
R for Beginners

Emmanuel Paradis

Institut des Sciences de l’Évolution
Université Montpellier II

F-34095 Montpellier cédex 05
France

E-mail: paradis@isem.univ-montp2.fr

I thank Julien Claude, Christophe Declercq, Élodie Gazave, Friedrich Leisch and Mathieu Ros
for their comments and suggestions on earlier versions of this document. I am also grateful to all
the members of the R Development Core Team for their considerable efforts in developing R and
animating the discussion list ‘rhelp’. Thanks also to the R users whose questions or comments
helped me to write “R for Beginners”.

c
�

2002, Emmanuel Paradis (19th August 2002)

1

Contents

1 Preamble 3

2 A few concepts before starting 4
2.1 How R works . 4
2.2 Creating, listing and deleting the objects in memory 5
2.3 The on-line help . 7

3 Data with R 8
3.1 Objects . 8
3.2 Reading data in a file . 10
3.3 Saving data . 13
3.4 Generating data . 13

3.4.1 Regular sequences . 13
3.4.2 Random sequences . 15

3.5 Manipulating objects . 16
3.5.1 Creating objects . 16
3.5.2 Converting objects . 20
3.5.3 Operators . 21
3.5.4 Accessing the values of an object: the indexing system 22
3.5.5 Accessing the values of an object with names 23
3.5.6 The data editor . 23
3.5.7 Arithmetics and simple functions . 24
3.5.8 Matrix computation . 26

4 Graphics with R 27
4.1 Managing graphics . 27

4.1.1 Opening several graphical devices . 27
4.1.2 Partitioning a graphic . 28

4.2 Graphical functions . 30
4.3 Low-level plotting commands . 31
4.4 Graphical parameters . 33
4.5 A practical example . 34
4.6 The grid and lattice packages . 37

5 Statistical analyses with R 42
5.1 A simple example of analysis of variance . 44
5.2 Formulae . 46
5.3 Generic functions . 46
5.4 Packages . 49

6 Programming with R in pratice 51
6.1 Loops and vectorization . 51
6.2 Writing a program in R . 53
6.3 Writing your own functions . 54

7 Literature on R 56

2

1 Preamble

The goal of the present document is to give a starting point for people newly interested in R. I
chose to emphasize on the understanding of how R works, with the aim of a current rather than
expert use. Given that the possibilities offered by R are vast, it is useful to a beginner to get some
notions and concepts in order to progress easily subsequently. I tried to simplify as much as I
could the explanations to make them understandable by all, while giving useful details, sometimes
with tables.

R is a system for statistical analyses and graphics created by Ross Ihaka and Robert Gentle-
man1. R is both a software and a language considered as a dialect of the language S created by the
AT&T Bell Laboratories. S is available as the software S-PLUS commercialized by Insightful2 .
There are important differences in the designs of R and of S: those who want to know more on
this point can read the paper by Ihaka & Gentleman (1996) or the R-FAQ3, a copy of which is also
distributed with the software.

R is freely distributed under the terms of the GNU General Public Licence4; its development
and distribution are carried out by several statisticians known as the R Development Core Team.

R is available in several forms: the sources written mainly in C (and some routines in Fortran),
essentially for Unix and Linux machines, or some pre-compiled binaries for Windows, Linux
(Debian, Mandrake, RedHat, SuSe), Macintosh and Alpha Unix. The files needed to install R,
either from the sources or from the pre-compiled binaries, are distributed from the internet site of
the Comprehensive R Archive Network (CRAN)5 where the instructions for the installation are also
available. Regarding the distributions of Linux (Debian, . . .), the binaries are generally available
for the most recent versions of these distributions and of R; look at the CRAN site if necessary.

R has many functions for statistical analyses and graphics; the latter are visualized immediately
in their own window and can be saved in various formats (jpg, png, bmp, ps, pdf, emf, pictex, xfig;
the available formats may depend on the operating system). The results from a statistical analysis
are displayed on the screen, some intermediate results (P-values, regression coefficients, residuals,
. . .) can be saved, written in a file, or used in subsequent analyses.

The R language allows the user, for instance, to program loops to successively analyse several
data sets. It is also possible to combine in a single program different statistical functions to perform
more complex analyses. The R users may benefit of a large number of programs written for S and
available on internet6 , most of these programs can be used directly with R.

At first, R could seem too complex for a non-specialist. This may not be true actually. In fact,
a prominent feature of R is its flexibility. Whereas a classical software displays directly the results
of an analysis, R stores these results in an “object”, so that an analysis can be done with no result
displayed. The user may be surprised by this, but such a feature is very useful. Indeed, the user
can extract only the part of the results which is of interest. For example, if one runs a series of
20 regressions and wants to compare the different regression coefficients, R can display only the
estimated coefficients: thus the results may take a single line, whereas a classical software could
well open 20 results windows. We will see other examples illustrating the flexibility of a system
such as R compared to traditional softwares.

1Ihaka R. & Gentleman R. 1996. R: a language for data analysis and graphics. Journal of Computational and
Graphical Statistics 5: 299–314.

2see http://www.insightful.com/products/splus/default.html for more information
3http://cran.r-project.org/doc/FAQ/R-FAQ.html
4for more information: http://www.gnu.org/
5http://cran.r-project.org/
6for example: http://stat.cmu.edu/S/

3

functions and operators

�

“data” objects

�

��
�

�� �

�
�
�
�
�
� ���

“results” objects

.../library/base/
/ctest/

...

library of
functions

�

data
files

�
�

internet�

PS JPEG . . .

keyboard
mouse

�
commands

screen

Active memory Hard disk

Figure 1: A schematic view of how R works.

2 A few concepts before starting

Once R is installed on your computer, the software is accessed by launching the corresponding
executable. The prompt, by default ‘>’, indicates that R is waiting for your commands. Under
Windows, some commands (accessing the on-line help, opening files, . . .) can be executed via the
pull-down menus. At this stage, a new user is likely to wonder “What do I do now?” It is indeed
very useful to have a few ideas on how R works when it is used for the first time, and this is what
we will see now.

We shall see first briefly how R works. Then, I will describe the “assign” operator which
allows creating objects, how to basicly manage objects in memory, and finally how to use the
on-line help which, by contrast to many softwares, is very useful in a current use.

2.1 How R works

R is an object-oriented language: this is quite a complex wording which hides the simplicity and
flexibility of R. The fact that R is a language may deter some users thinking “I can’t program”.
This should not be the case for two reasons. Firstly, R is an interpreted language, not a compiled
one, meaning that all commands typed on the keyboard are directly executed without requiring to
build a complete program like in most computer languages (C, Fortran, Pascal, . . .).

Secondly, R’s syntax is very simple and intuitive. For instance, a linear regression can be
done with the command lm(y ˜ x). In R, in order to be executed, a function always needs to
be written with parentheses, even if there is nothing within them (e.g., ls()). If one just types
the name of a function without parentheses, R will display the contents of the function. In this
document, the names of the functions are generally written with parentheses in order to distinguish
them from other objects, unless the text indicates clearly so.

Object-oriented means that variables, data, functions, results, etc, are stored in the active mem-
ory of the computer in the form of objects which have a name. The user can do actions on these
objects with operators (arithmetic, logical, and comparison) and functions (which are themselves
objects).

The use of operators is relatively intuitive, we will see the details latter (p. 21). An R function
may be sketched as follows:

4

arguments � �

options � �

function�

default arguments

��� result

The arguments can be objects (“data”, formulae, expressions, . . .), some of which could be
defined by default in the function; these default values may be modified by the user with the
options. An R function may require no argument: either all arguments are defined by default (and
their values can be modified with the options), or no argument has been defined in the function.
We will see later in more details how to use and build functions (p. 54). The present description is
sufficient for the moment to understand how R works.

All the actions of R are done on objects stored in the active memory of the computer: no
temporary file are used (Fig. 1). The readings and writtings of files are used for input and output
of data and results (graphics, . . .). The user executes the functions via some commands. The
results are displayed diretly on the screen, stored in an object, or written on the disk (particularly
for graphics). Since the results are themselves objects, they can be considered as data and analysed
as such. Data files can be read on the local disk or on a remote server through internet.

The functions available to the user are stored in a library localised on the disk in a directory
called R HOME/library (R HOME is the directory where R is installed). This directory contains
packages of functions, which are themselves structured in directories. The package nammed base
is in a way the core of R and contains the basic functions of the language for reading and manipu-
lating data, some graphic functions, and a few statistical functions (linear regression and analysis
of variance). Each package has a directory called R with a file named like the package (for in-
stance, for the package base, this is the file R HOME/library/base/R/base). This file is in ASCII
format and contains all the functions of the package.

The simplest command is to type the name of an object to display its content. For instance, if
an object n contents the value 10:

> n
[1] 10

The digit 1 within brackets indicates that the display starts at the first element of n. This
command is an implicit use of the function print and the above example is similar to print(n)
(in some situations, the function print must be used explicitly, such as within a function or a
loop).

The name of an object must start with a letter (A-Z and a-z) and can include letters, digits
(0-9), and dots (.). R discriminates for the names of the objects the uppercase letters from the
lowercase ones, so that x and X can name two distinct objects (even under Windows).

2.2 Creating, listing and deleting the objects in memory

An object can be created with the “assign” operator which is written as an arrow with a minus sign
and a bracket; this symbol can be oriented left-to-right or the reverse:

> n <- 15
> n
[1] 15
> 5 -> n
> n
[1] 5
> x <- 1

5

> X <- 10
> x
[1] 1
> X
[1] 10

If the object already exists, its previous value is erased (the modification affects only the ob-
jects in the active memory, not the data on the disk). The value assigned this way may be the result
of an operation and/or a function:

> n <- 10 + 2
> n
[1] 12
> n <- 3 + rnorm(1)
> n
[1] 2.208807

The function rnorm(1) generates a normal random variate with mean zero and variance
unity (p. 15). Note that you can simply type an expression without assigning its value to an object,
the result is thus displayed on the screen but is not stored in memory:

> (10 + 2) * 5
[1] 60

The assignment will be omitted in the examples if not necessary for understanding.
The function ls lists simply the objects in memory: only the names of the objects are dis-

played.

