can define a Reynolds number

_uv

4

Re* (4.158)
again. The notation “Raynolds number” for this definition we could justify, as soon as we
specify 1.

We should realise that the classical Navier-Stokes model and our generalized Navier-
Stokes model are not in contradiction. We can consider the classical model with constant
viscosity as a good approximation of the generalized one, in the case when the pressure and
the shear rate are not too great. Following this idea, it seems to be reasonable to define
the Reynolds number using the viscosity value, which appears for the small pressures and
the small shear rates.

Therefore, we define

vy = 1/(0,0), (4.159)

and

iy 1 (p 1 LV

5.6 = - v(ZIDWP) = vV {506 ). (160
o p 1) U

According to (4.157), (4.158), (4.159) and (4.160), we shall write the non-dimensional

generalized Navier-Stokes equations (P) in the form

o 1 N ; -
dig=—+ VP — g div [o(p, |D(®)*)D(9)] = b, (4.161)
(3
where, in addition, we see that © fulfills
v(0,0) = 1.

We emphasize that, in this case, the Reynolds number defined in (4.158) does not have
exactly the same role as in the classical Navier-Stokes model. In the classical case, if we
change the parameters of the real-case problem such that the Reynolds number remains
unchanged, for instance, if we at once make the velocity twice as big and make all the
distances twice as short, the non-dimensional equations and the resulting flow behavior
does not change at all, since the Reynolds number does not change. On the contrary, in
the generalized model discussed here, this is true only for small pressure and shear rate
range, as long as the term o doesn’t have significant impact. Outside of this range we
must heed (4.160) and observe that the viscosity dependence both on the pressure and
the shear should be adapted in order to get the same resulting flow.
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4.2.1 The non-dimensional force

One of the most observed quantities in this work is the force acting on the journal or on
the bearing as well. We thus recall that the force f acting on a small face equipped by
the normal unit vector n and with the area S, in the space point z, is described by

f(@,n) = S[T(z)n,

where in our context the Cauchy stress tensor has the form given by (2.8)
_ p 2
T=—pl+pv <;, |D(v)] ) D(v).

By the transformation (4.156) we obtain the non-dimensional force f, such that there
holds

f=pV?U%f,
where we compute f from the non-dimensional quantities

f = STn,
T

il + =—0(5, ID@))D().
e
(This transformation works in three dimensions, thus we have to remember that both the
dimensional and the non-dimensional force relates to the (dimensional or non-dimensional)
unit of length of the journal bearing.)

In this work we observe the force acting on the journal (the inner circle) as an integral

over the inner circle boundary

f = STh ds,
Iy
approximated by simply summing over the boundary elements.

We do not provide any error estimate of the force observed by such a way. On the
other hand, we compute also the force acting on the outer circle, which might be the same
from the physical reasons. The difference of these two forces we take as a rough estimate
of possible error. In the results provided here this is seldom more then 1% of the presented
value.

4.3 Studied form of viscosity

As we have stated in section 2.3.1, the dependence of the viscosity on the pressure is
most often considered to be exponential. On the other hand, we have established the
existence due to the assumptions (1) and (2) (on page 18), i. e., among others, due to the
assumption that the partial derivative of v(p, |D|?) with respect to pressure is bounded.
Therefore, any exponential model of the form

v(p, |D|) = vp(|D|?) exp(ap)

or similar doesn’t met our assumptions and, up to our knowledge, the existence of a
solution for such a case is not clear.

However, in some bounded range of pressures we can get close to the exponential
pressure-dependence without abondoning the required constraint (2). We can find for
instance in Mélek, et al. [5], in Franta, et al. [1] or in Hron et al. [4] following viscosity
forms, which satisfy the conditions (1) and (2):

r—2
2

vi(p,|D|*) = (A+y(p) + |D|*) =, i=1,23,
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where A € (0,00), r € (1,2) and ~; takes one of the following forms for «, g > 0:

m = (1+a’p?) 73,
Y2 = (14 exp(ap)) 7,
exp(—agp) if p>0,
Y3 = .
1 if p <0,

and the parameters A, «, g, r satisfy

2—r
r—1/A\ 2 1
2—r)< — .
aq2—r) < ( 2 ) Cliv,2

(Cdgiv,2 is presented in section 3.5.) When r = 2, the above forms for the viscosity reduce
to the classical Navier-Stokes model, while when ¢ = 0 or o = 0 it reduces to a subclass
of the general Stokesian fluid (for |D|? >> A similar to the power-law model v = |D|"~2).

In this work, we are going to study the model, also introduced and numerically studied
in Hron et al. [4], of the following form:

r—=2
2

v(p, |D|?) = oo (A + (B + exp(ap)) "7 + |DI?) (4.162)

In the following lemma we show the condition under which the form (4.162) meets the
assumptions (1) and (2).

Lemma 4.2 (Parameters for model (4.162)) Assume A,«,[3,q be positive and r €
(1,2). Let A,B <1 and the condition

2—r
aq 1 r—1ABT\ 2
—= < 4.1
B~ Caive2—r < 2 (4.163)

be satisfied. Then the viscosity of the form

v(p,IDI?) = (A + (3 + explap)) @ + D) T (4.164)
meet the assumptions (1) and (2).
PROOF. Let us set o := % > 0 and denote
Q= A+ (B + exp(ap)) " + |D|?,
such that we shall write
v(p,IDP) = Q. (4.165)
As A <1 we can easily observe
Q> A+|D|*> > A(1 + |D]), (4.166)
and as 877 > 1 also
Q< A+p+ D]’ < (A+ B9 (1+|D*) <267(1+ |DJ*). (4.167)
There also holds
o — L+ B+ exp(ap)(A + |DP)
(8 + exp(ap))?
> (B + exp(ap)) ~I(L + (B + exp(ap)?| D). (4.168)
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We can differentiate v(p, [D|?)D as in assumption (1) and we obtain

