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1. Simple Linear Regression: Technical

and Historical Review

Consider n measurements of continuous variables (x i, yi) for i = 1, . . . , n. Plot them as

Carthesian coordinates on a scatterplot (Figure 1.1). The observations seem to be located

along a line; there is a perceived linear relationship between the values of x and y, but not

an exact one. The goal is to identify a line passing through the observations (see Figure 1.2)

so that the line is “optimal” in some way.

Legendre (1805) proposed to find the line by minimizing the sum of squared vertical

distances of the observed points from the fitted line (see Figure 1.3). This is called the least

squares method.∗ It can be also attributed to Gauss, who later claimed (Gauss 1821) that he

had been using the method as early as in 1795 but had not published it.

Adrien-Marie Legendre (1752 – 1833) was a French mathematician who made numerous

contributions to mathematics. Well-known and important concepts such as the Legendre poly-

nomials and Legendre transformation are named after him.

Source: https://en.wikipedia.org/wiki/Adrien-Marie_Legendre

∗ Česky Metoda nejmenších čtverců.
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Figure 1.1.: Scatterplot of two continuous variables in R2.
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1. Simple Linear Regression: Technical and Historical Review

9

10

11

12

13

14

15

16

0 2 4 6 8 10

X

Y

Figure 1.2.: Scatterplot of two continuous variables in R2 with fitted line.

The least squares method is based on the presumption that the observed values of the

variable x i are measured precisely while yi are measured with an error that shifts them away

from the line that expresses the linear relationship between the two variables. This point of

view justifies the minimization of vertical distances instead of e.g. perpendicular distances.

Johann Carl Friedrich Gauss (1777 – 1855) was a German mathematician, geodesist, and

physicist who made significant contributions to many fields in mathematics and science. Gauss

published the second and third complete proofs of the fundamental theorem of algebra, made

important contributions to number theory and developed the theories of binary and ternary

quadratic forms. He is also credited with inventing the fast Fourier transform algorithm and

was instrumental in the discovery of the dwarf planet Ceres. His work on the motion of plane-

toids disturbed by large planets led to the introduction of the Gaussian gravitational constant

and the method of least squares, which is still used in all sciences to minimize measurement

error.

Source: https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss

Let us show how the idea of Legendre and Gauss works. Consider a line y = a+ bx and

choose a, b so that

SS(a, b) =

n∑

i=1

(yi − a − bx i)
2 (1.1)

is minimized over all a, b ∈ R. The sum in the expression (1.1) is called the sum of squares.∗

∗ Česky Součet čtverců.

5

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss


1. Simple Linear Regression: Technical and Historical Review
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Figure 1.3.: Zoomed subset of data from Figure 1.2 with visualized vertical distances of the

points from the line (blue).

The values a, b that minimize the sum of squares are easy to find:

∂ SS(a, b)

∂ a
= 2

n∑

i=1

(yi − a− bx i)(−1),

∂ SS(a, b)

∂ b
= 2

n∑

i=1

(yi − a− bx i)(−x i).

Thus, a and b are the solutions to the system of two equations

n∑

i=1

yi − na− b

n∑

i=1

x i = 0,

n∑

i=1

x i yi − a

n∑

i=1

x i − b

n∑

i=1

x2
i = 0.

These equations are called the normal equations∗.

Introducing the notation x = 1
n

∑n
i=1 x i and y = 1

n

∑n
i=1 yi , the normal equations can

be solved as follows. From the first equation, we get

na =

n∑

i=1

yi − b

n∑

i=1

x i, hence a = y − bx .

This shows that the fitted line passes through the point (x , y). Next, substituting in the

∗ Česky Normální rovnice.
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1. Simple Linear Regression: Technical and Historical Review

second equation for the optimal intercept a, we get

b
1

n

n∑

i=1

x2
i =

1

n

n∑

i=1

x i yi − ax =
1

n

n∑

i=1

x i yi − x y + bx2

b

�
1

n

n∑

i=1

x2
i − x2

�
=

1

n

n∑

i=1

x i yi − x y

b
1

n

n∑

i=1

(x i − x)2 =
1

n

n∑

i=1

(x i − x)(yi − y)

Finally,

b =

1
n

∑n
i=1 x i yi − x y

1
n

∑n
i=1

x2
i
− x2

=

∑n
i=1(x i − x)(yi − y)
∑n

i=1(x i − x)2
.

The former version is more computationally friendly, the latter version provides an insight

into the meaning of the slope b. Indeed,

b =
dcov (x , y)

dvar (x) = rx y

√√√dvar (y)
dvar (x) ,

where dcov (x , y) is the sample covariance of the observations (x i, yi), dvar (x) is the sam-

ple variance of x i,dvar (y) is the sample variance of yi, and rx y is the sample correlation

coefficient of the observations (x i, yi).

If the observations x i have the same sample variance as yi then the slope of the line

fitted by least squares is equal to the sample correlation coefficient rx y and therefore lies in

the interval 〈−1,1〉.
This phenomenon was noticed by sir Francis Galton (Galton 1886). He investigated the

relationship of the parents’ height with the height of their grown children. The recorded

heights (in inches) are shown in Figure 1.4 and Galton’s original visualization of the data in

Figure 1.5. If we focus on the heights of sons only (to eliminate the fact that daughters are

somewhat shorter) and plot them as yi against the average height of their parents (x i) we

obtain the scatterplot shown in Figure 1.6.

Sir Francis Galton (1822 – 1911) Darwin’s cousin, prodigy child, contributor to the fields of

statistics, meteorology, psychology, genetics, co-founder and proponent of eugenics.

Source: https://en.wikipedia.org/wiki/Francis_Galton

The red line in Figure 1.6 was fitted by the method of least squares and its slope is

about 0.74.∗ As explained above, this value corresponds to the sample correlation between

the average height of the parents and the height of their son. It means that if the average

height of the parents exceeds the population mean by 10 cm the son’s height is likely to be

above average as well, but only by some 7.4 cm. So, tall parents tend to have tall sons, but

∗ Galton used a different data set and estimated the slope of the fitted line to be about 0.66.

7
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1. Simple Linear Regression: Technical and Historical Review

Figure 1.4.: Galton height data: original pen/paper records.

Source: http://www.medicine.mcgill.ca/epidemiology/hanley/galton/

not as tall as the parents were. Galton called this feature regression towards the mean. Even

though the term regression∗ originally referred to this very specific feature that appears only

in certain data sets, it began to be used more generally to describe methods and techniques

used for fitting lines or curves to observed data.

The least squares method can be easily extended to fit certain non-linear relationships

between the two variables. For example, if the relationship is not linear but quadratic we

could use the same idea with the function

yi = a+ bx i + cx2
i .

We could find a, b, and c by the method of least squares by minimizing

SS(a, b, c) =

n∑

i=1

(yi − a − bx i − cx2
i )

2.

The estimated parameters a, b, and c are obtained by solving a system of three linear equa-

tions.

In this introductory chapter, we approached the problem of fitting a line or a curve

through a cloud of bivariate data. We did not introduce any underlying probabilistic model

∗ Česky Regrese.
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1. Simple Linear Regression: Technical and Historical Review

Figure 1.5.: Galton height data: original visualization by the author.