> name <- "Carmen"; n1 <- 10; n2 <- 100; m <- 0.5
> ls()
[1] "m" "n1" "n2" "name"

Note the use of the semi-colon to separate distinct commands on the same line. If we want to
list only the objects which contain a given character in their name, the option pattern (which
can be abbreviated with pat) can be used:

> ls(pat = "m")
[1] "m" "name"

To restrict the list of objects whose names strat with this character:

> ls(pat = "ˆm")
[1] "m"

The function ls.str() displays some details on the objects in memory:

> ls.str()
m : num 0.5
n1 : num 10
n2 : num 100
name : chr "Carmen"

6

The option pattern can be used in the same way than with ls(). Another useful option of
ls.str() is max.levelwhich specifies the level of detail for the display of composite objects.
By default, ls.str() displays the details of all objects in memory, included the columns of data
frames, matrices and lists, which can result in a very long display. We can avoid to display all
these details with the option max.level = -1:

> M <- data.frame(n1, n2, m)
> ls.str(pat = "M")
M : ‘data.frame’: 1 obs. of 3 variables:
$ n1: num 10
$ n2: num 100
$ m : num 0.5
> ls.str(pat="M", max.level=-1)
M : ‘data.frame’: 1 obs. of 3 variables:

To delete objects in memory, we use the function rm(): rm(x) deletes the object x, rm(x,y)
deletes both the objects x et y, rm(list=ls()) deletes all the objects in memory; the same
options mentioned for the function ls() can then be used to delete selectively some objects:
rm(list=ls(pat="ˆm")).

2.3 The on-line help

The on-line help of R gives very useful information on how to use the functions. The help is
available directly for a given function, for instance:

> ?lm

will display, within R, the help for the function lm() (linear model). The command help(lm)
or help("lm") has the same effect. This last function must be used to access the help with
non-conventional characters:

> ?*
Error: syntax error
> help("*")
Arithmetic package:base R Documentation

Arithmetic Operators
...

Calling the help opens a page (this depends on the operating system) with general information
on the first line such as the name of the package where is (are) the documented function(s) or
operators. Then comes a title followed by sections which bring accurate information.

Description: brief description.

Usage: for a function, gives the name with all its arguments and the possible default values (op-
tions); for an operator gives the typical use.

Arguments: for a function, details each of its arguments.

Details: detailed description.

Value: if applicable, the type of object returned by the function or the operator.

7

See Also: other help pages close or similar to the present one.

Examples: some examples which can generally be executed without opening the help with the
function examples().

For beginners, it is good to look at the section Examples:. Generally, it is useful to read
carefully the section Arguments:. Other sections may be encountered, such as Note:, References:
or Author(s):.

By default, the function help only searches in the packages which are loaded in memory.
The option try.all.packages, which default is FALSE, allows to search in all packages if
its value it TRUE:

> help("bs")
Error in help("bs") : No documentation for ‘bs’ in specified
packages and libraries:
you could try ‘help.search("bs")’

> help("bs", try.all.packages=TRUE)
topic ‘bs’ is not in any loaded package
but can be found in package ‘splines’ in library ‘D:/rw1041/library’

The help in html format (read, e.g., with Netscape) is called by typing:

> help.start()

A search with key-words is possible with this html help. The section See Also: has here
hypertext links to other function help pages. The search with key-words is also possible with the
function help.search but it is still experimental (version 1.5.0 of R).

The fonction apropos finds all functions which name contains the character string given as
argument; only the packages loaded in memory are searched:

> apropos(help)
[1] "help" "help.search" "help.start"
[4] "link.html.help"

3 Data with R

3.1 Objects

We have seen that R works with objects which are, of course, characterized by their names and
their content, but also by attributes which specify the kind of data represented by an object. In
order to understand the usefulness of these attributes, consider a variable that takes the value 1, 2,
or 3: such a variable could be an integer variable (for instance, the number of eggs in a nest), or
the coding of a categorical variable (for instance, sex in some populations of crustaceans: male,
female, or hermaphrodite).

It is clear that the statistical analysis of this variable will not be the same in both cases: with R,
the attributes of the object give the necessary information. More technically, and more generally,
the action of a function on an object depends on the attributes of the latter.

All objects have two intrinsic attributes: mode and length. The mode is the basic type of
the elements of the object; there are four main modes: numeric, character, complex7, and logical
(FALSE or TRUE). Other modes exist but they do not represent data, for instance function or
expression. The length is the number of elements of the object. To display the mode and the
length of an object, one can use the functions mode and length, respectively:

7The mode complex will scarcely be mentioned in this document.

8

> x <- 1
> mode(x)
[1] "numeric"
> length(x)
[1] 1
> A <- "Gomphotherium"; compar <- TRUE; z <- 1i
> mode(A); mode(compar); mode(z)
[1] "character"
[1] "logical"
[1] "complex"

Whatever the mode, missing data are represented by NA (not available). A very large numeric
value can be specified with an exponential notation:

> N <- 2.1e23
> N
[1] 2.1e+23

R correctly represents non-finite numeric values, such as � ∞ with Inf and -Inf, or values
which are not numbers with NaN (not a number).

> x <- 5/0
> x
[1] Inf
> exp(x)
[1] Inf
> exp(-x)
[1] 0
> x - x
[1] NaN

A value of mode character is input with double quotes ". It is possible to include this latter
character in the value if it follows a backslash � . The two charaters altogether � " will be treated in
a specific way by some functions such as cat for display on screen, or write.table to write
on the disk (p. 13, the option qmethod of this function).

> cit <- "She said: \"Double quotes can be included in R’s strings.\""
> cit
[1] "She said: \"Double quotes can be included in R’s strings.\""
> cat(cit)
She said: "Double quotes can be included in R’s strings."

The following table gives an overview of the type of objects representing data.

9

object modes several modes possible
in the same object?

vector numeric, character, complex or logical No
factor numeric or character No
array numeric, character, complex or logical No
matrix numeric, character, complex or logical No
data.frame numeric, character, complex or logical Yes
ts numeric, character, complex or logical Yes
list numeric, character, complex, logical, Yes

function, expression, . . .

A vector is a variable in the commonly admitted meaning. A factor is a categorical variable.
An array is a table with k dimensions, a matrix being a particular case of array with k � 2. Note that
the elements of an array or of a matrix are all of the same mode. A data.frame is a table composed
with one or several vectors and/or factors all of the same length but possibly of different modes.
A ts is a time series data set and so contains supplementary attributes such as frequency and dates.
Finally, a list can contain any type of object, included lists!

For a vector, its mode and length are sufficient to describe the data. For other objects, other
information are necessary and they are given by non-intrinsic attributes. Among these attributes,
we can cite dim which corresponds to the dimensions of an object. For example, a matrix with 2
lines and 2 columns has for dim the pair of values [2, 2], but its length is 4.

3.2 Reading data in a file

For reading and writing in files, R uses the working directory. To know what is this directory, the
command getwd() (get working directory) can be used, and it can be changed with, for instance,
setwd("C:/data") or setwd("/home/paradis/R"). It is necessary to give the path to
a file if it is not in the working directory.8

R can read data stored in text (ASCII) files with the following functions: read.table
(which has several variants, see below), scan and read.fwf. R can also read files in other
formats (Excel, SAS, SPSS, . . .), and access SQL-type databases, but the functions needed for
this are not in the package base. These functionalities are very useful for a more advanced use of
R, but we will restrict here to the reading of files in ASCII format.

The function read.table has for effect to create a data frame, and so is the main way to
read data in tabular form. For instance, if one has a file named data.dat, the command:

> mydata <- read.table("data.dat")

will create a data frame named mydata, and each variable will be named, by default, V1, V2, . . .
and could be accessed individually by mydata$V1, mydata$V2, . . . , or by mydata["V1"],
mydata["V2"], . . . , or, still another solution, by mydata[, 1], mydata[,2], . . . 9 There
are several options which default values (i.e. those used by R if they are omitted by the user) are
detailed in the following table:

8Under Windows, it is useful to create a short-cut of Rgui.exe then edit its properties and change the directory in
the field “Start in:” under the tab “Short-cut”: this directory will then be the working directory if R is started from this
short-cut.

9There is a difference: mydata$V1 and mydata[, 1] are vectors whereas mydata["V1"] is a data frame.
We will see later (p. 16) some details on manipulating objects.

10

read.table(file, header = FALSE, sep = "", quote = "\"’", dec = ".",
row.names, col.names, as.is = FALSE, na.strings = "NA",
colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#")

file the name of the file (within "" or a variable of mode character), possibly with its path
(the symbol � is not allowed and must be replaced by /, even under Windows), or a
remote access to a file of type URL (http://...)

header a logical (FALSE ou TRUE) indicating if the file contains the names of the variables on
its first line

sep the field separator used in the file, for instance sep=" � t" if it is a tabulation
quote the characters used to cite the variables of mode character
dec the character used for the decimal point
row.names a vector with the names of the lines which can be either a vector of mode character, or

the number (or the name) of a variable of the file (by default: 1, 2, 3, . . .)
col.names a vector with the names of the variables (by default: V1, V2, V3, . . .)
as.is controls the conversion of character variables as factors (if FALSE) or keeps them as

characters (TRUE); as.is can be a logical vector or a numeric vector specifying the
variables to be kept as character

na.strings the value given to missing data (converted as NA)
colClasses a vector of mode character giving the classes to attribute to the columns
nrows the maximum number of lines to read (negative values are ignored)
skip the number of lines to be skipped before reading the data
check.names if TRUE, checks that the variable names are valid for R
fill if TRUE and all lines do not have the same number of variables, “blanks” are added
strip.white (conditional to sep) if TRUE, deletes extra spaces before and after the character vari-

ables
blank.lines.skip if TRUE, ignores “blank” lines
comment.char a character defining comments in the data file, lines starting with this character are

ignored (to disable this argument, use comment.char = "")

The variants of read.table are useful since they have different default values:

read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".",
fill = TRUE, ...)

read.csv2(file, header = TRUE, sep = ";", quote="\"", dec=",",
fill = TRUE, ...)

read.delim(file, header = TRUE, sep = "\t", quote="\"", dec=".",
fill = TRUE, ...)

read.delim2(file, header = TRUE, sep = "\t", quote="\"", dec=",",
fill = TRUE, ...)

The function scan is more flexible than read.table. A difference is that it is possible to
specify the mode of the variables, for example:

> mydata <- scan("data.dat", what = list("", 0, 0))

reads in the file data.dat three variables, the first is of mode character and the next two are of mode
numeric. Another important distinction is that scan() can be used to create different objects,
vectors, matrices, data frames, lists, . . . In the above example, mydata is a list of three vectors.
By default, that is if what is omitted, scan() creates a numeric vector. If the data read do not
correspond to the mode(s) expected (either by default, or specified by what), an error message is
returned. The options are the followings.