Olv(p. D) Dy o i
5D Y3 = (8ijut — 20D DQ ) Q7 ikl =1,...,d,

where d;; 1,y = 1 if i = k,j = [, and d;; 11 = 0 otherwise.
We thus conclude

dlv(p, |D|*)Dj;] - (1 B M) o’ (4.166)

< AT7(1+ D),

0Dy, Q
and using
20D}, (416 20|D|* _ .
Q - A+ |D]2 —
we obtain
, o
a[y(p,8|11))i|j D] (1 - %> 0“5 0 o (%) (1+|D]2)~°.
-

We can therefore set C; := (1 — 20) (%q)a =(r—1) (B—;) > and Cy == AT in (1).

In order to fulfil (2) we are looking for 7, such that
ov(p,|DP)D
Ip

‘ < (1 +DP) %,

Differentiating (4.165) with respect to p we observe (using o — 1 < 0)

W = —0Q 7Y (~q)(B + exp(ap)) T taexp(ap)|D| <

(4.168) ID|

<" aqo(B + exp(ap)) (B + exp(ap))—1@+[1 + (B + exp(ap)) D27+

_4y_ [(B+exp(ap)'DPE _
[1+ (8 + exp(ap))?|D[?]o+T —

= aqo(B + exp(ap))?”

< agf %o(1+ D)7 s

Since —o — % < —% we can set yp = cagf™! = 2—5”aqﬁ_q.
Finally, we need to meet the condition vy < ﬁ 01%02 but it is enough to show
1 O
Y < — 4.169
Cliv,2 205 ( )

which is stronger (as C7 < C3). We substitute C, Co and vy which we have set above
and we obtain

2—r
_ q\ o o
2-roq < ! (r—1) G 1AZT.
2 B 7 Caivye 2 2

The last inequality is equivalent to the ones we have set in (4.163). g

Remark: If we consider (4.162)

r—2
2

v(p, [DI*) = (A + (8 + exp(ap))~* + |D[?)

instead of (4.164), we easily come to the condition

2—r
. Qaq 1 r—1Ap7\ 2
—= < 4.171
Voﬁq_cdiv,ﬂ—T’( 2 (4.171)

(4.170)

instead of (4.163).
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4.4 The investigated range of parameters

Looking at (4.162), one can see an amount of parameters that we have to set. In a real-life
case, of course, we fit them to come into agreement with experiment. Here we do not so
but we discuss the influence of some selected parameters on the behaviour of the resulting
flow. Nevertheless, not all parameters will be discussed here in such a way; some of them
will be set by a numerical reasons for example.

In this work, we focus on to study the flows with various Reynolds numbers Re* (defined
in (4.158)) and with various geometry parameters (namely the eccentricity). Several results
to the chosen form of viscosity within the geometry of eccentric annular rings are presented
in the paper of Hron et al. [4], where also the different values of parameters A and (3 are
discussed.

Let us point out the properties of the model (4.162) in a short survey.

e First of all, we immediately see that

v(p,-) is decreasing function of |[D|? for arbitrary p € R,

v(-,|D|?) is increasing function of p for arbitrary |D|?,
as soon as r < 2.

e Moreover, setting |D| great enough we notice that the remaining terms are bounded
by A 4 87? such that the shear dependence become dominant. We see that, asymp-
totycally, (4.162) behaves like the power-law model for big shear rates:

v(p,|D|?) ~ |D|""%, as |D| — oo, p arbitrary.

e If we set the pressure large, such that exp(ap) >> £ and, in the same moment, we
assume the A and |D| be fixed, we recognize that our viscosity is indeed bounded;
the pressure term vanishes and

v(p,|D|) ~ (A+ D)5, as p — oo, 4,|D| fixed.
Setting |D| = 0 the viscosity draws near to its supremum,

v(p,|D|) < A7,

e Finally, we consider the pressure large enough, such that we can neglect 3, but still
not too large, such that there still holds A + |D|? << exp(—qap). In this situation
we obtain

v(p,|D|) ~ exp(ap)q%Tr, for A,|D| << 1 and p being in some feasible range.
(4.172)

Let us remind what is presented in section 2.3.1, that the most used model for de-
scribing the pressure dependence of viscosity in practise is the simple exponential law
v(p) = exp(ap). For this reason and the last finding (4.172) we set in our simulations

2

o

q: (4.173)

such that the exponencial law is approximately fulfilled at least in some range of pressures
and when the shear is small. From the same reasons we put A and § small:

A:=p:=10"".
Our theoretical results give us the existence of a solution to (P) only for r € (2,2) (in
two dimensions). However, I provided the simulations with r within the range r € (1,2),

3

and T didn’t notice any significant change in behaviour near the value r = 3.
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There is an amount of various parameters that could be documented here, among
others the influence of several «, r, pg, R should be investigated. However, the scope of
this work is limited, thus we do not study all these parameters. In the following section,
we fix the journal radius, the mean value of the pressure and both the parameters r and a.
We focus on the differences between the Navier-Stokes model and our generalized model
(P) and mainly on the influence of the eccentricity and of the Reynolds number on the
resulting flow.
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4.5 Numerical results

4.5.1 The eccentricity and the Reynolds number influence
— classical Navier-Stokes model

As the first journal bearing simulations we show the results of the classical Navier-Stokes
model applied to the journal bearing geometry. The main aim of this section is to show the
influence of the varying eccentricity of the journal and the behaviour of the Navier-Stokes
model with various Reynolds numbers.