Source: https://en.wikipedia.org

150

155

160

165

170

175

180

185

190

195

200

160 165 170 175 180 185

Average height of parents [cm]

H
e
ig

h
t 

o
f 

s
o

n
 [

c
m

]

Figure 1.6.: Modified Galton data with fitted least squares line (red). The slope of the line

is ≈ 0.74. The means of the two variables are plotted as blue lines.
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1. Simple Linear Regression: Technical and Historical Review

for the data, did not formulate any assumptions and were not able to find neither an in-

terpretation for the estimates obtained by the least square method nor to investigate their

theoretical properties.
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2. Linear Regression Model

In this chapter, we formulate a general definition of the linear regression model. We explain

the meaning of the regression parameters and derive a general formula for the least squares

estimator. We introduce a lot of new technical terms, explain their meaning and investi-

gate some features of linear regression models that will be important for the developments

presented in subsequent chapters.

2.1. Definition and Assumptions

Consider a sequence of n independent random vectors (Yi, Xi), i = 1, . . . , n. The random

variable Yi is called the response∗ (also the dependent variable†, the outcome). The random

vector Xi contains p < n components Xi = (X i1, . . . , X ip)
T which are called the covariates

(also explanatory variables, predictors, regressors)‡.

Definition 2.1. The independent observations (Yi, Xi) satisfy the linear regression model if

the response Yi can be written as Yi = XT
i β + ǫi, that is,

Yi = β1X i1 + β2X i2 + · · ·+ βpX ip + ǫi,

where β = (β1, . . .βp)
T is a vector of unknown regression parameters (coefficients)§ and

the error terms¶ ǫ1, . . . ,ǫn are independent random variables such that E
�
ǫi

��Xi

�
= 0, and

var
�
ǫi

��Xi

�
= σ2

e . ∇

Note. On the covariates:

• The first covariate X i1 is usually taken as 1.

• The covariates Xi are often created by a transformation of an originally observed ran-

dom vector Zi. We suppress this in the notation.

• In certain applications, the covariates are fixed quantities rather than random vari-

ables. Because the definition of the linear model only specifies conditional moments

given the observed values of the covariates it applies to fixed covariates as well. Most

of the developments that follow in this course are not sensitive to differences between

fixed and random covariates either. The only occasion when fixed covariates need to

be treated differently than random covariates is the investigation of asymptotic prop-

erties. This will be discussed in Section ??.

∗ Česky odezva † Česky závislá proměnná ‡ Česky regresory, nezávisle proměnné, vysvětlující velǐciny, predik-

tory, kovariáty § Česky regresní koeficienty ¶ Česky chybové členy
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2. Linear Regression Model

Note. On the error terms:

• The random variables ǫi are required to have zero means and equal variances. It is

somewhat misleading to call them error terms because they include not only errors in

the measurement of the response but also the effects of any factors that influence the

mean of the response and are not included in the model. In econometrics, the error

terms are often called disturbances.

• The variance σ2
e of the error terms is called the residual variance∗.

• Sometimes, the assumptions on the error terms are strengthened to require that ǫi be

independent of Xi . Our definition does not require this.

The definition of the linear model can be reformulated in terms of conditional moments

of the response as follows:

• E
�
Yi

��Xi

�
= XT

i β = β1X i1 + β2X i2 + · · ·+ βpX ip,

• var
�
Yi

��Xi

�
= σ2

e .

Thus, the model makes assumptions about the first two conditional moments of the response:

the conditional mean must be linear in Xi through β and the conditional variance must be

constant.

The purpose of the linear regression model is not just to fit a line, curve or surface

through a cloud of data as it was presented in Chapter 1. Instead, we aim to express how the

expected value of the response Yi changes with different values of Xi and tell what influence

the individual covariates have on the expectation.

Notation. Let

Y =




Y1

Y2
...

Yn


 , X =




XT
1

XT
2
...

XT
n


 , ǫ =




ǫ1

ǫ2
...

ǫn


 .

The n by p matrix X is called the regression matrix†. It includes the observed covariate vectors

in the rows.

Now we can express the model for all the data together

Y = Xβ + ǫ

with E
�
ǫ
��X
�
= 0 and var
�
ǫ
��X
�
= σ2

e In or

• E
�
Y
��X
�
= Xβ ,

• var
�
Y
��X
�
= σ2

e In.

Note. From now on, we will often use the notation E , var for the conditional expectation

and variance given the covariates. So, we will write EYi instead of E
�
Yi

��Xi

�
and varYi

instead of var
�
Yi

��Xi

�
; similarly for Eǫi, varǫi, EY , var Y etc.

∗ Česky residuální rozptyl † Česky regresní matice
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2. Linear Regression Model

β1 + β2Z

β1

β1 + β2

Z=0

Non−G

Z=1

G

Group

Y

Figure 2.1.: Two sample problem expressed as a linear regression model EY = β1 + β2Z ,

where Z = 1(G). The regression line has no interpretation except at Z = 0 or

Z = 1.

Example 2.1 (Linear model for iid data). Suppose the responses Y1, . . . , Yn represent a

random sample of independent identically distributed random variables with EYi = µ and

varYi = σ
2. Then

Yi = µ+ ǫi,

where ǫi, i = 1, . . . , n are iid with zero mean and variance σ2. Thus, Yi satisfies a linear

regression model with Xi = 1, β = µ and σ2
e = σ

2. △

Example 2.2 (Simple linear regression). Suppose we observe a random sample of (Yi, Zi),

where Zi is univariate. Define the covariate vector as Xi = (1, Zi)
T. This leads to the regres-

sion matrix

X =




1 Z1

1 Z2
...

...

1 Zn


 ,

and the simple linear regression model (recall Chapter 1)

Yi = β1 + β2Zi + ǫi,

with EYi = β1 + β2Zi and varYi = σ
2
e . △

Example 2.3 (Two sample problem). In the previous example, take a special case with a

binary covariate Zi, which attains only values 0 or 1. Suppose that Zi indicates a membership

of the observation in some subgroup G, that is Zi = 1(i ∈ G).

13



2. Linear Regression Model
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Figure 2.2.: Data following a quadratic association with a fitted quadratic curve.

The simple linear regression model has the form

Yi = β1 + β21(i ∈ G) + ǫi,

that is,

EYi =

¨
β1 when i /∈ G,

β1 + β2 when i ∈ G,
varYi = σ

2
e .

This model specifies a two-sample location problem with equal variances in both groups

and possibly different expectations. The regression parameter β2 expresses the difference in

expectations between the groups.

An illustration of the two-sample location problem is provided by Figure 2.1. The re-

gression line is shown in red color but realize that it can only be interpreted at points that

actually appear in the data, that is Z = 1 (group G) or Z = 0 (group ¬G). △
The end of

lecture 1 (Oct

3, 2023)
Example 2.4 (Quadratic regression). Suppose we observe a random sample of (Yi , Zi),

where Zi is univariate. Define the covariate vector as Xi = (1, Zi, Z2
i )

T. This leads to the

regression matrix

X =




1 Z1 Z2
1

1 Z2 Z2
2

...
...

...

1 Zn Z2
n


 ,

and the quadratic regression model (recall Chapter 1)

Yi = β1 + β2Zi + β3Z2
i + ǫi,

with EYi = β1 + β2Zi + β3Z2
i (a quadratic function of Zi) and varYi = σ

2
e .