11

scan(file = "", what = double(0), nmax = -1, n = -1, sep = "",
quote = if (sep=="\n") "" else "’\"", dec = ".",
skip = 0, nlines = 0, na.strings = "NA",
flush = FALSE, fill = FALSE, strip.white = FALSE, quiet = FALSE,
blank.lines.skip = TRUE, multi.line = TRUE, comment.char = "#")

file the name of the file (within ""), possibly with its path (the symbol � is not allowed and
must be replaced by /, even under Windows), or a remote access to a file of type URL
(http://...); if file="", the data are entered with the keyboard (the entree is terminated
by a blank line)

what specifies the mode(s) of the data (numeric by default)
nmax the number of data to read, or, if what is a list, the number of lines to read (by default,

scan reads the data up to the end of file)
n the number of data to read (by default, no limit)
sep the field separator used in the file
quote the characters used to cite the variables of mode character
dec the character used for the decimal point
skip the number of lines to be skipped before reading the data
nlines the number of lines to read
na.string the value given to missing data (converted as NA)
flush a logical, if TRUE, scan goes to the next line once the number of columns has been

reached (allows the user to add comments in the data file)
fill if TRUE and all lines do not have the same number of variables, “blanks” are added
strip.white (conditional to sep) if TRUE, deletes extra spaces before and after the character vari-

ables
quiet a logical, if FALSE, scan displays a line showing which fields have been read
blank.lines.skip if TRUE, ignores blank lines
multi.line if what is a list, specifies if the variables of the same individual are on a single line in

the file (FALSE)
comment.char a character defining comments in the data file, lines starting with this character are

ignored

The function read.fwf can be used to read in a file some data in fixed width format:

read.fwf(file, widths, sep="\t", as.is = FALSE,
skip = 0, row.names, col.names, n = -1)

The options are the same than for read.table() except widths
which specifies the width of the fields. For example, if a file named
data.txt has the data indicated on the right, one can read the data with
the following command:

A1.501.2
A1.551.3
B1.601.4
B1.651.5
C1.701.6
C1.751.7

> mydata <- read.fwf("data.txt", widths=c(1, 4, 3))
> mydata
V1 V2 V3

1 A 1.50 1.2
2 A 1.55 1.3
3 B 1.60 1.4
4 B 1.65 1.5
5 C 1.70 1.6
6 C 1.75 1.7

12

3.3 Saving data

The function write.table writes in a file an object, typically a data.frame but this could well
be another kind of object (vector, matrix, . . .). The arguments and options are:

write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ",
eol = "\n", na = "NA", dec = ".", row.names = TRUE,
col.names = TRUE, qmethod = c("escape", "double"))

x the name of the object to be written
file the name of the file (by default the object is displayed on the screen)
append if TRUE adds the data without erasing those possibly existing in the file
quote a logical or a numeric vector: if TRUE the variables of mode character and the factors are

written within "", otherwise the numeric vector indicates the numbers of the variables to
write within "" (in both cases the names of the variables are written within "" but not if
quote = FALSE)

sep the field separator used in the file
eol the character to be used at the end of each line (" � n" is a carriage-return)
na the character to be used for missing data
dec the character used for the decimal point
row.names a logical indicating whether the names of the lines are written in the file
col.names id. for the names of the columns
qmethod specifies, if quote=TRUE, how double quotes " included in variables of mode character

are treated: if "escape" (or "e", the default) each " is replaced by � ", if "d" each " is
replaced by ""

To write in simpler way an object in a file, the command write(x, file="data.txt")
can be used, where x is the name of the object (which can be a vector, a matrix, or an array). There
are two options: nc (or ncol) which defines the number of columns in the file (by default nc=1
if x is of mode character, nc=5 for the other modes), and append (a logical) to add the data
without deleting those possibly already in the file (TRUE) or deleting them if the file already exists
(FALSE, the default).

To record a group of objects of any type, we can use the command save(x, y, z, file=
"xyz.RData"). To ease the transfert of data between different machines, the option ascii =
TRUE can be used. The data (which are now called a workspace in R’s jargon) can be loaded
later in memory with load("xyz.RData"). The function save.image() is a short-cut for
save(list=ls(all=TRUE), file=".RData").

3.4 Generating data

3.4.1 Regular sequences

A regular sequence of integers, for example from 1 to 30, can be generated with:

> x <- 1:30

The resulting vector x has 30 éléments. The operator ‘:’ has priority on the arithmetic operators
within an expression:

> 1:10-1
[1] 0 1 2 3 4 5 6 7 8 9
> 1:(10-1)
[1] 1 2 3 4 5 6 7 8 9

13

The function seq can generate sequences of real numbers as follows:

> seq(1, 5, 0.5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

where the first number indicates the beginning of the sequence, the second one the end, and the
third one the increment to be used to generate the sequence. One can use also:

> seq(length=9, from=1, to=5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

One can also type directly the values using the function c:

> c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

It is also possible, if one wants to enter some data on the keyboard, to use the function scan
with simply the default options:

> z <- scan()
1: 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
10:
Read 9 items
> z
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

The function rep creates a vector with all its elements identical:

> rep(1, 30)
[1] 1

The function sequence creates a series of sequences of integers each ending by the numbers
given as arguments:

> sequence(4:5)
[1] 1 2 3 4 1 2 3 4 5
> sequence(c(10,5))
[1] 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5

The function gl (generate levels) is very useful because it generates regular series of factors.
The usage of this fonction is gl(k, n) where k is the number of levels (or classes), and n is the
number of replications in each level. Two options may be used: length to specify the number
of data produced, and labels to specify the names of the levels of the factor. Examples:

> gl(3, 5)
[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Levels: 1 2 3
> gl(3, 5, length=30)
[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Levels: 1 2 3
> gl(2, 6, label=c("Male", "Female"))
[1] Male Male Male Male Male Male

14

[7] Female Female Female Female Female Female
Levels: Male Female
> gl(2, 10)
[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
Levels: 1 2
> gl(2, 1, length=20)
[1] 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Levels: 1 2
> gl(2, 2, length=20)
[1] 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
Levels: 1 2

Finally, expand.grid() creates a data frame with all combinations of vectors or factors
given as arguments:

> expand.grid(h=c(60,80), w=c(100, 300), sex=c("Male", "Female"))
h w sex

1 60 100 Male
2 80 100 Male
3 60 300 Male
4 80 300 Male
5 60 100 Female
6 80 100 Female
7 60 300 Female
8 80 300 Female

3.4.2 Random sequences

law function

Gaussian (normal) rnorm(n, mean=0, sd=1)
exponential rexp(n, rate=1)
gamma rgamma(n, shape, scale=1)
Poisson rpois(n, lambda)
Weibull rweibull(n, shape, scale=1)
Cauchy rcauchy(n, location=0, scale=1)
beta rbeta(n, shape1, shape2)
‘Student’ (t) rt(n, df)
Fisher–Snedecor (F) rf(n, df1, df2)
Pearson (χ2) rchisq(n, df)
binomial rbinom(n, size, prob)
geometric rgeom(n, prob)
hypergeometric rhyper(nn, m, n, k)
logistic rlogis(n, location=0, scale=1)
lognormal rlnorm(n, meanlog=0, sdlog=1)
negative binomial rnbinom(n, size, prob)
uniform runif(n, min=0, max=1)
Wilcoxon’s statistics rwilcox(nn, m, n), rsignrank(nn, n)

It is useful in statistics to be able to generate random data, and R can do it for a large number
of probability density functions. These functions are of the form rfunc(n, p1, p2, ...),

15

where func indicates the probability law, n the number of data generated, and p1, p2, . . . are
the values of the parameters of the law. The above table gives the details for each law, and the
possible default values (if none default value is indicated, this means that the parameter must be
specified by the user).

All these functions can be used by replacing the letter r with d, p or q to get, respectively, the
probability density (dfunc(x, ...)), the cumulative probability density (pfunc(x, ...)),
and the value of quantile (qfunc(p, ...), with 0 � p � 1).

3.5 Manipulating objects

3.5.1 Creating objects

We have seen previously different ways to create objects using the assign operator; the mode
and the type of objects so created are generally determined implictly. It is possible to create an
object and specifying its mode, length, type, etc. This approach is interesting in the perspective of
manipulating objects. One can, for instance, create an ‘empty’ object and then modify its elements
successively which is more efficient than putting all its elements together with c(). The indexing
system could be used here, as we will see later (p. 22).

It can also be very convenient to create objects from others. For example, if one wants to
fit a series of models, it is simple to put the formulae in a list, and then to extract the elements
successively to insert them in the function lm.

At this stage of our learning of R, the interest in learning the following functionalities is not
only practical but also didactic. The explicit construction of an object gives a better understanding
of their structure, and allows us to go further in some notions previously mentioned.

Vector. The function vector, which has two arguments mode and length, creates a vector
which elements have a value depending on the mode specified as argument: 0 if numeric,
FALSE if logical, or "" if character. The following functions have exactly the same effect
and have for single argument the length of the vector: numeric(), logical(), and
character().

Factor. A factor includes not only the values of the corresponding categorical variable, but also
the different possible levels of that variable (even if they are present in the data). The
function factor creates a factor with the following options:

factor(x, levels = sort(unique(x), na.last = TRUE),
labels = levels, exclude = NA, ordered = is.ordered(x))

levels specifies the possible levels of the factor (by default the unique values of the vector
x), labels defines the names of the levels, exclude the values of x to exclude from the
levels, and ordered is a logical argument specifying whether the levels of the factor are
ordered. Recall that x is of mode numeric or character. Some examples follow.

> factor(1:3)
[1] 1 2 3
Levels: 1 2 3
> factor(1:3, levels=1:5)
[1] 1 2 3
Levels: 1 2 3 4 5
> factor(1:3, labels=c("A", "B", "C"))
[1] A B C

16

Levels: A B C
> factor(1:5, exclude=4)
[1] 1 2 3 NA 5
Levels: 1 2 3 5

The function levels extracts the possible levels of a factor:

> ff <- factor(c(2, 4), levels=2:5)
> ff
[1] 2 4
Levels: 2 3 4 5
> levels(ff)
[1] "2" "3" "4" "5"

Matrix. A matrix is actually a vector with an additional attribute (dim) which is itself a numeric
vector with length 2, and defines the numbers of rows and columns of the matrix. A matrix
can be created with the function matrix:

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,
dimnames = NULL)

The option byrow indicates whether the values given by data must fill successively the
columns (the default) or the rows (if TRUE). The option dimnames allows to give names
to the rows and columns.