We set in all simulations the velocity prescribed on the inner circle to be 1, i. e. to be
equal to the characteristic velocity in the real problem. Similarly, we set 1 the radius of
the outer circle. The radius of the inner circle we set to be 0.8, which gives us the possible
range of absolute eccentricity € € (0,1) = e € (0,0.2).

The resulting pressure p distributions for the Reynolds numbers 1, 100 and 1000 and
for the eccentricities 0.3 and 0.8 are shown in figure 4. In figure 5 there is shown the
distribution of |D(9)| and figure 6 shows the streamlines of the resulting flow.

Re =100 Re = 1000

Figure 4: The pressure p distribution for the Navier-Stokes model

Since in the Navier-Stokes problem the pressure is given up to the constant, we pre-
scribe the meanvalue of the pressure to be zero in order to see the values better. We see
that the resulting pressure range is getting shorter just as the Reynolds number increases.
We show the maximum pressure values for several Reynolds numbers and several eccen-
tricities in table and graph 1. We do not present the minimum pressure values, we just
note that they show similar behaviour (but negative).

The most signigicant quantity, observed from the (steady-state) journal bearing com-
putation, is the force acting on the rotating journal by the fluid. For the manner how we
compute this force see section 4.2.1. In table and graph 2 we present the (non-dimensional)
magnitude of caused force, while its direction is shown in table and graph 3. The direc-
tion is described by an angle/w[rad] measured clockwise from the direction from centre
to the left on the figures; i. e. the value 0 means 9 o’clock, 0.5 means 12 o’clock, —0.5
means 6 o’clock. We see that the magnitude increases by increasing the eccentricity, and
decreases by increasing the Reynolds number. The differences in the direction of the force
grow up with the Reynolds number.

95



20 T T T T T

Re=100 X X
18 - Re=500 X .
Re=1000 O i
16 1
14 + 1
e | - Re=1 100 500 1000
2 e=0.1 12 0.16 0.08 0.08
S ol . 0.2 25 030 0.13 0.12
2 0.3 40 05 021 0.8
g sf ‘o 0.4 56 0.7 027 0.24
0.5 78 0.9 038 0.33
61 . 0.6 109 1.2 051 043
. ;7 0.7 162 1.9 077 0.65
- 0.8 278 3.1 1.2 1.0
.l B 0.9 712 78 26 21
X 095 | 1831 191 51 35
0 == e RN
0.1 02 03 04 05 06 07 08 09 1
Eccentricity

Table 1: Maximum pressure p values for the Navier-Stokes model

Looking at the pressure distribution in figure 4 already, we see that the pressure reaches
its maximum somewhere on the left-hand side (upstream the contraction) where the lubri-
cant arrives to the narrow gap, while on the right-hand side (downstream), where the fluid
leaves the contraction, the minimum values occure. In the case of Stokes flow (behaving
as a limit Re — 0) the pressure distribution is exactly symmetric with respect to the
vertical axis and the reacting force is parallel to the horizontal axis. A diversion from this
configuration is caused by the influence of the convective term.
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Figure 5: |D(9)| distribution for the Navier-Stokes

Figure 6: The stream-lines for the Navier-Stokes model
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Force magnitude

Force angle

Re=100 X
Re=500 X X
8 Re=1000 O [
7r v,'"v b
/ Re=1 100 500 1000
5| I [e=01 34038 016 0.15
0.2 67 0.77 032 029
sl X ] 0.3 101 118 0.50 0.45
VA 0.4 136 158 0.65 0.55
3t X % 0.5 172 203 0.84 0.71
" 0.6 213 249 1.00 0.82
2| X < 0.7 265 3.15 136 115
X B 0.8 339 4.08 1.86 1.61
e ] 0.9 493 6.07 3.01 274
Eé/;jj, g 0.95 694 827 3.79 3.4l
o L ‘

0.15

0.1 r

-0.2

01 02 03 04 05 06 07 08 09 1

Eccentricity

Table 2: Force magnitude for the Navier-Stokes model

Re=1
-0.00047
-0.00043
-0.00037
-0.00029
-0.00019
-0.00009

0.00002

0.00012

0.00019

0.00020

100

-0.042 -
-0.039 -
-0.032 -
-0.025 -
-0.015 -
-0.004 -
0.007
0.017
0.024
0.024

500
0.136
0.126
0.104
0.078
0.041
0.001
0.039
0.072
0.084
0.085

1000
-0.19
-0.18
-0.15
-0.12
-0.07
-0.02
0.03
0.08
0.10
0.11

T
Re=100 :

Rg:SOO " N

o ¥ ke e=0.1

//‘ | 02

: 0.3

.

t t §/>1< - >}< | 03

v | 0.6

s 0.7

yox P 0.9

| ,,,D” 7 b

g

o | | |

0.1 02 03 04 0506 0.7 08 09 1

Table 3: Force direction for the Navier-Stokes model
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4.5.2 The eccentricity influence for the problem (P), Re* = 1.

In this section we would like to show the differences that occure when we introduce the
generalized model, with the viscosity of the form (4.162)

r—2
2

v(p, |D|?) = oo (A + (B + exp(ap)) ™7 + |DI?) (4.162)

We set r = 1.5, as the lower border of the range within we proved the existence, and in
order to keep (4.173) we set ¢ = 4. For this moment, we set the Reynolds number (defined
in (4.158)) Re* = 1, where the (non-dimensional) pressure results to the greatest range in
the Navier-Stokes case.