An illustration of the quadratic regression model is provided by Figure 2.2. △

14



2. Linear Regression Model

2.2. Interpretation of Regression Coefficients

Recall how the regression coefficients are related to the expectation of the response:

E
�
Yi

��Xi = (x i1, . . . , x ip)
�
= β1 x i1 + β2 x i2 + · · ·+ βp x ip.

Thus, the regression coefficients capture and express the influence of Xi on EYi.

Suppose that X i1 = 1 ∀i ∈ {1, . . . , n}. Then the coefficient pertaining to this covariate is

called the intercept (or the absolute term∗). Obviously,

β1 = E
�
Yi

��X i2 = 0, X i3 = 0, . . . , X ip = 0
�
.

The intercept provides the expectation of the response for an observation with zero

values of all covariates (except the first).

Next, take an observation with any covariate vector x = (1, x2, . . . , xp) and denote the

j-th unit vector of dimension p by e j = (0, . . . , 0,1,0, . . . , 0)T with 1 at the j-th position

( j = 2, . . . , p). We have

E
�
Yi

��Xi = x
�
= β1 + β2 x2 + · · ·+ βp xp

and

E
�
Yi

��Xi = x + e j

�
= β1 + β2 x2 + · · ·+ β j(x j + 1) + . . .+ βp xp.

After subtracting the top equation from the bottom one, we get

β j = E
�
Yi

��Xi = x + e j

�
− E
�
Yi

��Xi = x
�
, j = 2, . . . , p.

So, β j expresses the increase in EYi after the j-th covariate is increased by one unit and

all other covariates stay the same.†

It is important to realize that these interpretations do not always make sense.

Obviously, the intercept cannot be interpreted if an observation with all covariates equal to zero

does not exist.

In quadratic regression E
�
Yi

��Zi

�
= β1 + β2Zi + β3Z2

i
, with X i2 = Zi and X i3 = Z2

i
, one cannot

increase X i2 by a single unit while keeping X i3 the same and vice versa. So, β2 and β3 cannot be

interpreted either. This is because in this model a single variable Zi affects the values of several

covariates simultaneously.

Another cautionary note applies to interpretation of the absolute value of β j . It is not true that

a covariate with a very large value of β j affects the response more strongly than a covariate

with a parameter close to zero. The strength of the influence of the covariate also depends on

the units of measurement. By rescaling all values of X i j to mX i j , the coefficient β j is made m-

times smaller because β jX i j =
β j

m ·mX i j . Thus, rescaling a measurement made in kilometers into

meters makes the regression coefficient 1000 times smaller without changing anything about

the strength of the influence of that covariate on the response.

∗ Česky absolutní člen † Of course, if β j < 0, it expresses a decrease in the expectation.
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2. Linear Regression Model

2.3. Least Squares Estimation

Definition of the least squares estimator

Consider the model

Y = Xβ + ǫ

with Eǫ = 0 and var ǫ = σ2
e In. The regression matrix X has n rows and p columns, with

p < n, and the dimension of β is p.

Definition 2.2 (Least Squares Estimator). The the least squares estimator (LSE) bβ of β

is the point in Rp that minimizes the sum of squares

SSe(β) =

n∑

i=1

(Yi − XT
i β)

2 = (Y −Xβ)T(Y −Xβ) = ‖Y −Xβ‖2.

∇

In order to make the LSE unique, we will make the following assumption.

Assumption. Let the regression matrix Xn×p be of full rank, that is, r(X) = p.

If the regression matrix did not have full rank there would exist at least one covariate

(a column of X) that can be expressed as a linear combination of other covariates. Under

such circumstances the regression coefficients are not identifiable and the LSE bβ does not

have a unique value.

Example 2.5. Consider the model EY = β1 + β2X2 + β3X3 + β4X4 and suppose that X4 =

X2+X3. Then there are infinitely many values ofβ that always generate the same expectation

for the response:

EY = β1 + β2X2 + β3X3 + β4(X2 + X3) = β = (β1,β2,β3,β4)
T

= β1 + (β2 + β4)X2 + (β3 + β4)X3 = β = (β1,β2 + β4,β3 + β4, 0)T

= β1 +
�
β2 +

β4

2

�
X2 +
�
β3 +

β4

2

�
X3 +

β4

2
(X2 + X3) β =

�
β1,β2 +

β4

2
,β3 +

β4

2
,
β4

2

�T

et cetera. When the regression coefficients β do not have a unique value the model is called

unidentifiable∗. △

Through the entire course, we will avoid regression matrices that are not of full rank.

It makes little sense to deal with them because such models cannot be used in practice. We

can always satisfy our assumption by dropping the columns that can be expressed as linear

combination of other columns and so reducing the dimension of the model and the number

of parameters p until the regression matrix has a full rank.

∗ Česky neidentifikovatelný
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2. Linear Regression Model

Note. One could raise an objection that we consider X random and hence its rank is also a

random variable. The following simple example shows that it is possible to end up with a singular

regression matrix by mere bad luck.

Suppose EYi = β1 + β2X i where X i ∈ {0,1} is an indicator of membership of the individual in

some subgroup G . The rank of the regression matrix should be equal to p = 2. Let P [X i = 1]≡
π ∈ (0,1). If π = 0 or π = 1, the covariate generates the same value for all observations and

the regression matrix is of rank 1. But even if we exclude these cases by requiring π ∈ (0,1),

we still get

P [X i = 1 ∀i ∈ {1, . . . , n}] = πn > 0

P [X i = 0 ∀i ∈ {1, . . . , n}] = (1−π)n > 0,

so for any finite sample size n there is a positive probability of r(X) = 1. The probability,

however, converges to zero fairly quickly as n increases.

If it happens in practice, it means that either the group G or the complement GC are not repre-

sented in the data at all and we cannot estimate the effect of the group on the expectation of the

response. We have no choice but to drop the indicator of the group from the model and reduce

the number of columns of the regression matrix.

Note. In the general case, express Xi = (1, X M
i
) (separate the intercept from the rest of the

covariates). Then it holds: If varX M
i
> 0 then P [r(X) = p]→ 1 as n→∞.

Derivation of the explicit form of the LSE

Let us derive the explicit form of the least squares estimator. Decompose SSe(β) into several

parts.

SSe(β) = (Y−Xβ)T(Y−Xβ) = Y TY−βT
X
TY−Y T

Xβ+βT
X
T
Xβ = Y TY−2βT

X
TY+βT

X
T
Xβ .

We will use rules for matrix differentiation. In particular, for any vector c and any symmetric

matrix A
∂ βTc

∂ β
= c and

∂ βTAβ

∂ β
= 2Aβ .

We have,
∂βT
X
TY

∂β
= XTY and

∂βT
X
T
Xβ

∂β
= 2XTXβ ,

and hence
∂ SSe(β)

∂ β
= −2XTY + 2XTXβ .

The LSE bβ solves the system of p linear equations

X
T
X bβ = XTY , (2.1)

17



2. Linear Regression Model

which is called the normal equations∗ in this context.

When X is of rank p, as we assume, XTX is a p × p matrix of rank p and therefore its

inverse exists and is unique. It follows that the normal equations have a single solution,

which is
bβ = (XTX)−1

X
TY . (2.2)

This is the explicit form of the least squares estimator in linear regression.