> matrix(data=5, nr=2, nc=2)
[,1] [,2]

[1,] 5 5
[2,] 5 5
> matrix(1:6, 2, 3)

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> matrix(1:6, 2, 3, byrow=TRUE)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

Another way to create a matrix is to give the appropriate values to the dim attribute (which
is initially NULL):

> x <- 1:15
> x
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
> dim(x)
NULL
> dim(x) <- c(5, 3)
> x

[,1] [,2] [,3]

17

[1,] 1 6 11
[2,] 2 7 12
[3,] 3 8 13
[4,] 4 9 14
[5,] 5 10 15

Data frame. We have seen that a data frame is created implicitly by the function read.table;
it is also possible to create a data frame with the function data.frame. The vectors so
included in the data frame must be of the same length, or if one of the them is shorter, it is
“recycled” a whole number of times:

> x <- 1:4; n <- 10; M <- c(10, 35); y <- 2:4
> data.frame(x, n)
x n

1 1 10
2 2 10
3 3 10
4 4 10
> data.frame(x, M)
x M

1 1 10
2 2 35
3 3 10
4 4 35
> data.frame(x, y)
Error in data.frame(x, y) :

arguments imply differing number of rows: 4, 3

If a factor is included in a data frame, it must be of the same length than the vector(s). It
is possible to change the names of the columns with data.frame(A1=x, A2=n). One
can also give names to the rows with the option row.names which must be, of course,
a vector of mode character and of length equal to the number of lines of the data frame.
Finally, note that data frames have an attribute dim similarly to matrices.

Liste. A list is created in a way similar to data frames with the function list. There is no
constraint on the objects that can be included. By contrast to data.frame(), the names
of the objects are not taken by default; taking the vectors x and y of the previous example:

> L1 <- list(x, y); L2 <- list(A=x, B=y)
> L1
[[1]]
[1] 1 2 3 4

[[2]]
[1] 2 3 4

> L2
$A
[1] 1 2 3 4

18

$B
[1] 2 3 4

> names(L1)
NULL
> names(L2)
[1] "A" "B"

Time-series. The function ts creates an object of class "ts" from a vector (single time-series)
or a matrix (multivariate time-series), and some options which characterize the series. The
options, with the default values, are:

ts(data = NA, start = 1, end = numeric(0), frequency = 1,
deltat = 1, ts.eps = getOption("ts.eps"), class, names)

data a vector or a matrix
start the time of the first observation, either a number, or a vector of two

integers (see ex. below)
end the time of the last observation specified in the same way than start
frequency the number of observations per time unit
deltat the fraction of the sampling period between successive observations (ex.

1/12 for monthly data); only one of frequency or deltatmust be
given

ts.eps tolerance for the comparison of series. The frequencies are considered
equal if their difference is less than ts.eps

class class to give to the object; the default is "ts" for a single series, and
c("mts", "ts") for a multivariate series

names a vector of mode character with the names of the individual series in
the case of a multivariate series; by default the names of the columns of
data, or Series 1, Series 2, . . .

A few examples of time-series created with ts():

> ts(1:10, start = 1959)
Time Series:
Start = 1959
End = 1968
Frequency = 1
[1] 1 2 3 4 5 6 7 8 9 10
> ts(1:47, frequency = 12, start = c(1959, 2))

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1959 1 2 3 4 5 6 7 8 9 10 11
1960 12 13 14 15 16 17 18 19 20 21 22 23
1961 24 25 26 27 28 29 30 31 32 33 34 35
1962 36 37 38 39 40 41 42 43 44 45 46 47
> ts(1:10, frequency = 4, start = c(1959, 2))

Qtr1 Qtr2 Qtr3 Qtr4
1959 1 2 3
1960 4 5 6 7
1961 8 9 10

19

> ts(matrix(rpois(36, 5), 12, 3), start=c(1961, 1), frequency=12)
Series 1 Series 2 Series 3

Jan 1961 8 5 4
Feb 1961 6 6 9
Mar 1961 2 3 3
Apr 1961 8 5 4
May 1961 4 9 3
Jun 1961 4 6 13
Jul 1961 4 2 6
Aug 1961 11 6 4
Sep 1961 6 5 7
Oct 1961 6 5 7
Nov 1961 5 5 7
Dec 1961 8 5 2

Expression. The objects of mode expression have a fundamental role in R. An expression is a
series of characters which makes sense for R. All valid commands are expressions. When
a command is typed directly on the keyboard, it is then evaluated by R and executed if it is
valid. In many circumstances, it is useful to construct an expression without evaluating it:
this is what the function expression is made for. It is, of course, possible to evaluate the
expression subsequently with eval().

> x <- 3; y <- 2.5; z <- 1
> exp1 <- expression(x / (y + exp(z)))
> exp1
expression(x/(y + exp(z)))
> eval(exp1)
[1] 0.5749019

Expressions can be used, among other things, to include equations in graphs (p. 32). An ex-
pression can be created from a variable of mode character. Some functions take expressions
as arguments, for example D() which returns partial derivatives:

> D(exp1, "x")
1/(y + exp(z))
> D(exp1, "y")
-x/(y + exp(z))ˆ2
> D(exp1, "z")
-x * exp(z)/(y + exp(z))ˆ2

3.5.2 Converting objects

The reader has surely realised that the differences between some types of objects are small; it is
thus logical to be able to convert an object from a type to another by changing some of its attributes.
Such a conversion will be done with a function of the type as.something. R (version 1.5.1)
has, in the package base, 77 of such functions, so we will not go in the deepest details here.

The result of a conversion depends obviously of the attributes of the converted object. Gen-
rally, conversion follows intuitive rules. For the conversion of modes, the following table summa-
rizes the situation.

20

Conversion to Function Rules

numeric as.numeric FALSE � 0
TRUE � 1

"1", "2", . . . � 1, 2, . . .
"A", . . . � NA

logical as.logical 0 � FALSE
other numbers � TRUE

"FALSE", "F" � FALSE
"TRUE", "T" � TRUE

other characters � NA
character as.character 1, 2, . . . � "1", "2", . . .

FALSE � "FALSE"
TRUE � "TRUE"

There are functions to convert the types of objects (as.matrix,as.data.frame,as.ts,
as.expression, . . .). These functions will affect attributes other than the modes during the
conversion. The results are, again, generally intuitive. A situation frequently encountered is the
conversion of factors into numeric values. In this case, R does the conversion with the numeric
coding of the levels of the factor:

> fac <- factor(c(1, 10))
> fac
[1] 1 10
Levels: 1 10
> as.numeric(fac)
[1] 1 2

To convert a factor but keeping the levels as they are originally specified, one must first convert
into character, then into numeric.

> as.numeric(as.character(fac))
[1] 1 10

This procedure is very useful if in a file a numeric variable has also non-numeric values. We
have seen that read.table() in such a situation will, by default, read this column as a factor.

3.5.3 Operators

We have seen previously that there are three types of operators in R10. Here is the list.

Operators
Arithmetic Comparison Logical

+ addition < lesser than ! x logical NOT
- subtraction > greater than x & y logical AND
* multiplication <= lesser than or equal to x && y id.
/ division >= greater than or equal to x

�
y logical OR

ˆ power == equal x
���
y id.

%% modulo != different xor(x, y) exclusive OR
%/% integer division

10The following characters are also operators for R: $, [, [[, :, ?, <-.

21

The arithmetic and comparison operators act on two elements (x + y, a < b). The arith-
metic operators act on variables of mode numeric or complex, but also on logical ones; in this
latter case, the logical values are coerced into numeric. The comparison operators may be applied
to any mode: they return one or several logical values.

The logical operators are applied to one (!) or two objects of mode logical, and return one
(or several) logical values. The operators “AND” and “OR” exist in two forms: the single one
operates on each elements of the objects and returns as many logical values as comparions done;
the double one operates on the first element of the objects.

It is necessary to use the operator “AND” to specify an inequality of the type 0 � x � 1 which
will be coded with: 0 < x & x < 1. The expression 0 < x < 1 is valid, but will not return
the expected result: since both operators are the same, the are executed successively from left to
right. The comparison 0 < x is first done and returns a logical value which is then compared to
1 (TRUE or FALSE < 1): in this situation, the logical value is implicitly coerced into numeric (1
or 0 < 1).

The comparison operators operate on each element of the two objects being compared (recy-
cling the values of the shortest one if necessary), and thus returns an object of the same size. To
compare ‘wholly’ two objects, it is necessary to use the function identical:

> x <- 1:3; y <- 1:3
> x == y
[1] TRUE TRUE TRUE
> identical(x, y)
[1] TRUE

3.5.4 Accessing the values of an object: the indexing system

The indexing system is an efficient and flexible way to access selectively the elements of an object;
it can be either numeric or logical. To access, for example, the third value of a vector x, we just
type x[3]. If x is a matrix or a data frame, the value of the ith line and jth column is accessed
with x[i, j]. To change all values of the third column, we can type:

> x[, 3] <- 10.2

This indexing system is easily generalized to arrays, with as many indices as the number of
dimensions of the array (for example, a three dimensional array: x[i, j, k], x[, , 3],
. . .). It is useful to keep in mind that indexing is made with straight brackets, whereas parentheses
are used for the arguments of a function:

> x(1)
Error: couldn’t find function "x"

Indexing can be used to suppress one or several lines or columns. For example, x[-1,]
will suppress the first line, or x[-c(1, 15),] will do the same for the 1st and 15th lines.

For vectors, matrices and arrays, it is possible to access the values of an element with a com-
parison expression as index:

> x <- 1:10
> x[x >= 5] <- 20
> x
[1] 1 2 3 4 20 20 20 20 20 20
> x[x == 1] <- 25
> x
[1] 25 2 3 4 20 20 20 20 20 20

22

A practical use of the logical indexing is, for instance, the possibility to select the even ele-
ments of an integer variable:

> x <- rpois(40, lambda=5)
> x
[1] 5 9 4 7 7 6 4 5 11 3 5 7 1 5 3 9 2 2 5 2
[21] 4 6 6 5 4 5 3 4 3 3 3 7 7 3 8 1 4 2 1 4
> x[x %% 2 == 0]
[1] 4 6 4 2 2 2 4 6 6 4 4 8 4 2 4

Thus, this indexing system uses the logical values returned, in the above examples, by com-
parison operators. These logical values can be computed before, they then will be recycled if
necessary:

> x <- 1:40
> s <- c(FALSE, TRUE)
> x[s]
[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

The logical indexing can be used also with data frames, but with the difficulty that the different
columns of the data drame may be of different modes.