In order to set the pressure-dependence parameter «, let us look into the paper of
Gwynllyw et al. [10], where a different viscosity model is introduced together with the
material constants following the experimental data. Although the model presented in
[10] is not at all the same as the one presented here, the pressure-dependence of the
viscosity is essentially determined (considering |[D| = 0) by the term exp(ap), where
@ =1.12 x 1078 /Pa. Therefore, in order to roughly approximate the real situation, we
assume « := 1078 herein. We emphasize that we do not aspire to present a real-life model
at all. All what is provided here follows the strictly illustrative purpose.

Cells
Pressure
i 783

values of the pressure p values of |D(v)]

Figure 7: Some Navier-Stokes results for ¢ = 0.5

Let us look to the previous section simulations. We can see, observing for instance
the case ¢ = 0.5 in figure 7, that on the majority part of the flow domain |[D|? ~ 30.
On the other side, the (non-dimensional) pressure results somewhere in the range p ~
—100---+100. Since we would like to have a positive pressure values (realising that in the
generalized Navier-Stokes case this becomes important, in contrast to the Navier-Stokes
case) we set the meanvalue py = 100 such that we can expect p ~ 0...200 from the
Navier-Stokes case. If we set p = U = V = 1 in the non-dimensional transformation
(4.160), we would obtain (3 + exp(ap))~? ~ from 1—-8x107% to 1. Note that setting
the Reynolds number (in the Navier-Stokes case in previous section) higher than one we
obtain even smaller range of the pressure field. Naturally, we wouldn’t obtain any visible
dependence of the viscosity on the pressure setting the parameters in this manner.

Hereafter we assume p = 1 for simplicity. We would like to recall the non-dimensional
transformation (4.160),

2
5, DO)) = (V5. 15 1D6) )
which we shall employ in order to balance the pressure- and the shear- dependence in
(4.162) better. (“Better” means in order to demonstrate the abilities of the model, not
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in order to approach the reality.) Note that all the time we keep the Reynolds number
Re* =1 in what follows.

First, we set the characteristic velocity V in such a way that (8 + exp(aV?p)) 9 ~
0.5 for p ~ 200. We thus set V = 300. We notice that for p ~ 100, that is for the
prescribed mean value of the pressure, we obtain (3 + exp(ap)) ¢ ~ 0.7. Therefore, as
a second step, we set the characteristic length U such that for |D(9)|? ~ 30 we obtain
|ID()|? = ‘U/—;|D('f))|2 ~ 0.7. We thus set U = 2000. As we have promised to keep Re* =1,
we must set 7y such that vy = (0,0) := UV = 6 x 10°. The last choice is, of course, a
very unrealistic one. We see that the claim to get (8 + exp(aV?p))~? ~ 0.5 same as the
demand to keep Re* = 1 together with the wish to balance the shear- and the pressure-
dependence of the viscosity at once is vindicable at most as a numerical experiment.

In figure 8 we show the viscosity field for the case ¢ = 0.5. We see that the viscosity is
somewhere greater then one, somewhere smaller. In table 4 we present the comparison of

e=0.5 e =0.95

Figure 8: The viscosity field for the problem (P), Re* = 1.

the following quantities for the Navier-Stokes and for the generalized Navier-Stokes case:
we show the minimum and maximum values of the pressure (we shifted the pressure to the
meanvalue 100 in the N.-S. case), of the shear |D(v)| and of the viscosity, then we show
the (non-dimensional) force magnitude and its direction.

Pmin Pmax | [D®)|min  [D(®)|max | Pmin  Pmax | force mag. force dir.
N.-S. 22 178 0.05 12.6 1 1 172 0.4998
(P) 41 159 0.002 612 0.51 1.13 137 0.5011

Table 4: A comparison between N.-S. and (P) model, Re* =1, e = 0.5.

In table and graph 5 we show the minimum and maximum viscosities for several
eccentricities for Re* = 1. In tables 6, 7 and 8 we present the maximum pressure and
|D(9)| values, the force magnitude and its direction, compared with the N.-S. case for
several eccentricities.

We clearly see that the chosen model is indeed able both of the pressure thickening
and the shear thinning.
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16 r ?<*
14 | I
X
1.2 s _ _
><><><>< Umin  Vmax
1 1 1e=0.1108 1.07

0.2 | 0.77 1.09
i 0.3 ]0.69 1.10
0.4 060 1.12
i 0.5 051 1.13
0.6 | 043 1.15
1 0.7 1035 1.18
0.8 026 1.22
1 0.9 0.17 1.35
0.95]0.12 1.64

Viscosity

0 . . . . . . . .
0.1 0.2 0.3 04 05 0.6 0.7 08 09 1
Eccentricity

Table 5: The minimum and maximum viscosities for (P), Re* = 1.

2000 — ;
1800 | .
1600 .
1400 ]
£ o00 | N.-S. gen. N.-S.
2 e=011] 113 110
E 1000 il 0.2 | 126 121
E 0.3 | 140 132
§ 800 g 04 | 157 144
i 0.5 178 159
600 I 0.6 | 209 179
400 | 0.7 | 262 208
0.8 378 261
200 i 0.9 | 813 412
5 0.95 | 1931 701

O L L L L L L
0.1 0.2 03 04 05 06 0.7 08 09 1
Eccentricity

Table 6: Maximum pressure p values, N.-S. and (P) model, Re* = 1.
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700

600

500 q

© N.-S. gen. N.-S.
2 400 Hle=01] 34 27
g'; / 02| 67 55
- | 0.3 | 101 82
5 0.4 | 136 109
05| 172 137
200 1 0.6 | 213 167
0.7 | 265 202
0 | 0.8 | 339 249
0.9 | 493 330
s 0.95 | 694 415

0 . . . . . . . .
0.1 02 03 04 05 06 0.7 08 09 1
Eccentricity

Table 7: Force magnitude, comparison between N.-S. and (P) model, Re* = 1.