To show that this estimator really minimizes the least squares criterion, we calculate the

Hessian matrix:
∂

∂βT

∂ SSe(β)

∂β
=
∂

∂βT

�
−2XTY + 2XTXβ

�
= 2XTX,

which is a positive definite matrix at any argument β ∈ Rp. Thus, the function SSe(β) is

strictly convex and we have found its global minimum.

Alternative verification that bβ is the LSE

There is another way how to verify that the solution bβ to the system of normal equa-

tions (2.1) is the LSE. Take any β ∈ Rp and write

SSe(β) = ‖Y −Xβ‖2 = ‖Y −X bβ +X bβ −Xβ‖2

= ‖Y −X bβ‖2 + ‖X( bβ −β)‖2 + 2(Y −X bβ)TX( bβ −β),

where the last term is zero because

( bβ −β)TXT(Y −X bβ) = ( bβ −β)T(XTY −XTX bβ) = 0

using the fact that bβ solves the normal equations XTX bβ = XTY .

Hence, at any β ∈ Rp,

SSe(β) = ‖Y −X bβ‖2 + ‖X( bβ −β)‖2 ≥ ‖Y −X bβ‖2 = SSe(
bβ)

and equality is attained if and only if

‖X( bβ −β)‖2 = ( bβ −β)TXTX( bβ −β) = 0.

When XTX is of full rank, this is equivalent to β = bβ . Thus, bβ is the unique minimizer of

SSe(β).

Fitted values and residuals

Definition 2.3 (Fitted values, residuals).

∗ Česky normální rovnice
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2. Linear Regression Model

(a) bY ≡ X bβ are called the fitted values∗.

(b) u ≡ Y − bY = Y −X bβ are called the residuals†.

Recall the definition of the linear regression model

Y = Xβ + ǫ,

where Xβ is the conditional mean of Y given the covariates and ǫ is random noise, and

compare it with the decomposition

Y = X bβ + u,

where the fitted values X bβ = bY represent the estimated mean of Y and the residuals u rep-

resent the estimated noise. The fitted values are the “best” approximations (or predictions)

of the responses that can be calculated from the covariates alone.

We can write bY = X bβ = X(XTX)−1
X
TY = HY , where H≡ X(XTX)−1

X
T is a square n×n

matrix. The matrix H is called the hat matrix‡ . It is symmetric, r(H) = p because r(X) = p,

and it is idempotent:

HH = X(XTX)−1
X
T
X(XTX)−1

X
T = X(XTX)−1

X
T = H.

Recall that any idempotent matrix satisfies r(H) = tr (H).

Throughout the whole course, we will frequently use the following trivial identities:

HX = X, (I−H)X = 0.

The end of

lecture 2 (Oct.

6, 2023)
The main linear properties of fitted values and residuals are summarized in the following

note.

Note.

(a) bY = HY where H ≡ X(XTX)−1
X
T is a symmetric, idempotent n× n matrix of rank p.

(b) u = (I−H)Y where I−H is a symmetric, idempotent n× n matrix of rank n− p. Also,

u = (I−H)ǫ.
(c) bY , u, and bβ are all linear transformations of bY .

(d) bY and u are always orthogonal.

Parts (a) and (c) of the note are trivial or have been proven above. As for part (b),

(I −H)(I − H) = I − 2H +HH = I − H, so (I −H) is indeed idempotent. Its rank can be

calculated using r(A) = tr (A) for any idempotent A:

r(I−H) = tr (I−H) = tr (I)− tr (H) = n− r(H) = n− p. (2.3)

∗ Česky vyrovnané hodnoty † Česky residua (sing. residuum) ‡ Česky nemá český ekvivalent
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2. Linear Regression Model

Finally, using the definition of the linear model and (I−H)X= 0,

u = (I−H)Y = (I−H)(Xβ + ǫ) = (I−H)Xβ + (I−H)ǫ = (I−H)ǫ.

As for (d), it is easy to verify that

bY Tu = Y T
H(I−H)Y = Y T(H−HH)Y = 0.

Geometric interpretation of the LSE

From Linear Algebra:

Consider a vector space V and two subspaces U and W such that V = U ∩W . U and W are

orthogonal iff uTw = 0 for any u ∈ U , w ∈W . Then we denote W = U⊥.

Any vector v ∈ V can be uniquely decomposed as uv + wv , where uv ∈ U and wv ∈ U⊥. This

is called orthogonal projection. Projection is a linear transformation of the vector through a

projection matrix P. The columns of P are the projections of basis vectors of V , and U is the

image of P.

A square matrix P is a projection matrix if and only if it is idempotent.

Let A = (a1, . . . , ap) be any basis of a subspace U of V . Then A(ATA)−1AT is a projection matrix

of V onto U .

Let M (X) be the linear subspace of Rn generated by the columns of the regression

matrix X (denote them by x j , j = 1, . . . , p):

M (X) =
§

x ∈ Rn : x =

p∑

j=1

q j x j ,q j ∈ R
ª

.

LetM (X)⊥ be the subspace orthogonal toM (X):

M (X)⊥ =
�
z ∈ Rn : zTx = 0 ∀x ∈M (X)

	
.

Then

• bY is the orthogonal projection of Y ∈ Rn to the p-dimensional subspaceM (X), with

the projection matrix H;

• u is the orthogonal projection of Y ∈ Rn to the n− p-dimensional subspaceM (X)⊥,

with the projection matrix I−H.

So, H and I −H are projection matrices to the two orthogonal subspaces, M (X) and

M (X)⊥, respectively.
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2. Linear Regression Model

2.4. Residual Sum of Squares

The residual sum of squares, denoted by SSe, is the sum of squared residuals and at the same

time the minimized value of the least squares criterion SSe(β). There are several alternative

ways how to express it.

SSe ≡ SSe(
bβ) = ‖Y −X bβ‖2 = ‖Y − bY‖2 = ‖u‖2 =

n∑

i=1

u2
i .

According to the note on p. 19, part (b), u = (I−H)Y = (I−H)ǫ. Because I−H is idempotent,

SSe can be expressed as a quadratic form in two alternative ways:

SSe = Y T(I−H)Y = ǫT(I−H)ǫ.

Another way to express residual sum of squares is this:

SSe = (Y −X bβ)T(Y −X bβ) = Y TY − Y T
X bβ − bβT

X
TY + bβT(XTX) bβ =

= Y TY − Y T
X bβ = Y TY − Y T bY .

(2.4)

2.5. Equivalence of Regression Models

Consider two different regression models for the same response Y :

Y = Xβ + ǫ, where Xn×p and βp×1,

and Y = X∗β∗ + ǫ∗, where X∗n×q and β∗q×1.

The two models are called equivalent if and only if M (X) = M (X∗), that is, the linear

subspaces generated by the columns of X and X∗, respectively, are the same. This is true if

and only if there exists a q× p matrix C such that X = X∗C. For this particular C, it follows

that Xβ = X∗Cβ and hence β∗ = Cβ and ǫ∗ = ǫ.

Because the fitted values bY in the two models are projections of the same vector Y into

the same linear subspace, they must be the same in both models. The same is true for the

residuals u and the residual sum of squares SSe.