For lists, accessing the different elements (which can be any kind of object) is done with
double straight brackets, for example my.list[[3]] to access the third object of the list named
my.list. The result can then be itself indexed as previously seen for vectors, matrices, etc. If
this third object is a vector, its values can be modified with my.list[[3]][i], if it is a three
dimensional array with my.list[[3]][i, j, k], and so on.

3.5.5 Accessing the values of an object with names

We have seen in several occasions the concept of names. The names are attributes, and there are
several kinds of names (names, colnames, rownames, dimnames). We will limit ourselves here to
very simple notions about names, particularly to access the elements of an object.

If the elements of an object have names, they can be extracted by using them as indices. Doing
the extraction this way, the attributes of the original object are kept. For instance, if a data frame
DF contains the variables x, y, and z, the command DF["x"] will extract a data frame with just
x; DF[c("x", "y")] will extract a data frame with both variables. This works with lists as
well if the elements in the list have names.

As the reader surely realizes, the index used here is a vector of mode character. Like the
numeric or logical vectors seen above, this vector can be defined before and then used for the
extraction.

To extract a vector or a factor from a data frame, on can use the symbol $ (e.g., DF$x). This
procedure also works with lists.

3.5.6 The data editor

It is possible to use a graphical spreadsheet-like editor to edit a “data” object. For example, if X
is a matrix, the command data.entry(X) will open a graphic editor and one will be able to
modify some values by clicking on the appropriate cells, or to add new columns or rows.

The function data.entry modifies directly the object given as argument without needing
to assign its result. On the other hand, the function de returns a list with the objects given as
arguments and possibly modified. This result is displayed on the screen by default, but, as for
most functions, can be assigned to an object.

The details of using the data editor depend on the operating system.

23

3.5.7 Arithmetics and simple functions

There are numerous functions in R to manipulate data. We have already seen the simplest one, c
which concatenates the objects listed in parentheses. For example:

> c(1:5, seq(10, 11, 0.2))
[1] 1.0 2.0 3.0 4.0 5.0 10.0 10.2 10.4 10.6 10.8 11.0

Vectors can be manipulated with classical arithmetic expressions:

> x <- 1:4
> y <- rep(1, 4)
> z <- x + y
> z
[1] 2 3 4 5

Vectors of different lengths can be added; in this case, the shortest vector is recycled. Exam-
ples:

> x <- 1:4
> y <- 1:2
> z <- x + y
> z
[1] 2 4 4 6
> x <- 1:3
> y <- 1:2
> z <- x + y
Warning message:
longer object length
is not a multiple of shorter object length in: x + y
> z
[1] 2 4 4

Note that R has returned a warning message and not an error message, thus the operation has
been done. If we want to add (or multiply) the same value to all the elements of a vector:

> x <- 1:4
> a <- 10
> z <- a * x
> z
[1] 10 20 30 40

The functions available in R are too many to be listed here. One can find all basic mathematical
functions (log, exp, log10, log2, sin, cos, tan, asin, acos, atan, abs, sqrt, . . .),
special functions (gamma, digamma, beta, besselI, . . .), as well as diverse functions useful
in statistics. Some of these functions are detailed in the following table.

sum(x) sum of the elements of x
prod(x) product of the elements of x
max(x) maximum of the elements of x
min(x) minimum of the elements of x

24

which.max(x) returns the index of the greatest element of x
which.min(x) returns the index of the smallest element of x
range(x) id. than c(min(x), max(x))
length(x) number of elements in x
mean(x) mean of the elements of x
median(x) median of the elements of x
var(x) or cov(x) variance of the elements of x (calculated on n � 1); if x is a matrix or a data frame,

the variance-covariance matrix is calculated
cor(x) correlation matrix of x if it is a matrix or a data frame (1 if x is a vector)
var(x, y) or cov(x, y) covariance between x and y, or between the columns of x and those of y if they are

matrices or data frames
cor(x, y) linear correlation between x and y, or correlation matrix if they are matrices or data

frames

These functions return a single value (thus a vector of length one), except range() which
returns a vector of length two, and var(), cov(), and cor() which may return a matrix. The
following functions return more complex results.

round(x, n) rounds the elements of x to n decimals
rev(x) reverses the elements of x
sort(x) sorts the elements of x in increasing order; to sort in decreasing order: rev(sort(x))
rank(x) ranks of the elements of x
log(x, base) computes the logarithm of x with base "base"
scale(x) if x is a matrix, centers and reduces the data; to center only use the option center=FALSE,

to reduce only scale=FALSE (by default center=TRUE, scale=TRUE)
pmin(x,y,...) a vector which ith element is the minimum of x[i], y[i], . . .
pmax(x,y,...) id. for the maximum
cumsum(x) a vector which ith element is the sum from x[1] to x[i]
cumprod(x) id. for the product
cummin(x) id. for the minimum
cummax(x) id. for the maximum
match(x, y) returns a vector of the same length than x with the elements of x which are in y (NA

otherwise)
which(x == a) returns a vector of the indices of x if the comparison operation is true (TRUE), in this

example the values of i for which x[i] == a (the argument of this function must be a
variable of mode logical)

choose(n, k) computes the combinations of k events among n repetitions = n!
�����

n � k � !k! �
na.omit(x) suppresses the observations with missing data (NA) (suppresses the corresponding line if x

is a matrix or a data frame)
na.fail(x) returns an error message if x contains at least one NA
unique(x) if x is a vector or a data frame, returns a similar object but with the duplicate elements

suppressed
table(x) returns a table with the numbers of the differents values of x (typically for integers or

factors)
subset(x, ...) returns a selection of x with respect to criteria (..., typically comparisons: x$V1 < 10);

if x is a data frame, the option select gives the variables to be kept (or dropped using a
minus sign -)

sample(x, size) resample randomly and without replacement size elements in the vector x, the option
replace = TRUE allows to resample with replacement

25

3.5.8 Matrix computation

R has facilities for matrix computation and manipulation. The functions rbind() and cbind()
bind matrices with respect to the lines or the columns, respectively:

> m1 <- matrix(1, nr = 2, nc = 2)
> m2 <- matrix(2, nr = 2, nc = 2)
> rbind(m1, m2)

[,1] [,2]
[1,] 1 1
[2,] 1 1
[3,] 2 2
[4,] 2 2
> cbind(m1, m2)

[,1] [,2] [,3] [,4]
[1,] 1 1 2 2
[2,] 1 1 2 2

The operator for the product of two matrices is ‘%*%’. For example, considering the two
matrices m1 and m2 above:

> rbind(m1, m2) %*% cbind(m1, m2)
[,1] [,2] [,3] [,4]

[1,] 2 2 4 4
[2,] 2 2 4 4
[3,] 4 4 8 8
[4,] 4 4 8 8
> cbind(m1, m2) %*% rbind(m1, m2)

[,1] [,2]
[1,] 10 10
[2,] 10 10

The transposition of a matrix is done with the function t; this function works also with a data
frame.

The function diag can be used to extract or modify the diagonal of a matrix, or to build a
diagonal matrix.

> diag(m1)
[1] 1 1
> diag(rbind(m1, m2) %*% cbind(m1, m2))
[1] 2 2 8 8
> diag(m1) <- 10
> m1

[,1] [,2]
[1,] 10 1
[2,] 1 10
> diag(3)

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

26

> v <- c(10, 20, 30)
> diag(v)

[,1] [,2] [,3]
[1,] 10 0 0
[2,] 0 20 0
[3,] 0 0 30
> diag(2.1, nr = 3, nc = 5)

[,1] [,2] [,3] [,4] [,5]
[1,] 2.1 0.0 0.0 0 0
[2,] 0.0 2.1 0.0 0 0
[3,] 0.0 0.0 2.1 0 0

R has also some special functions for matrix computation. We can cite here solve() for
inverting a matrix, qr() for decomposition, eigen() for computing eigenvalues and eigenvec-
tors, and svd() for singular value decomposition.

4 Graphics with R

R offers a remarkable variety of graphics. To get an idea, one can type demo(graphics). It is
not possible to detail here the possibilities of R in terms of graphics, particularly each graphical
function has a large number of options making the production of graphics very flexible, and the
use of a drawing package almost useless.

The way graphical functions work deviates substantially from the scheme sketched at the be-
ginning of this document. Particularly, the result of a graphical function cannot be assigned to an
object11 but is sent to a graphical device. A graphical device is a graphical window or a file.

There are two kinds of graphical functions: the high-level plotting functions which create a
new graph, and the low-level plotting functions which add elements to an already existing graph.
The graphs are produced with respect to graphical parameters which are defined by default and
can be modified with the function par.

We will see in a first time how to manage graphics and graphical devices; we will then some-
how detail the graphical functions and parameters. We will see a practical example of the use of
these functionalities in producing graphs. Finally, we will see the packages grid and lattice whose
functioning is different from the one summarized above.

4.1 Managing graphics

4.1.1 Opening several graphical devices

When a graphical function is executed, if no graphical device is open, R opens a graphical window
and displays the graph. A graphical device may be open with an appropriate function. The list of
available graphical devices depends on the operating system. The graphical windows are called
X11 under Unix/Linux and windows under Windows. In all cases, one can open a graphical
window with the command x11()which also works under Windows because of an alias towards
the command windows(). A graphical device which is a file will be open with a function
depending on the format: postscript(), pdf(), png(), . . . The list of available graphical
devices can be found with ?device.

The device lastly open becomes the active graphical device on which all subsequent graphs
are displayed. The function dev.list() displays the list of open devices:

11There are a few remarkable exceptions: hist() and barplot() produce also numeric results as lists or matri-
ces.

27

> x11(); x11(); pdf()
> dev.list()
X11 X11 pdf
2 3 4

The figures displayed are the device numbers which must be used to change the active device.
To know what is the active device:

> dev.cur()
pdf
4

and to change the active device:

> dev.set(3)
X11
3

The function dev.off() closes a device: by default the active device is closed, otherwise
this is the one which number is given as argument to the function. R then displays the number of
the new active device:

> dev.off(2)
X11
3

> dev.off()
pdf
4

Two specific features of the Windows version of R are worth mentioning: a Windows Metafile
device can be open with the function win.metafile, and a menu “History” displayed when the
graphical window is selected allowing recording of all graphs drawn during a session (by default,
the recording system is off, the user switches it on by clicking on “Recording” in this menu).