0.0025
N.-S.  + X
0.002 | 9en- N.-S. X .
0.0015 | Fa
X
0.001 | 1 N.-S5.  gen. N.-S.
X e =0.1|-0.00047 -0.0013
0.0005 | ] 0.2 | -0.00043 -0.0010

Force angle

0.3 | -0.00037 -0.0007
0.4 | -0.00029 -0.0002
0.5 | -0.00019  0.0003
0.6 | -0.00009  0.0009
0.7 | 0.00002 0.0013
. 0.8 | 0.00012 0.0014
0.001 [ 1 0.9 | 0.00019 0.0014

0.95 | 0.00020 0.0022

-0.0005

-.0.0015 S S SR
0.10203040506070809 1

Eccentricity

Table 8: Force direction, comparison between N.-S. and (P) model, Re* = 1.
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4.5.3 Three examples how to get Re* =100 in the problem (P).

In the previous section we presented the differences occuring when the generalized model
(P) is introduced instead of the classical Navier-Stokes model. Here we would like to
emphasize, and to show by the numerical results, how could the flow differ for model
(P) with the same Reynolds number Re* but for different characteristic velocity V' and
characteristic length U.

In the previous case Re* = 1 we have set (in order to show both the pressure thickening
and the shear thinning capability of the model) the characteristic velocity V' = 300 and
the characteristic length U = 2000. The viscosity used in the Reynolds number definition,
i. e. the viscosity value for both the pressure and the shear rate being zero, has been set
Yo = 6 x 10° in order to preserve Re* = 1.

Herein, we provide the simulations with Re* = 100 and we present three different ways,
how the Reynolds number can be changed.

Example | The most “simple” possibility is to change (decrease) the viscosity 4. In this
case the (non-dimensional) viscosity formulation doesn’t change, the viscous term
is, essentially, purely weakened with respect to the convective term. Recalling the
sample Re* = 1 we shall set V = 300, U = 2000 and vy = 6 x 103.

Example Il Another way is to increase the characteristic length U. In that case we
should look to the viscosity formulation (4.160) and we see that the influence of the
shear |D(9)|? shall be weakened with respect to the pressure dependence (that will
not change). In this example we set V = 300, U = 2 x 10° and vy = 6 x 10°.

Example Il The last instance changes Re* by changing the characteristic velocity V
(which is the same as to increase the velocity prescribed on the boundary). We can
guess, looking to (4.160) that this will intensify both the shear and the pressure
impact on the viscosity. We set V =3 x 10*, U = 2000 and vy = 6 x 10°.

As we should keep the same mean value of the pressure, py = V2py (p = 1), which
is in the first two cases equal to 3002 x 100 = 9 x 105 = 9MPa, we should re-set the

. . . . 6
non-dimensional mean value and prescribe it to pg = % = 0.01.

In figure 9 we show the resulting viscosity fields to these three examples for the eccen-
tricities ¢ = 0.3, 0.8 while on figures 10 and 11 we present all the pressure p and |D(v)]
fields, stream-lines and also the viscosity field for the eccentricity ¢ = 0.5.

In tables and graphs 9, 10, 11 and 12 we present the maximum and minimum values
of viscosity 7, maximum pressure, the magnitude and the direction of the force acting on
the journal.

We see (compare with the case Re* = 1 on figure 8) that in case |, where the Reynolds
number was increased from 1 to 100 by simply decreasing the viscosity vy, the resulting
character of viscosity distribution does not change much. Although, since the resulting
pressure range is much shorter, the pressure impact on the viscosity also reduces.

In example |l, on the contrary, the shear influence on viscosity nearly disappeares; the
viscosity field qualitatively reproduces the pressure distribution in the domain.

The parameters that have been set in |l bring forth a litle bit problematic behaviour
for higher eccentricities; the shear thinning effect is in this case so enhanced, that the
viscosity %ﬁ near the small gap goes down close to 1 x 1077 (= Re ~ 107) for the case
of ¢ = 0.8. The convergence of the performed numerical method then becomes slow and
for € > 0.8 the computation fails. We guess that, due to such extreme shear thinning and
consequently due to such small viscosities, the steady-state flow becomes unstable.

Both the shear-thinning and the pressure-thickening qualities of the model give rise to
some problems occuring in the numerical simulations. For instance, the exponential of the
pressure causes numerical problems for higher pressures, at least until the approximative
solution converges enough. We thus simply cut the exponential for the pressures too large
and we relax this limitation once the solution converges enough.
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Figure 9: The viscosity field for the three examples of (P), Re* = 100.

0.025 T

O
Example | X
Example Il X
0.02 Example [l O A
0015 | x| | Example | Example Il Example Il
' e=0.110.88 1.063 | 1.094 1.094 | 0.078 0.21
. 0.2 | 0.81 1.079 | 1.094 1.095 | 0.067 0.23
g O_Ol%:éf—t%w—*f—%f'%wéw*w%w%’i7 0.3 ] 0.73 1.092 | 1.094 1.095 | 0.057 0.35
2 - 0.4 | 0.64 1.094 | 1.093 1.095 | 0.049 2.39
><>< . 0.5 | 0.56 1.095 | 1.093 1.095 | 0.041 1.16
0.005 | ><>\< o | 0.6 | 0.47 1.095 | 1.093 1.096 | 0.036 1.00
5 ><>< 0.7 |1 0.39 1.095 | 1.092 1.096 | 0.0023 0.65
0 T 0.8 | 0.30 1.096 | 1.088 1.098 | 0.0001 0.52
o BB BBBg..g Xf 0.9 | 0.19 1.097 | 1.070 1.102 - -
0.95 | 0.13 1.099 | 1.005 1.115 - -
table shows 7, graph shows /Re* = 0.010.
-0.005 .
0.1 02 03040506070809 1
Eccentricity