When X∗n×q is a matrix of rank p < q then there exists a full rank matrix Xn×p that

generates an equivalent model. This is the mechanism how to avoid ever considering non-

full rank regression matrices. If a regression matrix is not of full rank we work instead with

an equivalent model, which is of full rank.

2.6. Model for iid Response

The simplest special case of a regression model describes independent and identically dis-

tributed responses. Let Y1, . . . , Yn be iid random variables with EYi = µ and varYi = σ
2
Y .
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2. Linear Regression Model

Write

Yi = µ+ (Yi −µ) ≡ X iβ + ǫi,

where X i = 1 for all i, β = µ, Eǫi = 0, and varǫi = σ
2
Y . This is a linear model. We can write

the vector containing all the responses in the form

Y = Xβ + ǫ

where X = (1, . . . , 1)T ≡ 1n, β = µ.

Notation.

• Let 1n be a column n-vector of ones; 1n = (1, . . . , 1)T.

• Let Jn = 1n1T

n
be an n× n matrix of ones.

Let us now calculate the least squares estimator and residual sum of squares. We have

bβ = (XTX)−1
X
TY = (1T

n1n)
−1(1T

nY ) =
1

n

n∑

i=1

Yi ≡ Y n.

So, the least squares estimate of the common expectation is the arithmetic average. Next,

the fitted values are bY = Y n1n and the residuals are u = Y − Y n1n. The residual sum of

squares is SSe = uTu =
∑n

i=1(Yi − Y n)
2.

2.7. Model With Centered Covariates

In order to gain further insights into the meaning of the LSE procedure, we need to center

the covariates. Consider the model

Y = Xβ + ǫ,

where the first column of X is 1n (the intercept column). Denote the rest of the regression

matrix as XR, that is, X = (1n|XR). The vector β is divided similarly into β =
�β1

βR

�
.

Each observation can be expressed as

Yi = β1 + β2X i2 + · · ·+ βpX ip + ǫi.

Let X j =
1
n

∑n
i=1

X i j for j = 2, . . . , n. Now, subtract from the value of each covariate the

respective mean (except for the intercept). We get

Yi = α+ β2(X i2 − X 2) + · · ·+ βp(X ip − X p) + ǫi,

where α = β1 + β2X 2 + · · ·+ βpX p to maintain the equality. This is the model with centered

covariates (shortly, the “centered model”). It is an equivalent model (the subspaces generated
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2. Linear Regression Model

by the columns of the regression matrix have not changed) and the parameters β2, . . . ,βp are

the same. Only the intercept parameter is different. The new intercept has the interpretation

E
�
Yi

��X i2 = X 2, . . . , X ip = X p

�
, the expected response for an individual with average value

in all covariates.

Message: If any covariate is shifted by a constant (the same number is added to/subtracted

from all values of the covariate) the regression parameter for that covariate is not changed.

Take Jn = 1n1T
n, an n × n matrix with 1 at all positions. The centered covariates can

be created by multiplication by the column centering matrix: XC = (In − n−1
Jn)XR. The

centered model can be written as

Y = (1n|XC)

�
α

βR

�
+ ǫ.

Let us find the least squares estimate of (α,βR). The original model and the centered

model are equivalent, they have the same fitted values bYi. Let bβ =
� bβ1

bβR

�
be the LSE in the

original model, bβ = (XTX)−1
X
TY . Then for all i = 1, . . . , n,

bYi =
bβ1 +
bβ2X i2 + · · ·+ bβpX ip

= bα+ bβ2(X i2 − X 2) + · · ·+ bβp(X ip − X p),

where bα = bβ1 +
bβ2X 2 + · · ·+ bβpX p. Because

� bα
bβR

�
generates the same fitted values, residuals

and SSe as the LSE of the original model, it must be the unique LSE in the centered model.

Message: If any covariate is shifted by a constant (the same number is added to/subtracted

from all values of the covariate) the LSE of the regression parameter for that covariate is not

changed.

The end of

lecture 3 (Oct.

10, 2023)
Now, apply the LSE formula to the centered model. We have

� bα
bβR

�
=
�
(1n|XC)

T(1n|XC)
�−1
(1n|XC)

TY

=

�
n 1T

nXC

X
T
C1n X

T
CXC

�−1�∑n
i=1 Yi

X
T
C Y

�
=

�
1
n 0

0 (XTCXC)
−1

��∑n
i=1 Yi

X
T
C Y

�
=

�
Y

(XTCXC)
−1(XTC Y )

�
.

We have verified that bα = Y . The fitted values in the centered model are

bYi = Y + bβ2(X i2 − X 2) + · · ·+ bβp(X ip − X p).

Because the original model has the same fitted values, we have the following conclusion.

Conclusion: If the model includes the intercept column, the fitted value evaluated at the average

value of each of the remaining covariates is equal to the average of the responses.

23



2. Linear Regression Model

We can also construct an additional way to express the residual sum of squares in a

model with intercept. In the original model, we have SSe = Y TY − Y T
X bβ , see (2.4). When

we apply this to the centered model, we get

SSe = Y TY − Y T(1n|XC)

�
Y
bβR

�
= Y TY − nY

2 − Y T
XC
bβR =

n∑

i=1

(Yi − Y )2 − Y T
XC
bβR.

2.8. Relationship to Sample Covariance Matrices

In this section, we still work under the assumption that 1n ∈ M (X) (the intercept is in-

cluded in the model). Denote by SX X the sample covariance matrix of the columns of

XR (the remaining columns of the regression matrix after excluding the intercept). It is

a (p − 1) × (p − 1) matrix with diagonal elements 1
n−1

∑n
i=1
(X i j − X j)

2 and off-diagonal

elements 1
n−1

∑n
i=1(X i j − X j)(X ik − X k). Obviously, SX X =

1
n−1X

T
CXC .

Now consider the sample covariance matrix∗ SX Y of the columns ofXR with the response

vector Y , a (p−1)×1 matrix with elements 1
n−1

∑n
i=1(X i j−X j)(Yi−Y ). Because

∑n
i=1(X i j−

X )Y = 0, we have SX Y =
1

n−1X
T
C Y .

Conclusion: If the model includes the intercept column, the LSE of the non-intercept parameters

can be expressed in terms of sample covariance matrices as follows: bβR = S
−1
X XSX Y .

We can also express the LSE of the intercept parameter using the results of the previous

section.

bβ1 = bα−
1

n
1T

nXR
bβR = Y − 1

n
1T

nXRS
−1
X XSX Y .

2.9. Decomposition of Sums of Squares

This can be done in two ways – for non-centered or centered response. The first decompo-

sition is universally valid but less useful. The second is more useful but holds only if the

intercept is included in the model.

Decomposition of sums of squares with non-centered response

Start with the sum of squared responses

‖Y‖2 = Y TY = Y T
HY + Y T(I−H)Y .

The last term on the right-hand side can be recognized as the residual sum of squares SSe. The

left-hand side is called the non-centered total sum of squares, denoted by SS∗T . The remaining

∗ actually, it is a vector
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term, Y T
HY , is called the non-centered regression sum of squares, denoted by SS∗R. We have

SS∗R = Y T
HY = Y T

HHY = ‖HY‖2 = ‖bY‖2 = ‖X bβ‖2 = bβT
X
T
X bβ

The non-centered decomposition is

n∑

i=1

Y 2
i

︸ ︷︷ ︸
SS∗T

=

n∑

i=1

bY 2
i

︸ ︷︷ ︸
SS∗R

+

n∑

i=1

(Yi − bYi)
2

︸ ︷︷ ︸
SSe

.

