NMSA407 LINEAR REGRESSION

PRESENTATION OF PLOTS USED IN THE LECTURES

MICHAL KULICH

KPMS MFF UK

JULY 24, 2023

Figure: Scatterplot of two continuous variables in \mathbb{R}^2 .

Figure: Scatterplot of two continuous variables in \mathbb{R}^2 with fitted line.

Figure: Zoom into the previous plot with visualized vertical distances (blue). Illustration of the least squares method.

Figure: Galton height data: original visualization by the author.

	FAMILY HEIGHTS, from RFF (add bo inclus to every entry in the Table)			
1	Father	Mother	Sons in order of height	Daughters in order of height.
1	18.5	7.0	13.2	9.2, 9.0, 9.0
2	15.5	6.5	13.5, 12.5	5.5. 5.5
3	15.0	about 4.0	11.0	8.0
4	15.0	4.0	10.5, 8.5	7.0, 4.5, 3.0
5	15.0	-1.5	12.0, 9.0, 8.0	6.5, 2.5, 2.5
6	14.0	8.0		9.5
7	14.0	8.0	16.5, 14.0, 13.0, 13.0	10.5, 4.0
8	14.0	6.5	215 0.0 1.0 1.0	10.5, 8.0, 6.0
9	14.5	6.0		6.0
10	14.0	5.5		5.5
11	14.0	2.0	14.0, 10.0	8.0, 7.0, 7.0, 6.0, 3.5, 3.0
12	14.0	1:0		5.0
13	13.0	7.0	11.0	2.0 GALTON D
14	13.0	7.0	8.0, 7.0	1117 124/28 50
15	13.0	6.5	11.0, 10.5	6.7
16	15.0	al + 5.0	12.0 10.5 102 102 02	27 62 10 20

Figure: Modified Galton data with fitted least squares line (red). The slope of the line is \approx 0.74. The means of the two variables are plotted as blue lines.

CHAPTER 2: LINEAR REGRESSION MODEL

Figure: Two sample problem expressed as a linear regression model $E Y = \beta_1 + \beta_2 Z$, where $Z = \mathcal{W}(G)$. The regression line has no interpretation except at Z = 0 or Z = 1.

CHAPTER 2: LINEAR REGRESSION MODEL

Figure: Data following a quadratic association.

CHAPTER 2: LINEAR REGRESSION MODEL

Figure: Data following a quadratic association with a fitted quadratic function.

CHAPTER 5: PREDICTION

Figure: Extrapolation beyond the range of data: case 1.

CHAPTER 5: PREDICTION

Figure: Extrapolation beyond the range of data: case 2.

CHAPTER 5: PREDICTION

Figure: Extrapolation beyond the range of data: two covariates, the prediction is made within the range of both.

Figure: Standardized residuals against observation order: assumptions satisfied. Smoothed by lowess smoother with window over 1/4 of the data range (blue).

Figure: Standardized residuals against observation order: an uncaptured periodic effect. Smoothed by lowess smoother with window over 1/4 of the data range (blue).

Figure: Standardized residuals against fitted values: assumptions satisfied. Smoothed by lowess smoother with window over 1/2 of the data range (blue).

Figure: Standardized residuals against fitted values: omitted quadratic effect. Smoothed by lowess smoother with window over 1/2 of the data range (blue).

Figure: Standardized residuals against a covariate: assumptions satisfied. Smoothed by lowess smoother with window over 1/2 of the data range (blue).

Figure: Standardized residuals against a covariate: omitted quadratic effect. Smoothed by lowess smoother with window over 1/2 of the data range (blue).

Figure: Standardized residuals against a covariate: assumptions satisfied.

Figure: Standardized residuals against a covariate: mild increase of residual variance with covariate *X*.

Figure: Square root of absolute standardized residuals against a covariate: assumptions satisfied. Smoothed by lowess smoother with window over 1/2 of the data range (blue).

Figure: Square root of absolute standardized residuals against a covariate: mild increase of residual variance with covariate *X*. Smoothed by lowess smoother with window over 1/2 of the data range (blue).

Figure: Boxplots of standardized residuals by a factor covariate: assumptions satisfied.

Figure: Boxplots of standardized residuals by a factor covariate: unequal variances of error terms and an omitted effect of another covariate.

Figure: Boxplots of standardized residuals by a factorized continuous covariate: assumptions satisfied.

Figure: Boxplots of standardized residuals by a factorized continuous covariate: omitted quadratic effect and mildly increasing variance with *X*.

Figure: Histogram of standardized residuals: normal distribution of errors.

Figure: Q-Q plot of standardized residuals: normal distribution of errors.

Figure: Histogram of standardized residuals: heavy-tailed distribution of errors (t_4) .

Figure: Q-Q plot of standardized residuals: heavy-tailed distribution of errors (t_4) .

Figure: Histogram of standardized residuals: right-skewed distribution of errors (negative Gumbel).

Figure: Q-Q plot of standardized residuals: right-skewed distribution of errors (negative Gumbel).

Figure: Partial residuals against a covariate: assumptions satisfied. Smoothed by lowess smoother with window over 1/2 of the data range (blue).

Figure: Partial residuals against a covariate: omitted quadratic effect. Smoothed by lowess smoother with window over 1/2 of the data range (blue).

Figure: B-spline bases of degree 1 over the interval (0, 10).

Figure: B-spline bases of degree 2 over the interval (0, 10).

Figure: B-spline bases of degree 3 over the interval (0, 10).

Figure: Logistic pipe function (red=true mean) fitted by regression line (blue).

Figure: Logistic pipe function (red=true mean) fitted by 10th degree polynomial (blue) and 3rd degree spline with 7 inner knots (green).

Figure: Sine-constant function (red=true mean) fitted by regression line (blue).

Figure: Sine-constant function (red=true mean) fitted by 10th degree polynomial (blue).

Figure: Sine-constant function (red=true mean) fitted by 1st degree (green) and 3rd degree (blue) spline with 7 inner knots.

Figure: Means of two factors with no interaction - version 1.

Figure: Means of two factors with no interaction - version 2.

Figure: Means of two factors with interaction - version 1.

Figure: Means of two factors with interaction - version 2.