Table 9: Maximum and minimum viscosity 2, three examples of Re* = 100 for (P).
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Figure 10: A comparison of three examples for problem (P), Re* = 100, ¢ = 0.5.
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Figure 11: The viscosity field for the three examples of (P), Re* = 100, € = 0.5.
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10800 | SRS & 1
10600
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10400 E = 0.1 9.01 9.01 9.02 60
g 02| 9.03 9.02 9.03 84
T 10200 03] 9.04 9.04 9.05 112
2 04| 9.04 9.05 9.06 141
§ 10000 05| 9.08 9.06 9.09 193
.| 06| 9.11 9.08 9.12 248
3 0.7 ] 917 9.12 9.8 371
| 08| 928 918 9.31 487
09| 970 9.34 9.76 -
9400 0.95 | 10.72 9.62 10.88 -
We show the pressure p/kPa in the table.
9200 Example Il is not in the graph.
ooo ¥=H L L L L
0.1 0.2 0.3 04 05 06 0.7 08 09 1

Eccentricity

Table 10: Maximum pressure, three examples of Re* = 100 for problem (P).
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Example| X
8r Example Il X 7
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7+ 1 N.-S. | I Il
e=011]04 03 04 0.1
6 . 0.2 (0.8 06 08 0.2
g 03| 1.2 1.0 13 0.3
% 5t - 04|16 1.3 1.7 04
g 05120 1.7 22 0.5
g 4r 1 06 | 2.5 21 27 06
2 07132 26 34 08
3 1 0.8 | 4.1 3.3 44 1.2
09|61 46 65 -
2r 1 0.95 | 8.3 56 89 -
We show the values of f.
t ¥ Note that f = pU2V2f.
- R
O Q L L L L L L L
01 02 03 04 05 06 07 08 09 1
Eccentricity

Table 11: Force magnitude, three examples of Re* = 100 for problem (P).
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0.02 - 7

0.01

N.S. | T
£=0.1]-0.02 -0.050 -0.039 -0.35
] 0.2 | -0.038 -0.047 -0.036 -0.33
0.3 | -0.032 -0.041 -0.030 -0.23
] 0.4 | -0.025 -0.034 -0.023 -0.14
0.5 | -0.015 -0.025 -0.014 -0.00
1 0.6 | -0.004 -0.014 -0.004 0.15
0.7 | 0.007 -0.001 0.006 -0.01
0.8 | 0.017 0013 0.016 -0.16
o5k ] 09| 0024 0027 0023 -
0.95 | 0.024 0031 0025 -

0

-0.01

Force angle

-0.02

-0.03

0.04%F

-0.06 . . . . . . . .
0.1 02 03 04 05 06 0.7 0.8 09 1

Eccentricity

Table 12: Force direction, three examples of Re* = 100 for problem (P).

For more perceptible pressure dependence of viscosity there occure peaks of great
viscosity that cause a slow-down of convergence of the method. In the next section we
find that this effect comes from numerical reasons as it vanishes by refining the mesh. The
shear-thinnig effect of the fluid model, for once, could cause problems near the boundary
where the areas with large velocity gradient occure. We could help us by refining the
mesh in such areas. In the geometry presented in this work this has been partly ensured
automatically since the large velocity gradient occures in the region of the small gap
between the eccentrical circles where the mesh is also most fine. In the next section we
introduce also the modified coarse mesh with smaller elements near the boundary.
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4.5.4 Dependence of the quantities on the applied mesh

As we have no error estimate about how much the finite dimensional approximation solu-
tion differ from the exact “continuous” solution which we are looking for, it is customary
to verify that the approximative solution within the provided mesh refinement is good
enough by showing the mesh independence of the solution. It means that we should show
that the solution observed on the mesh we have chosen is close enough to the solution
observed on, say, twice finer or coarser mesh.

For the examples presented in this work we use the multigrid level 3, the greatest
one we are able to provide for all the described eccentricies. As our coarse mesh counts
from 180 elements for small eccentricities up to 600 for the case e = 0.95, the multigrid-
level 3 then leads to the count from 2880 up to 9600 elements. (It might be that such
a choice of the coarse mesh is unnecessarily fine, on the other hand, this choice leads to
very small range of aspect ratios of quadrilaterals.) Although we haven’t been able to
provide the multigrid-level 4 for all eccentricities and for that reason we present here all
the computational results on level 3 only, for the eccentricity € = 0.5 we present also the
level 4 results. Moreover, we introduce a modification of the coarse mesh with smaller
elements near the boundary. This modificated coarse mesh can be seen in figure 12 while
the coarse and the level-3-fine mesh used in the whole work are shown in figure 3.

Figure 12: The modified coarse mesh.

In table 13 we systematically compare the values resulting from multigrid levels 2, 3, 4
and from two types of coarse mesh, for Navier-Stokes equations and for the three examples
from section 4.5.3 for Re* = 100 and € = 0.5. We note that the maximum and minimum
values are quite sensitive to the choice of mesh since they could be determined by “sharp”
peaks occuring near the boundary where high gradients occure. Unfortunately, the force
acting on the journal, which is an important outcome of our simulations, is given just by
the values of pressure and of shear-rate on the boundary. The resulting values of acting
force are thus also quite responsive to the mesh refinement.