Decomposition of sums of squares with centered response

Assume that the model contains the intercept, 1n ∈ M (X). Calculate the mean response

Y = 1
n

∑n
i=1

Yi and subtract the mean from all responses, that is, take

Y − 1nY = Y − 1n
1
n1T

nY = Y − 1
nJnY .

Now apply the decomposition of sums of squares to these centered responses.

The total (centered) sum of squares is

SST ≡ ‖Y − 1
nJnY‖2 =

n∑

i=1

(Yi − Y )2.

This can be decomposed as

SST = (Y − 1
nJnY )TH(Y − 1

nJnY ) + (Y − 1
nJnY )T(I−H)(Y − 1

nJnY ).

Because the model contains the intercept, H1n = 1n, hence HJn = Jn, hence (I−H)Jn = 0.

Thus, the last term on the right-hand side is still the residual sum of squares SSe.

The remaining term, (Y − 1
nJn)

T
H(Y − 1

nJn), is the (centered) regression sum of squares,

denoted by SSR. We have

SSR = (Y − 1
nJnY )TH(Y − 1

nJnY ) = ‖H(Y − 1
nJnY )‖2 = ‖HY − 1

n HJn︸︷︷︸
Jn

Y‖2

= ‖bY − 1
nJnY‖2 = ‖bY − 1nY ‖2 =

n∑

i=1

(bYi − Y )2.

The centered decomposition of sums of squares is

n∑

i=1

(Yi − Y )2

︸ ︷︷ ︸
SST

=

n∑

i=1

(bYi − Y )2

︸ ︷︷ ︸
SSR

+

n∑

i=1

(Yi − bYi)
2

︸ ︷︷ ︸
SSe

.
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This can be interpreted as follows. The total sum of squares SST captures the total

variability in the response. This is decomposed into SSR, the variability that is explained by

the regression model (using the covariates), and into SSe, which is the part of variability

that could not be explained.

Notice that we have the mean of all responses in the expression for SSR instead of the

mean of the fitted values.

2.10. Coefficient of Determination

We continue to assume that the model contains the intercept, 1n ∈ M (X), and recall the

centered decomposition of sums of squares SST = SSR+SSe derived in the previous section.

Definition 2.4 (Coefficient of determination). The quantity

R2 =
SSR

SST

= 1− SSe

SST ∇

is called the coefficient of determination∗.

If we interpret SST as the total variability of the response and SSR as the variability

explained by the covariates included in the model, we can view R2 as the fraction of the

variability of the response that was explained by the regression model.

Notes on coefficient of determination

1. Obviously, 0≤ R2 ≤ 1.

2.
p

R2 is sometimes called multiple correlation coefficient† between the random variable

Y and random vector X .

3. R2 is equal to the square of the estimated correlation coefficient between Y and bY .

Proof.

R2 =
‖bY − 1nY‖2

‖Y − 1nY‖2
=

‖bY − 1nY ‖4

‖Y − 1nY‖2‖bY − 1nY ‖2

Now express the norm in the numerator differently:

‖bY − 1nY ‖2 = (bY − Y + Y − 1nY )T(bY − 1nY )

= (bY − Y )T(bY − 1nY )︸ ︷︷ ︸
=0

+(Y − 1nY )T(bY − 1nY )

= (Y − 1nY )T(bY − 1nY )

(2.5)

∗ Česky koeficient determinace † Česky koeficient mnohonásobné korelace
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The first term on the second line is zero because

(bY − Y )T(bY − 1nY ) = (HY − Y )T(HY − 1
nJnY ) = −Y T(I−H)(H− 1

nJn)Y

and

(I−H)(H− 1
nJn) = (I−H)H−

1
n(I−H)Jn = 0

because 1n ∈M (X). So,

R2 =



 (Y − 1nY )T(bY − 1nY )q
‖Y − 1nY ‖2‖bY − 1nY‖2




2

=dcor 2
(Y , bY ).

�

4. Another variant of the coefficient of determination is so called adjusted R2 defined as

R2
a = 1− n− 1

n− p

SSe

SST

.

The motivation for this is to subtract the ratio of two unbiased estimators of var ǫi and

varYi
∗.

The end of

lecture 4 (Oct.

13, 2023)

2.11. LSE Under Linear Restrictions

Consider the linear model Y = Xβ + ǫ with X of full rank. The least squares estimator
bβ = (XTX)−1

X
TY minimizes the residual sum of squares SSe(β) = ‖Y − Xβ‖2 over all

β ∈ Rp.

Now we impose an additional set of linear restrictions on the parameters: let Cβ = c,

where C is a q× p matrix with rank r(C) = q < p and c ∈ Rq. We will minimize SSe(β) over

the setB = {β ∈ Rp : Cβ = c}. Denote bβC = arg minβ∈B‖Y −Xβ‖2.

We can use the method of Lagrange multipliers to calculate bβC . Introduce the objective

function

S(β ,λ) = SSe(β) +λ
T(Cβ − c),

where λ ∈ Rq. Calculate

∂ S(β ,λ)

∂β
= −2XTY + 2XTXβ +CTλ

and set it equal to zero to find bβC . We get

X
T
X bβC = X

TY − 1

2
C
Tλ

∗ The fact that SSe/(n− p) is an unbiased estimator of σ2
e

will be established in Section ??.
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and hence

bβC = (X
T
X)−1[XTY − 1

2
C
Tλ] = bβ − 1

2
(XTX)−1

C
Tλ. (2.6)

The solution must satisfy the constraint C bβC = c, i.e.,

C bβ − 1

2
C(XTX)−1

C
Tλ= c.

Use this to identify λ: it is a solution to the system of linear equations

C bβ − c =
1

2
C(XTX)−1

C
Tλ.

Since r(X) = p and r(C) = q < p, the q × q matrix C(XTX)−1
C
T is of rank q, therefore

regular and invertible. Thus,

λ= 2[C(XTX)−1
C
T]−1(C bβ − c).

Plug this into (2.6) to obtain the result

bβC =
bβ − (XTX)−1

C
T[C(XTX)−1

C
T]−1(C bβ − c). (2.7)

However, this is only a suspicious point. We still need to show that it really minimizes

SSe(β) over β ∈B . So, take any β ∈ B and write

SSe(β) = ‖Y −Xβ‖2 = ‖Y −X bβC +X
bβC −Xβ‖2

= ‖Y −X bβC‖2 + ‖X( bβC −β)‖2 + 2(Y −X bβC )
T
X( bβC −β)

Look at the last term. From (2.7), we have

Y −X bβC = Y −X bβ +X(XTX)−1
C
T[C(XTX)−1

C
T]−1(C bβ − c)

and

(Y −X bβC)
T
X( bβC −β) = (Y −X bβ)TX︸ ︷︷ ︸

=uTX=0

( bβC −β)

+ (C bβ − c)T[C(XTX)−1
C
T]−1
C(XTX)−1

X
T
X( bβC −β)︸ ︷︷ ︸

=C( bβC−β)=c−c=0

= 0.