4.1.2 Partitioning a graphic

The function split.screen partitions the active graphical device. For example:

> split.screen(c(1, 2))

divides the device into two parts which can be selected with screen(1) or screen(2);
erase.screen() deletes the last drawn graph. A part of the device can itself be divided with
split.screen() leading to the possibility to make complex arrangements.

These functions are incompatible with others (such as layout() or coplot()) and must
not be used with multiple graphical devices. Their use should be limited, for instance, to graphical
exploration of data.

The function layout partitions the active graphic window in several parts where the graphs
will be displayed successively. This functions has for its main argument a matrix with integer
numbers indicating the numbers of the “sub-windows”. For example, to divide the device into
four equal parts:

> layout(matrix(1:4, 2, 2))

28

It is of course possible to create this matrix previously allowing to better visualize how the
device is divided:

> mat <- matrix(1:4, 2, 2)
> mat

[,1] [,2]
[1,] 1 3
[2,] 2 4
> layout(mat)

To actually visualize the partition created, one can use the function layout.show with the
number of sub-windows as argument (here 4). In this example, we will have:

> layout.show(4)
1

2

3

4

The following examples show some of the possibilities offered by layout().

> layout(matrix(1:6, 3, 2))
> layout.show(6)

1

2

3

4

5

6

> layout(matrix(1:6, 2, 3))
> layout.show(6)

1

2

3

4

5

6

> m <- matrix(c(1:3, 3), 2, 2)
> layout(m)
> layout.show(3)

1

2

3

In all these examples, we have not used the option byrow of matrix(), the sub-windows
are thus numbered column-wise; one can just specify matrix(..., byrow=TRUE) so that
the sub-windows are numbered row-wise. The numbers in the matrix may also be given in any
order, for example, matrix(c(2, 1, 4, 3), 2, 2).

By default, layout() partitions the device with regular heights and widths: this can be
modified with the options widths and heights. These dimensions are given relatively12 . Ex-
amples:

12They can be given in centimetres, see ?layout.

29

> m <- matrix(1:4, 2, 2)
> layout(m, widths=c(1, 3),

heights=c(3, 1))
> layout.show(4)

1

2

3

4

> m <- matrix(c(1,1,2,1),2,2)
> layout(m, widths=c(2, 1),

heights=c(1, 2))
> layout.show(2)

1

2

Finally, the numbers in the matrix can include zeros giving the possibility to make complex
(or even esoterical) partitions.

> m <- matrix(0:3, 2, 2)
> layout(m, c(1, 3), c(1, 3))
> layout.show(3)

1

2

3

> m <- matrix(scan(), 5, 5)
1: 0 0 3 3 3 1 1 3 3 3
11: 0 0 3 3 3 0 2 2 0 5
21: 4 2 2 0 5
26:
Read 25 items
> layout(m)
> layout.show(5)

1

2

3

4

5

4.2 Graphical functions

Here is an overview of the graphical functions in R.

plot(x) plot of the values of x (on the y-axis) ordered on the x-axis
plot(x, y) bivariate plot of x (on the x-axis) and y (on the y-axis)
sunflowerplot(x,
y)

id. than plot() but the points with similar coordinates are drawn as flowers which
petal number represents the number of points

piechart(x) circular pie-chart
boxplot(x) “box-and-whiskers” plot
stripplot(x) plot of the values of x on a line (an alternative to boxplot() for small sample sizes)
coplot(x˜y � z) bivariate plot of x and y for each value or interval of values of z
interaction.plot
(f1, f2, y)

if f1 and f2 are factors, plots the means of y (on the y-axis) with respect to the values
of f1 (on the x-axis) and of f2 (different curves); the option fun allows to choose the
summary statistic of y (by default fun=mean)

matplot(x,y) bivariate plot of the first column of x vs. the first one of y, the second one of x vs. the
second one of y, etc.

dotplot(x) if x is a data frame, plots a Cleveland dot plot (stacked plots line-by-line and column-
by-column)

30

fourfoldplot(x) visualizes, with quarters of circles, the association between two dichotomous variables
for different populations (x must be an array with dim=c(2, 2, k), or a matrix
with dim=c(2, 2) if k � 1)

assocplot(x) Cohen–Friendly graph showing the deviations from independence of rows and columns
in a two dimensional contingency table

mosaicplot(x) ‘mosaic’ graph of the residuals from a log-linear regression of a contingency table
pairs(x) if x is a matrix or a data frame, draws all possible bivariate plots between the columns

of x
plot.ts(x) if x is an object of class "ts", plot of x with respect to time, x may be multivariate but

the series must have the same frequency and dates
ts.plot(x) id. but if x is multivariate the series may have different dates and must have the same

frequency
hist(x) histogram of the frequencies of x
barplot(x) histogram of the values of x
qqnorm(x) quantiles of x with respect to the values expected under a normal law
qqplot(x, y) quantiles of y with respect to the quantiles of x
contour(x, y,
z)

contour plot (data are interpolated to draw the curves), x and y must be vectors and z
must be a matrix so that dim(z)=c(length(x), length(y)) (x and y may be
omitted)

filled.contour
(x, y, z)

id. but the areas between the contours are coloured, and a legend of the colours is drawn
as well

image(x, y, z) id. but with colours (actual data are plotted)
persp(x, y, z) id. but in perspective (actual data are plotted)
stars(x) if x is a matrix or a data frame, draws a graph with segments or a star where each row

of x is represented by a star and the columns are the lengths of the segments
symbols(x, y,
...)

draws, at the coordinates given by x and y, symbols (circles, squares, rectangles, stars,
thermometres or “boxplots”) which sizes, colours . . . are specified by supplementary
arguments

termplot(mod.obj) plot of the (partial) effects of a regression model (mod.obj)

For each function, the options may be found with the on-line help in R. Some of these options
are identical for several graphical functions; here are the main ones (with their possible default
values):

add=FALSE if TRUE superposes the plot on the previous one (if it exists)
axes=TRUE if FALSE does not draw the axes and the box
type="p" specifies the type of plot, "p": points, "l": lines, "b": points con-

nected by lines, "o": id. but the lines are over the points, "h": vertical
lines, "s": steps, the data are represented by the top of the vertical lines,
"S": id. but the data are represented by the bottom of the vertical lines

xlim=, ylim= specifies the lower and upper limits of the axes, for example with
xlim=c(1, 10) or xlim=range(x)

xlab=, ylab= annotates the axes, must be variables of mode character
main= main title, must be a variable of mode character
sub= sub-title (written in a smaller font)

4.3 Low-level plotting commands

R has a set of graphical functions which affect an already existing graph: they are called low-level
plotting commands. Here are the main ones:

31

points(x, y) adds points (the option type= can be used)
lines(x, y) id. but with lines
text(x, y,
labels, ...)

adds text given by labels at coordinates (x,y); a typical use is: plot(x, y,
type="n"); text(x, y, names)

mtext(text,
side=3, line=0,
...)

adds text given by text in the margin specified by side (see axis() below); line
specifies the line from the plotting area

segments(x0,
y0, x1, y1)

draws lines from points (x0,y0) to points (x1,y1)

arrows(x0, y0,
x1, y1, angle=
30, code=2)

id. with arrows at points (x0,y0) if code=2, at points (x1,y1) if code=1, or both if
code=3; angle controls the angle from the shaft of the arrow to the edge of the arrow
head

abline(a,b) draws a line of slope b and intercept a
abline(h=y) draws a horizontal line at ordinate y
abline(v=x) draws a vertical line at abcissa x
abline(lm.obj) draws the regression line given by lm.obj (see section 5)
rect(x1, y1,
x2, y2)

draws a rectangle which left, right, bottom, and top limits are x1, x2, y1, and y2,
respectively

polygon(x, y) draws a polygon linking the points with coordinates given by x and y
legend(x, y,
legend)

adds the legend at the point (x,y) with the symbols given by legend

title() adds a title and optionally a sub-title
axis(side,
vect)

adds an axis at the bottom (side=1), on the left (2), at the top (3), or on the right (4);
vect (optional) gives the abcissa (or ordinates) where tick-marks are drawn

rug(x) draws the data x on the x-axis as small vertical lines
locator(n,
type="n", ...)

returns the coordinates (x � y) after the user has clicked n times on the plot with the
mouse; also draws symbols (type="p") or lines (type="l") with respect to optional
graphic parameters (...); by default nothing is drawn (type="n")

Note the possibility to add mathematical expressions on a plot with text(x, y, expres-
sion(...)), where the function expression transforms its argument in a mathematical
equation. For example,

> text(x, y, expression(p == over(1, 1+eˆ-(beta*x+alpha))))

will display, on the plot, the following equation at the point of coordinates
�
x � y � :

p �
1

1 � e ��� βx � α 	
To include in an expression a variable we can use the functions substitute and as.expres-

sion; for example to include a value of R2 (previously computed and stored in an object named
Rsquared):

> text(x, y, as.expression(substitute(Rˆ2==r, list(r=Rsquared))))

will display on the plot at the point of coordinates
�
x � y � :

R2 � 0
 9856298

To display only three decimals, we can modify the code as follows:

> text(x, y, as.expression(substitute(Rˆ2==r,
+ list(r=round(Rsquared, 3)))))

32

qui affichera :

R2 � 0
 986

Finally, to write the R in italics:

> text(x, y, as.expression(substitute(italic(R)ˆ2==r,
+ list(r=round(Rsquared, 3)))))

R2 � 0
 986

4.4 Graphical parameters

In addition to low-level plotting commands, the presentation of graphics can be improved with
graphical parameters. They can be used either as options of graphic functions (but it does not
work for all), or with the function par to change permanently the graphical parameters, i.e. the
subsequent plots will be drawn with respect to the parameters specified by the user. For instance,
the following command:

> par(bg="yellow")

will result in all subsequent plots drawn with a yellow background. There are 68 graphic param-
eters, some of them have very close functions. The exhaustive list of graphic parameters can be
read with ?par; I will limit the following table to the most usual ones.

adj controls text justification (0 left-justified, 0.5 centred, 1 right-justified)
bg specifies the colour of the background (ex. : bg="red", bg="blue", . . . the list of the 657 available

colours is displayed with colors())
bty controls the type of box drawn around the plot, allowed values are: "o", "l", "7", "c", "u" ou "]"