In figure 13 and 14 we show the viscosity and pressure fields resulting in examples
[, I and Il for ¢ = 0.5 for multigrid level 4 on the standard mesh and on the modified
mesh (from figure 12). We remind that the viscosity and pressure fields on level 3 on the
standard mesh are shown in figures 10 and 11. We do not show the stream lines nor the
velocity field since no visible differences show up.

As far as the Navier-Stokes case and the examples | and Il are concerned, we can
take the resulting flow behaviour as sufficient for illustrative purposes. The worst findings
concerns the example Il where the acting force differs between level 3 and 4 by more
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then 30%. We also see (figures 13 and 14) that for example Ill both the viscosity and
the pressure fields differ qualitatively. Unfortunately, we were not able to provide all the
simulations on level 4 or higher.

| mesh mg. || ﬁmin ﬁmax | |D(ﬁ)|m1n |D('ﬁ)|max | ﬁmin i)max | |f| f dir. |
2 | 98.84 101.15 0.016 307 1 1 2.67 -0.010
1 31 99.02 100.95 0.014 398 1 1 2.14 -0.014
N.-S 41 99.11 100.85 0.0006 485 1 1 1.89 -0.017
2 ] 98.95 100.99 0.011 781 1 1 2.29 -0.019
2 31 99.06 100.88 0.0008 1237 1 1 1.99 -0.020
41 99.12 100.82 0.0001 1785 1 1 1.84 -0.020
21 99.02 100.96 | 0.02503 360 0.58 1.0944 | 2.33 -0.018
1 3 99.20 100.76 | 0.00164 399 0.57  1.0947 | 1.81 -0.023
I 41 99.29 100.66 | 0.00111 928 0.53  1.0946 | 1.54 -0.028
21 99.19 100.74 | 0.00579 615 0.51 1.0945 | 1.81 -0.031
2 31 99.27 100.66 | 0.00060 985 0.46 1.0946 | 1.58 -0.033
41 99.31 100.62 | 0.00003 1492 0.41 1.0946 | 1.46 -0.033
2 ]| 98.76 101.23 | 0.01477 316 1.0929 1.0954 | 2.84 -0.010
1 31 98.95 101.02 | 0.01467 406 1.0930 1.0952 | 2.30 -0.013
0 41 99.03 100.92 | 0.00070 490 1.0931 1.0951 | 2.05 -0.015
2 || 98.88 101.06 | 0.00569 816 1.0925 1.0952 | 2.45 -0.018
2 3 || 98.98 100.96 | 0.00072 1280 1.0924 1.0951 | 2.16 -0.018
41 99.04 100.90 | 0.00008 1822 1.0920 1.0951 | 2.00 -0.018
2 || -0.52 0.41 0.19321 2186 0.0089 0.369 | 1.01 -0.13
1 3| -0.34 0.25 0.00193 1959 0.0388 1.231 | 0.57 -0.15
1 4| -0.24 0.16 0.00002 813 0.0483 2.890 | 0.35 -0.17
2] -0.43 0.23 0.96876 3005 0.0209 0.260 | 0.68 -0.23
2 31 -0.28 0.14 0.00055 1426 0.0420 1.456 | 0.40 -0.26
4] -0.21 0.10 | 0.0000001 1072 0.0451 1.654 | 0.28 -0.26

Table 13: The mesh dependence for N.-S. and the three examples of (P), ¢

mesh=2 denotes the modified mesh from figure 12.
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Figure 13: The mesh dependence of viscosity field for the three examples of (P), e = 0.5.
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Figure 14: The mesh dependence of pressure field for the three examples of (P), e = 0.5.
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5 Conclusion

The main result of this work is the proof of existence of a steady-state solution to one of the
generalizations of the Navier-Stokes problem with non-homogeneous Dirichlet boundary
condition. In Theorem 3.13 we assume that there is no inflow or outflow through the
boundary (such that the boundary consists of solid walls, for example) but there is the
tangential velocity prescribed, without any further “smallness” condition. In the context
of journal bearing, we thus establish the existence of a steady solution to the flow of
the lubricant with the pressure- and the shear- dependent viscosity between the eccentric
rotating cylinders (circles) where the speed of journal rotation is assumed to be arbitrary.

The proof strongly uses the assumption of no inflow and outflow and the result in
Kaplicky, Mélek, Stard [2], which assume the two-dimensional flow. Nevertheless, I believe
that for the special case of journal bearing geometry this result could be generalized to
three dimensions. This might be worth further study.

We also present the existence result to the Stokes-like system, which is provided under
more general conditions, in comparison with the Navier-Stokes-like problem. Among oth-
ers, we do not need the constraint of two-dimensions. Further, the uniqueness of solution
is stated, although for the Navier-Stokes-like system (P) for small data only.

The pressure level (which is considered up to the constant in the Navier-Stokes case
but which becomes into the new importance in the pressure dependent viscosity case) is
fixed by the mathematically natural condition on the mean value over the domain. This
is not the best formulation from the physical point of view, since the pressure level should
be better fixed in some small subdomain for example. This is also the question for further
analysis.

In the second part of the thesis numerical simulations of the journal bearing problem
are presented for one chosen sample form of the viscosity which fulfills the conditions
of our existence result. The eccentricity influence is systematically studied in order to
compare the behaviour of the Navier-Stokes and the generalized Navier-Stokes fluid in some
selected examples. The main aim is not to give any engineering prediction or quantitative
results but to show the extended capabilities of the generalized model same as the need
to determine and set the additional parameters occuring in the model.