Thus, for any β ∈B ,

SSe(β) = SSe(
bβC ) + (
bβC −β)TXTX( bβC −β) ≥ SSe(

bβC )

and equality is attained if and only if β = bβC . Thus, bβC is the unique minimizer of SSe(β)

over β ∈B and therefore it is the restricted LSE.
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Now evaluate the difference between SSe = SSe( bβ) and SSe( bβC ). Since bβC minimizes

SSe over a subspace of Rp, SSe ≤ SSe(
bβC ). Write

SSe( bβC ) = ‖Y −X bβC‖2 = ‖Y −X bβ +X bβ −X bβC‖2

= ‖Y −X bβ‖2 + ‖X( bβ − bβC )‖2 + 2( bβ − bβC)
T
X
T(Y −X bβ)︸ ︷︷ ︸
=XTu=0

.

Hence

SSe( bβC ) = SSe + ( bβ − bβC )
T
X
T
X( bβ − bβC ).

From (2.7) we know that

bβ − bβC = (X
T
X)−1
C
T[C(XTX)−1

C
T]−1(C bβ − c).

Plug it into the previous expression and after canceling unnecessary terms we get

SSe(
bβC) = SSe + (C

bβ − c)T[C(XTX)−1
C
T]−1(C bβ − c). (2.8)

Summary: In this section, we have derived two important results for the least squares estimator
bβC calculated under linear restrictions Cβ = c:

bβC =
bβ − (XTX)−1

C
T[C(XTX)−1

C
T]−1(C bβ − c),

SSe(
bβC ) = SSe + (C

bβ − c)T[C(XTX)−1
C
T]−1(C bβ − c).
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3. Properties of the Least Squares

Estimator

In this chapter, we start investigating probabilistic and statistical properties of the quantities

that were introduced in the previous chapter. The first two sections apply to the general

linear regression model, the third section requires the additional condition of normality of

the responses (or of the error terms).

3.1. Moment Properties of the Least Squares Estimator

Consider the regression model

Y = Xβ + ǫ

with Eǫ = 0 and varǫ = σ2
e In or, equivalently, EY = Xβ and varY = σ2

e In. Let the regres-

sion matrix Xn×p have a full rank p < n. The least squares estimator bβ can be expressed

as
bβ = (XTX)−1

X
TY .

The first lemma specifies the first and the second moment of bβ (conditionally on the

covariates).

Lemma 3.1.

(i) E bβ = β , i.e., bβ is an unbiased estimator of β .

(ii) var bβ = σ2
e (X

T
X)−1. ♦

Proof. Treating X as a matrix of constants and Y as a random vector, we get:

E bβ = E (XTX)−1
X
TY = (XTX)−1

X
TEY = (XTX)−1

X
T
Xβ = β

and

var bβ = var (XTX)−1
X
TY = (XTX)−1

X
TvarY X(XTX)−1

= σ2
e (X

T
X)−1(XTX) (XTX)−1 = σ2

e (X
T
X)−1. �

The second lemma specifies the first and the second moments of the fitted values and

residuals. Its proof is also straightforward.
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3. Properties of the Least Squares Estimator

Lemma 3.2.

(i) E bY = EY = Xβ ,

(ii) Eu = 0,

(iii) var bY = σ2
eH,

(iv) varu = σ2
e (I−H). ♦

Proof. We have bY = HY and u = (I−H)Y , where H = X(XTX)−1
X
T is the projection matrix

to the subspaceM (X). H is symmetric, idempotent, and satisfies HX= X and (I−H)X = 0.

Hence

E bY = EHY = HEY = HXβ = Xβ ,

var bY = varHY = HvarYH = σ2
eHH= σ

2
eH.

Next,

Eu = E (I−H)Y = (I−H)EY = (I−H)Xβ = 0,

varu = var (I−H)Y = (I−H)varY (I−H) = σ2
e (I−H)(I−H) = σ2

e (I−H). �

It is important to realize one substantial difference. We can write the responses in two

different ways:

Y = Xβ + ǫ,

Y = X bβ + u

In the first case, the error terms ǫ are independent and have equal variances. However, in

the second case, the residuals u do not share these properties: they are not independent

(because the matrix I−H is not diagonal) and they do not have equal variances.

One can fix the unequal variances of the raw residuals by introducing so called stan-

dardized residuals. Standardized residuals have equal variances but are not independent.

Definition 3.1.

u∗i =
uip

1− hii

,

where hii is the i-th diagonal element of the matrix H, are called standardized residuals. ∇

Finally, we calculate the expectation of the residual sum of squares and derive an unbi-

ased estimator for the residual variance.

Lemma 3.3. ESSe = (n− p)σ2
e . ♦
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3. Properties of the Least Squares Estimator

Proof. Remembering the results from Section 2.4, we can write SSe = uTu = ǫT(I−H)ǫ.
By Lemma A.1 in the Appendix and using the fact that I−H is idempotent of rank n− p —

see equation (2.3) — we get

ESSe = EǫT(I−H)ǫ = 0+ tr
�
(I−H)varǫ
�

= σ2
e tr (I−H) = σ2

e r(I−H) = σ2
e (n− p). �

Definition 3.2.

bσ2
e =

SSe

n− p
≡ MSe

is called the estimated residual variance. The symbol MSe is just an alternative notation for

the expression SSe/(n− p). ∇

By Lemma 3.3, bσ2
e is an unbiased estimator of the residual variance.

3.2. Gauss-Markov Theorem

The Gauss-Markov theorem shows that the least squares estimator is in a certain sense op-

timal. It was originally formulated by Carl Friedrich Gauss in 1821 (Gauss 1821) under

the assumption of normality. It was extended to the general case by Andrey Andreyevich

Markov in 1912 (Markov 1912). Further extension to correlated errors of unequal variance

was provided by Aitken (1936).∗

Andrey Andreyevich Markov (1856 – 1922) was a Russian mathematician, who became

particularly famous for his pioneering work on stochastic processes (Markov property, Markov

chains, etc.).

Source: https://en.wikipedia.org/wiki/Andrey_Markov

Here we state the Gauss-Markov theorem in three different ways, after we introduce

and explain the optimality criterion needed for all three versions.

Definition 3.3. bθ is best linear unbiased estimator (BLUE) of θ based on the data vector Y

if and only if the following three conditions hold:

(i) bθ is linear, i.e., bθ = AY .

(ii) bθ is unbiased, i.e., E bθ = EAY = θ .

(iii) For any matrix B (of the same dimension as A) that satisfies EBY = θ

varBY − var bθ ≥ 0,

that is, the matrix on the left-hand side is positive semi-definite. ∇
∗ we do not talk about that extension in this course
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3. Properties of the Least Squares Estimator

Theorem 3.4 (Gauss-Markov, version I). Let the linear regression model specified in

Section 3.1 on page 30 be satisfied, let bβ be the LSE. Then cT bβ is the unique best linear

unbiased estimator of cTβ for any 0 6= c ∈ Rp. ♦

Proof.

• cT bβ is linear: cT bβ = cT(XTX)−1
X
TY .

• cT bβ is unbiased: E cT bβ = cTE bβ = cTβ .

• cT bβ has the smallest variance among all linear unbiased estimators:

Take another linear unbiased estimator aTY of cTβ , where a ∈ Rn. We have EaTY =

aT
Xβ = cTβ . Hence, aT

X = cT. Now,

varaTY = σ2
e aTa,

var cT bβ = σ2
e cT(XTX)−1c = σ2

e aT
X(XTX)−1

X
Ta = σ2

e aT
Ha.