(the box looks like the corresponding character); if bty="n" the box is not drawn
cex a value controlling the size of texts and symbols with respect to the default; the following parame-

ters have the same control for numbers on the axes, cex.axis, the axis labels, cex.lab, the title,
cex.main, and the sub-title, cex.sub

col controls the colour of symbols; as for cex there are: col.axis, col.lab, col.main, col.sub
font an integer which controls the style of text (1: normal, 2: italics, 3: bold, 4: bold italics); as for cex

there are: font.axis, font.lab, font.main, font.sub
las an integer which controls the orientation of the axis labels (0: parallel to the axes, 1: horizontal, 2:

perpendicular to the axes, 3: vertical)
lty controls the type of lines, can be an integer (1: solid, 2: dashed, 3: dotted, 4: dotdash, 5: longdash, 6:

twodash), or a string of up to eight characters (between "0" and "9") which specifies alternatively the
length, in points or pixels, of the drawn elements and the blanks, for example lty="44" will have the
same effet than lty=2

lwd a numeric which controls the width of lines
mar a vector of 4 numeric values which control the space between the axes and the border of the graph of the

form c(bottom, left, top, right), the default values are c(5.1, 4.1, 4.1, 2.1)
mfcol a vector of the form c(nr,nc) which partitions the graphic window as a matrix of nr lines and nc

columns, the plots are then drawn in columns (see section 4.1.2)
mfrow id. but the plots are then drawn in line (see section 4.1.2)
pch controls the type of symbol, either an integer between 1 and 25, or any single character within ""

(Fig. 2)
ps an integer which controls the size in points of texts and symbols
pty a character which specifies the type of the plotting region, "s": square, "m": maximal
tck a value which specifies the length of tick-marks on the axes as a fraction of the smallest of the width or

height of the plot; if tck=1 a grid is drawn
tcl a value which specifies the length of tick-marks on the axes as a fraction of the height of a line of text

(by default tcl=-0.5)
xaxt if xaxt="n" the x-axis is set but not drawn (useful in conjonction with axis(side=1, ...))
yaxt if yaxt="n" the y-axis is set but not drawn (useful in conjonction with axis(side=2, ...))

33

* ? X a

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 "*" "?" "." "X" "a"

Figure 2: The plotting symbols in R (pch=1:25). The colours were obtained with the options
col="blue", bg="yellow", the second option has an effect only for the symbols 21–25.
Any character can be used (pch="*", "?", ".", . . .).

4.5 A practical example

In order to illustrate R’s graphical functionalities, let us consider a simple example of a bivariate
graph of 10 pairs of random variates. These values were generated with:

> x <- rnorm(10)
> y <- rnorm(10)

The wanted graph will be obtained with plot(); one will type the command:

> plot(x, y)

and the graph will be plotted on the active graphical device. The result is shown on Fig. 3. By
default, R makes graphs in an “intelligent” way: the spaces between tick-marks on the axes, the
placement of labels, etc, are calculated so that the resulting graph are as intelligible as possible.

The user may, nevertheless, change the way a graph is presented, for instance, to conform to a
pre-defined editorial style, or to give it a personal touch for a talk. The simplest way to change the
presentation of a graph is to add options which will modify the default arguments. In our example,
we can modify significantly the figure in the following way:

plot(x, y, xlab="Ten random values", ylab="Ten other values",
xlim=c(-2, 2), ylim=c(-2, 2), pch=22, col="red",
bg="yellow", bty="l", tcl=0.4,
main="How to customize a plot with R", las=1, cex=1.5)

The result is Fig. 4. Let us detail each of the used options. First, xlab and ylab change the
axes labels which, by default, were the names of the variables. Then, xlim and ylim allow us to
define the limits on both axes13. The graphical parameter pch is used here as an option: pch=22
specifies a square which contour and background colours may be different and are given by, re-
spectively, col and bg. The table of graphical parameters gives the meaning of the modifications
done by bty, tcl, las and cex. Finally, a title is added with the option main.

13By default, R adds 4% on each side of the axis limit. This behaviour may be altered by setting the graphical
parameters xaxs="i" and yaxs="i" (they can be passed as options to plot()).

34

−0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

x

y

Figure 3: The function plot used without options.

−2 −1 0 1 2

−2

−1

0

1

2

How to customize a plot with R

Ten random values

T
en

 o
th

er
 v

al
ue

s

Figure 4: The function plot used with options.

35

−2 −1 0 1 2

−2

−1

0

1

2

Ten random values

T
en

 o
th

er
 v

al
ue

s

How to customize a plot with R (bis)

Figure 5: The functions par, plot and title.

The graphical parameters and the low-level plotting functions allow us to go further in the
presentation of a graph. As we have seen previously, some graphical parameters cannot be passed
as arguments to a function like plot. We will now modify some of these parameters with par(),
it is thus necessary to type several commands. When the graphical parameters are changed, it is
useful to save their initial values previously to be able to restore them afterwards. Here are the
commands used to obtain Fig. 5.

opar <- par()
par(bg="lightyellow", col.axis="blue", mar=c(4, 4, 2.5, 0.25))
plot(x, y, xlab="Ten random values", ylab="Ten other values",

xlim=c(-2, 2), ylim=c(-2, 2), pch=22, col="red", bg="yellow",
bty="l", tcl=-.25, las=1, cex=1.5)

title("How to customize a plot with R (bis)", font.main=3, adj=1)
par(opar)

Let us detail the actions resulting from these commands. First, the default graphical parameters
are copied in a list called here opar. Three parameters will be then modified: bg for the colour
of the background, col.axis for the colour of the numbers on the axes, and mar for the sizes
of the margins around the plotting region. The graph is drawn in a nearly similar way to Fig. 4.
The modifications of the margins allowed to use the space around the plotting area. The title
here is added with the low-level plotting function title which allows to give some parameters
as arguments without altering the rest of the graph. Finally, the initial graphical parameters are
restored with the last command.

Now, the total control! On FIG. 5, R still determines a few things such as the number of tick
marks on the axes, or the space between the title and the plotting area. We will see now how to
totally control the presentation of the graph. The approach used here is to plot a “blank” graph
with plot(..., type="n"), then to add points, axes, labels, etc, with low-level plotting
functions. We will fancy a few arrangements such as changing the colour of the plotting area. The
commands follow, and the resulting graph is on Fig. 6.

opar <- par()
par(bg="lightgray", mar=c(2.5, 1.5, 2.5, 0.25))

36

plot(x, y, type="n", xlab="", ylab="", xlim=c(-2, 2),
ylim=c(-2, 2), xaxt="n", yaxt="n")

rect(-3, -3, 3, 3, col="cornsilk")
points(x, y, pch=10, col="red", cex=2)
axis(side=1, c(-2, 0, 2), tcl=-0.2, labels=FALSE)
axis(side=2, -1:1, tcl=-0.2, labels=FALSE)
title("How to customize a plot with R (ter)",

font.main=4, adj=1, cex.main=1)
mtext("Ten random values", side=1, line=1, at=1, cex=0.9, font=3)
mtext("Ten other values", line=0.5, at=-1.8, cex=0.9, font=3)
mtext(c(-2, 0, 2), side=1, las=1, at=c(-2, 0, 2), line=0.3,

col="blue", cex=0.9)
mtext(-1:1, side=2, las=1, at=-1:1, line=0.2, col="blue", cex=0.9)
par(opar)

Like before, the default graphical parameters are saved, and the colour of the background
and the margins are modified. The graph is then drawn with type="n" to not plot the points,
xlab="", ylab="" to not write the axis labels, and xaxt="n", yaxt="n" to not draw
the axes. This results in drawing only the box around the plotting area, and defining the axes with
respect to xlim et ylim. Note that we could have used the option axes=FALSE but in this case
neither the axes, nor the box would have been drawn.

The elements are then added in the plotting region so defined with some low-level plotting
functions. Before adding the points, the colour inside the plotting area is changed with rect():
the size of the rectangle are chosen so that it is substantially larger than the plotting area.

The points are plotted with points(); a new symbol was used. The axes are added with
axis(): the vector given as second argument specifies the coordinates of the tick-marks. The
option labels=FALSE specifies that no annotation must be written with the tick-marks. This
option also accepts a vector of mode character, for example labels=c("A", "B", "C").

The title is added with title(), but the font is slightly changed. The annotations on the axes
are written with mtext() (marginal text). The first argument of this function is a vector of mode
character giving the text to be written. The option line indicates the distance from the plotting
area (by default line=0), and at the coordinnate. The second call to mtext() uses the default
value of side (3). The two other calls to mtext() pass a numeric vector as first argument: this
will be converted into character.

4.6 The grid and lattice packages

The packages grid and lattice represent the implementation in R of the Trellis graphics of S-
PLUS. Trellis is an approach for visualizing multivariate data which is particularly appropriate for
the exploration of relations or interactions among variables14 .

The main idea behind lattice (and Trellis as well) is that of conditional multiple graphs: a
bivariate graph will be split in several graphs with respect to the values of a third variable. The
function coplot uses a similar approach, but grid offers much wider functionalities than this
function.

The graphics produced by grid or lattice cannot be combined or mixed with those produced
by the functions seen above, because these packages use a new graphical mode15. This new mode
has its own system of graphical parameters which are distinct from those seen above. However, it
is possible to use both graphical modes in the same session on the same graphical device.

14http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/index.html
15This graphical mode should remedy some weaknesses of the base one such as the lack of direct interactivity with

the graphs.

37

How to customize a plot with R (ter)

Ten random values

Ten other values

−2 0 2

−1

0

1

Figure 6: A “hand-made” graph.

From a practical point of view, grid contains all the functions necessary for the graphical mode,
whereas the graphical functions more likely to be used currently are in lattice.

Most functions in lattice take a formula as their main argument, for example y ˜ x16. The
formula y ˜ x | z means that the graph of y with respect to x will be plotted as several graphs
with respect to the values of z.

The following table gives the main functions in lattice. The formula given as argument is the
typical necessary formula, but all these functions accept a conditional formula (y ˜ x | z) as
main argument; in the latter case, a multiple graph, with respect to the values of z is plotted as
will be seen in the examples below.

barchart(y ˜ x) histogram of the values of y with respect to those of x
bwplot(y ˜ x) “box-and-whiskers” plot
densityplot(˜ x) density functions plot
dotplot(y ˜ x) Cleveland dot plot (stacked plots line-by-line and column-by-column)
histogram(˜ x) histogram of the frequencies of x
qqmath(˜ x) quantiles of x with respect to the values expected under a theoretical distribution
stripplot(y ˜ x) single dimension plot, x must be numeric, y may be a factor
qq(y ˜ x) quantiles to compare two distributions, x must be numeric, y may be numeric,

character, or factor but must have two ‘levels’
xyplot(y ˜ x) bivariate plots (with many functionalities)
levelplot(z ˜ x*y) coloured plot of the values of z at the coordinates given by x and y (x, y and z are

all of the same length)
splom(˜ x) matrix of bivariate plots
parallel(˜ x) parallel coordinates plot

Some functions in lattice have the same name than some graphical functions in the package
base. The latter are “masked” when lattice is loaded in memory.