Among others, we show both the pressure-thickening and the shear-thinning capability
of the chosen model (see section 4.5.2). However, its relevance should be furthermore
investigated in future. In practise, the exponential laws for the pressure dependence of
the viscosity are mostly considered. This can not be directly applied in the context of
our theoretical results, since we assume the derivative of the viscosity with respect to the
pressure bounded. Still, in some limited range of the pressure and in some limited range of
the shear, the exponential behaviour could be approximated by the viscosity form (4.162),

r—2
v(p,|D?) = 2o (A + (B + exp(ap))~? + D) =,
introduced in our numerical experiments. How satisfactory is the reality approached by
this model, that is a question for further searching.

The numerical method used in this work, i. e. the finite element approach processed
by the featflow software package using the fixed point iteration technique as a non-linear
solver and the multigrid linear solver (see section 4.1), seems to be general enough to solve
the nonlinear viscosity model we have chosen. Anyhow, the fixed point convergence rate,
especially at the geometry with higher eccentricies, starts to signify that it is not the most
efficient method. The Newton-method might be examined as another possible way.

71



References

[1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Franta, J. Mdlek, K. R. Rajagopal: On steady flows of fluids with pressure and
shear dependent viscosities, submitted to Royal Society

P. Kaplicky, J. Mdlek, J. Stara: On global existence of smooth two-dimensional steady
flows for a class of non-Newtonian fluids under various boundary conditions, in A.
Sequeira, H. Beirao da Veiga, J. H. Videman (eds.), Applied Nonlinear Analysis,
Kluwer Academic/Plenum Publishers (1999), 213-229

M. Franta: Flow of fluids with pressure dependent viscosities, MS-thesis on Charles
University in Prague, Faculty of Mathematics and Physics (2002)

J. Hron, J. Mdlek, J. Necas, K. R. Rajagopal: Numerical simulations and global exis-
tence of solutions of two dimensional flows of fluids with pressure and shear dependent
viscosities, Mathematics and Computers in Simulation 61(3), 297-315 (2003)

J. Malek, J. Necas, K. R. Rajagopal: Global analysis of the flows of fluids with
pressure dependent viscosities, submitted to Arch. Rat. mech. Anal. (2002)

C. Amrouche, V. Girault: Decomposition of vector spaces and application to the Stokes
problems in arbitrary dimension, Czechoslovak Math. J. 44, 109-141 (1994)

M. E. Bogovskii: Solution of the first boundary value problem for an equation of
continuity of an incompressible medium, Dokl. Akad. Nauk SSSR. 5, 1037-1040 (1979)

G. G. Stokes: On the theories of the internal friction of fluids in motion, and of
the equilibrium and motion of elastic solids, Trans. Cambridge Phil. Soc. 8, 287-305
(1845)

O. Reynolds: On the theory of lubrication and its application to Mr. Beauchamp
Tower’s experiments, including an experimental determination of the viscosity of olive
0il, Philos. Trans. R. Soc. 177(i), 157-234 (1886)

D. Rh. Gwynllyw, A. R. Davies, T. N. Phillips: On the effect of a piezoviscous
lubricant on the dynamics of a journal bearing, Journal of Rheology 40(6), 1239-1266
(1996)

J. F. Hutton, B. Jones, T. W. Bates: Effects of isotropic pressure on the high tem-
perature high shear viscosity of motor oils, Society of Automotive Engineers (1983),
Paper No. 830030

A. 7. Szeri: Fluid film lubrication: theory and design, Cambridge University Press
(1998)

P. W. Bridgman: The physics of high pressure, the MacMillan Company, New York
(1931)

A. R. Davies, X. K. Li: Numerical modeling of pressure and temperature effects in
viscoelastic flow between eccentrically rotating cylinders, J. Non-Newt. Fluid Mech.
54, 331-350 (1994)

J. Mélek, J. Necas, K. Rajagopal: Global analysis of the flows of fluids with pressure-
dependent viscosities, Arch. Rational Mech. Anal. 165, 243-269 (2003)

J. Mélek, J. Necas, K. Rajagopal: Global ezistence of solutions for flows of fluids with
pressure and shear dependent viscosities, Applied Mathematics Letters 15, 961-967
(2002)

72



[17]

[18]

[19]

[20]

[21]

[24]

[25]

J. Lions: Quelques Méthodes de Résolution des Problémes aux Limites Non Linéares,
Dunod (1969)

L. C. Evans: Partial Differential Equations Graduate Studies in Mathematics, Vol-
ume 19, American Mathematical Society (1998)

M. Renardy: Some remarks on the Navier-Stokes equations with a pressure-dependent
viscosity, Comm. Partial Differential Equations 11, 779-793 (1986)

F. Gazzola: A note on the evolution of Navier-Stokes equations with a pressure-
dependent viscosity, Z. Angew. Math. Phys. 48, 760-773 (1997)

F. Gazzola, P. Secchi: Some results about stationary Navier-Stokes equations with a
pressure-dependent viscosity, in R. Salvi (ed.), Navier-Stokes equations: theory and
numerical methods, Longman, pp. 31-37 (1998)

S. Turek: Efficient solvers for incompressible flow problems, An Algorithmic and
Computational Approach, Springer-Verlag Berlin Heidelberg (1999)

S. Turek, Chr. Becker: FEATFLOW, Finite element software for the incom-
pressible Navier-Stokes equations, User Manual (Release 1.1), to be found on
www.featflow.de

R. Rannacher, S. Turek: A simple nonconforming quadrilateral Stokes element, Nu-
mer. Meth. Part. Diff. Equ. 8, 97-111 (1992)

S. Turek, A. Ouazzi, R. Schmachtel: Multigrid methods for stabilized nonconforming
finite elements for incompressible flow involving the deformation tensor formulation,
Journal of Numerical Mathematics (10), no. 3, 235-248 (2002)

73