Finally,

varaTY − var cT bβ = σ2
e aT(I−H)a ≥ 0

because I−H is positive semi-definite. The variances of both estimators are equal if

and only if (I−H)a = 0, which is equivalent to a = Ha or aT = aT
H. It follows that

the estimator aTY can be rewritten as

aTY = aT
HY = aT

X(XTX)−1
X
TY = aT

X bβ = cT bβ . �

Theorem 3.5 (Gauss-Markov, version II). Let the linear regression model specified in

Section 3.1 on page 30 be satisfied, let bβ be the LSE and C any q× p matrix. Then C bβ is a

best linear unbiased estimator of Cβ . ♦

Proof. This is an easy corollary of the preceding theorem. C bβ is obviously a linear and

unbiased estimator of Cβ . Consider another linear unbiased estimator AY with Aq×n. To be

unbiased, it must satisfy EAY = AXβ = Cβ and hence AX= C and r(A) = r(C).

Denote D = varAY−varC bβ and prove that D ≥ 0 by taking any non-zero vector d ∈ Rq

and showing that dT
Dd ≥ 0. We have dT

Dd = vardT
AY − vardT

C bβ . Also, EdT
AY =

dT
AXβ = dT

Cβ .

Hence, dTAY is a linear unbiased estimator of dTCβ and it follows from Theorem 3.4

that dTDd ≥ 0. �

Note. It follows from Theorem 3.5 that bβ is the BLUE of β . Just take a special case with

C = I.

Another special case of Theorem 3.5, with C = X, shows that bY is the BLUE of EY . This

produces the third version of the Gauss-Markov theorem.
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3. Properties of the Least Squares Estimator

Theorem 3.6 (Gauss-Markov, version III). Let the linear regression model specified in

Section 3.1 on page 30 be satisfied, let bβ be the LSE. Then bY is the best linear unbiased

estimator of EY . ♦

3.3. Properties of the Least Squares Estimator Under

Normality

In this section, we consider the linear regression model with the normality assumption. In

particular,

Y = Xβ + ǫ

with

ǫ ∼ Nn(0,σ2
e In) or, equivalently, Y ∼ Nn(Xβ ,σ2

e In).

The regression matrix Xn×p still has a full rank p < n. All the results of the previous two

sections are still valid. Under normality, we can derive additional results about distributions

of various quantities, which are summarized in the following lemma.

Lemma 3.7. Under the assumptions of the current section,

(i) bβ ∼ Np(β ,σ2
e (X

T
X)−1);

(ii) bY ∼ Nn(Xβ ,σ2
eH);

(iii) u ∼ Nn(0,σ2
e (I−H));

(iv)
SSe

σ2
e

∼ χ2
n−p;

(v) bβ and SSe are independent. ♦

Proof.

(i)–(iii) This is obvious: bβ , bY , and u are just linear transformations of Y . The first and

second moments have been provided by Lemmas 3.1 and 3.2.

(iv) As shown in Section 2.4, SSe = ǫ
T(I −H)ǫ, where ǫ ∼ Nn(0,σ2

e In). Because I−H is

idempotent of rank n− p it follows from Lemma A.2 in the Appendix that SSe/σ
2
e ∼

χ2
n−p.

(v) We have bβ = (XTX)−1
X
TY ≡ BY and σ2

e = Y T(I−H)Y ≡ YAY . By Lemma A.3 in the

Appendix it suffices to show that BA = 0. But

BA = (XTX)−1
X
T(I−H) = 0

because (I−H)X= 0. �
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3. Properties of the Least Squares Estimator

The linear regression model with normally distributed responses is a parametric model.

Let us derive the maximum likelihood estimators (MLE) of β and σ2
e .

We have Y ∼ Nn(Xβ ,σ2
e In) with unknown parameters θ = (βT,σ2

e )
T. The likelihood is

L(θ | Y ) = 1

(2π)n/2(σ2
e )

n/2
e
− 1

2σ2
e
(Y−Xβ)T(Y−Xβ)

and the log-likelihood

ℓ(β ,σ2
e | Y ) = −

n

2
log(2π)− n

2
logσ2

e −
1

2σ2
e

(Y −Xβ)T(Y −Xβ).

Regardless of σ2
e , to maximize this over β it is enough to minimize ‖Y − Xβ‖2 = SSe(β).

So, the least squares estimator bβ is the maximum likelihood estimator of β in the normal

linear regression model. Plug this into the log-likelihood to find the MLE of σ2
e :

ℓ( bβ ,σ2
e | Y ) = −

n

2
log(2π)− n

2
logσ2

e −
1

2σ2
e

SSe.

Now,

∂ ℓ( bβ ,σ2
e | Y )

∂ σ2
e

= −n

2
· 1

σ2
e

+
1

2

SSe

(σ2
e )

2

The MLE solves the equation
n

σ2
e

=
SSe

(σ2
e )

2

and the solution is SSe/n. We have proven the following lemma.

Lemma 3.8. In the normal linear regression model, the maximum likelihood estimator of

β is the LSE bβ = (XTX)−1(XTY ) and the maximum likelihood estimator of σ2
e is SSe/n. ♦

Note. The MLE of σ2
e differs from the unbiased estimator bσ2

e of Definition 3.2 by dividing

SSe with n instead of n− 1. This difference becomes negligible as n increases.
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Notation

Here we list symbols that are consistently used in the same meaning throughout the whole

text (perhaps with a few exceptions). Symbols that are introduced and used locally (e.g., in

one section) are usually not listed here.

ǫ column vector of error terms

H hat matrix

hii the i-th diagonal element of the hat matrix H

1n column vector of ones of length n

Jn 1n1T
n, n× n matrix of ones

M (X) subspace generated by the columns of X

M (X)⊥ subspace orthogonal to the columns of X

R2 coefficient of determination

SSe(β) sum of squares taken as a function of β

SSe residual sum of squares (minimized over β)

SSR regression sum of squares (centered)

SST total sum of squares (centered)

u column vector of residuals

u∗i the i-th standardized residual

X regression matrix containing covariate vectors in rows

Y column vector of responses

bY column vector of fitted values
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A. Appendix

The Appendix presents some useful results that are used in this course.

Lemma A.1. Let X be any random vector of dimension n with mean µ and finite variance

matrix Σ. Let A be any n× n matrix. Then

EXT
AX = µTAµ+ tr (AΣ). ♦

Proof.

EXT
AX = E (X −µ+µ)TA(X −µ+µ)
= E tr
�
(X −µ)TA(X −µ)

�
+ E (X −µ)TAµ+ EµTA(X −µ) + EµTAµ

= tr
�
E (X −µ)(X −µ)TA

�
+ 0+ 0+µTAµ

= tr
�
(varX)A
�
+µTAµ= µTAµ+ tr (AΣ). �

Lemma A.2. Let X ∼ Nn(0,Σ). Let A be an n×n matrix such that AΣ is idempotent. Then

XT
AX = χ2

tr (AΣ)
. ♦

Lemma A.3. Let X ∼ Nn(µ,Σ). Then XT
AX and BX are independent if and only if

BΣA= 0. ♦
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