Let us see now some examples in order to illustrate a few aspects of lattice. The package
must be loaded in memory with the command library(lattice) so that the functions can
be accessed.

16plot() also accepts a formula as its main argument: if x and y are two vectors of the same length, plot(y ˜
x) and plot(x, y) will give identical graphs

38

x

D
en

si
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

−4 −2 0 2 4

n = 5 n = 10

−4 −2 0 2 4

n = 15

n = 20 n = 25

0

0.1

0.2

0.3

0.4

0.5

0.6

n = 30
0

0.1

0.2

0.3

0.4

0.5

0.6

n = 35 n = 40

−4 −2 0 2 4

n = 45

Figure 7: The function densityplot.

Let us start with the graphs of density functions. Such graphs can be done simply with
densityplot(˜ x) which will plot a curve of the empirical density function with the points
corresponding to the observations on the x-axis (similarly to rug()). Our example will be slightly
more complicated with the superposition, on each plot, of the curves of empirical density and those
predicted from a normal law. It is necessary to use the argument panel which defines what is
drawn on each plot. The commands are:

n <- seq(5, 45, 5)
x <- rnorm(sum(n))
y <- factor(rep(n, n), labels=paste("n =", n))
densityplot(˜ x | y,

panel = function(x, ...) {
panel.densityplot(x, col="DarkOliveGreen", ...)
panel.mathdensity(dmath=dnorm,

args=list(mean=mean(x), sd=sd(x)),
col="darkblue")

})

The first three lines of command generate a random sample of independent normal variates
which is split in sub-samples of size equal to 5, 10, 15, . . . , and 45. Then comes the call to
densityplot() producing a plot for each sub-sample. panel takes for argument a func-
tion. In our example, we have defined a function which calls two functions pre-defined in lattice:
panel.densityplot to draw the empirical density function, and panel.mathdensity to
draw the density function predicted from a normal law. The function panel.densityplot is
called by default if no argument is given to panel: the command densityplot(˜ x | y)
would have resulted in the same graph than Fig. 7 but without the blue curves.

The next examples use some data sets available in R: the locations of 1000 seismic events near
the Fiji Islands, and some flower measurements made on three species of iris.

Fig. 8 shows the geographic locations of the seismic events with respect to depth. The com-
mands necessary for this graph are:

data(quakes)

39

long

la
t

−40

−35

−30

−25

−20

−15

−10

165 170 175 180 185

40−112 112−184

165 170 175 180 185

184−256

256−328 328−400

−40

−35

−30

−25

−20

−15

−10
400−472

−40

−35

−30

−25

−20

−15

−10
472−544 544−616

165 170 175 180 185

616−688

Figure 8: The function xyplot with the data “quakes”.

mini <- min(quakes$depth)
maxi <- max(quakes$depth)
int <- ceiling((maxi - mini)/9)
inf <- seq(mini, maxi, int)
quakes$depth.cat <- factor(floor(((quakes$depth - mini) / int)),

labels=paste(inf, inf + int, sep="-"))
xyplot(lat ˜ long | depth.cat, data = quakes)

The first command loads the data quakes in memory. The five next commands create a factor
by dividing the depth (variable depth) in nine equally-ranged intervals: the levels of this factor
are labelled with the lower and upper bounds of these intervals. It then suffices to call the function
xyplot with the appropriate formula and an argument data indicating where xyplot must
look for the variables17 .

With the data iris, the overlap among the different species is sufficiently weak so they can
be plotted on the figure (Fig. 9). The commands are:

data(iris)
xyplot(
Petal.Length ˜ Petal.Width, data = iris, groups=Species,
panel = panel.superpose,
type = c("p", "smooth"), span=.75,
key = list(x=0.15, y=0.85,
points=list(col=trellis.settings[["superpose.symbol"]]$col[1:3],

pch = 1),
text = list(levels(iris$Species)))

)

The call to the function xyplot is here a bit more complex than in the previous example and
uses several options that we will detail. The option groups, as suggested by its name, defines
groups that will be used by the other options. We have already seen the option panel which

17plot() cannot take an argument data, the location of the variables must be given explicitly, for example
plot(quakes$long ˜ quakes$lat).

40

Petal.Width

P
et

al
.L

en
gt

h

oo
o
o
o

o

o
o
o

o o
o

o

o
o

o
o

o

o
o

o
o

o

o
o

o o
o
o
oo

oo
o
o

o
o

o
o
o

ooo

o

o

o
o
o
o
o

o
o

o

o

o
o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o
o

o
o

o
o

o

o

o
o

o

o

o o
o

o

o
o

o
o

o

o

oo o
o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o
o

o
o

o
o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o
o

o

o
o

oo

o
o

o
o

o
o

o

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5

setosa
versicolor
virginica

Figure 9: The function xyplot with the data “iris”.

defines how the different groups will be represented on the graph: we use here a pre-defined
function panel.superpose in order to superpose the groups on the same plot. No option is
passed to panel.superpose, the default colours will be used to distinguish the groups. The
option type, like in plot(), specifies how the data are represented, but here we can give several
arguments as a vector: "p" to draw points and "smooth" to draw a smooth curve which degree
of smoothness is specified by span. The option key adds a legend to the graph; its syntax
is somehow complicated but this should be simplified in future versions of lattice to something
similar to the function legend in standard graphics. key takes as argument a list: x and y
indicates the location of the legend (if these coordinates are omitted, the legend is placed outside
the plotting region); points specifies the type of symbol which is extracted from the default
definitions (hence the slightly complicated expression); and text gives the text of the legend
which is, of course, the names of the species.

We will see now the function splom with the same data on iris. The following commands
were used to produce Fig. 10:

splom(
˜iris[1:4], groups = Species, data = iris, xlab = "",
panel = panel.superpose,
key = list(columns = 3,
points = list(col=trellis.settings[["superpose.symbol"]]$col[1:3],

pch = 1),
text = list(c("Setosa", "Versicolor", "Virginica")))

)

The main argument is this time a matrix (the four first columns of iris). The result is the
set of possible bivariate plots among the columns of the matrix, like the standard function pairs.
By default, splom adds the text “Scatter Plot Matrix” under the x-axis: to avoid this, the option
xlab=""was used. The other options are similar to the previous example, except that columns
= 3 for key was specified so the legend is presented in three columns.

Fig. 10 could have been done with pairs(), but this latter function cannot make conditional
graphs like on Fig. 11. The code used is relatively simple:

41

Sepal.Length

5

5

6

6

7

78 8

oo oo
o

o

o
o

o
o

o

oo
o

o o
o

o

o

o
o

o
o

o
oo ooo

oo

o o
o

oo
o

o
o

oo
o o

o o
o

o
o

o
o

o

o
o

o

o

o

o

o

o

oo

oo o
o

o

oo
o

o
ooo o

ooo o

o
ooo
oo

o

o

o
o

ooo

o
o

o

o oo
o

o

o

o
o

o

oo

o

o

o

o
o

oo
o

o o

oo

oo

o

o

o

o

o
o

o

o o
o

oo
o

ooo

o

oo
o

ooo

o

ooo
o o

o
o

oooo
o
o

o
o

o
o
o

oo
o

oo
o
o

o

o
o

o
o

o
ooooo

oo

oo
o

oo
o

o
o

oo
oo

oo
o
o

o

o
o

o

o
o

o

o

o

o

o

o

oo

oo o
o

o

oo
o

o
oo oo

oo
oo

o
ooo

o o

o

o

o
o

ooo

o
o

o

ooo
o

o

o

o
o

o

oo

o

o

o

o
o

oo
o

oo

oo

oo

o

o

o

o

o
o
o

oo
o

oo
o

oo o

o

oo
o

ooo

o

ooo
ooo
o

oooo
o

o

o
o

o
o
o

oo
o

o o
o

o

o

o
o

o
o

o
oo ooo
oo

oo
o

oo
o

o
o

oo
oo

oo
o

o
o

o
o

o

o
o

o

o

o

o

o

o

oo

oo o
o

o

oo
o

o
oo oo

ooo o

o
ooo

o o

o

o

o
o

ooo

o
o

o

ooo
o

o

o

o
o

o

o o

o

o

o

o
o

oo
o

o o

oo

oo

o

o

o

o

o
o

o

oo
o

o o
o

ooo

o

oo
o

o oo

o

o oo
oo

o
o

o

o
oo

o
o

o o

o
o

o
o

oo

o

o

o

o
oo

o
oo
oo

o

ooo
oo

o

o o

oo
oo

o

oo

o

o
o
o

o

o

o

o

o oo o

o

oo

o

o

o
o

o

o

o

oo
oo

o

o
o

o

o
o

o oo
o

oo
o

oo
oo

o

o
o

o

o

oo

o

o
o

o
oo o

o
o

o

o
ooo o

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

o oo

o o

o
o

o
o

o

o

oo
o

o

o
oo ooo

o

oo
o

o

o

o

o
Sepal.Width

22

2.5

2.5

3

3

3.5

3.5
4

4
4.5

4.5

o

o
oo

o
o

oo

o
o

o
o

oo

o

o

o

o
oo

o
oo
oo

o

ooo
oo
o

oo

oo
oo

o

oo

o

o
o
o

o

o

o

o

o ooo

o

oo

o

o

o
o

o

o

o

oo
oo

o

o
o

o

o
o

oooo
oo

o
oo
o o

o

o
o

o

o

oo

o

o
o

o
ooo

o
o

o

o
ooo o

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

o oo

oo

o
o

o
o
o

o

oo
o

o

o
oo ooo

o

oo
o

o

o

o

o

o

o
oo

o
o

oo

o
o

o
o

oo

o

o

o

o
oo

o
oo
oo

o

ooo
oo

o

oo

oo
oo

o

oo

o

o
o

o

o

o

o

o

o ooo

o

oo

o

o

o
o

o

o

o

oo
oo

o

o
o

o

o
o

ooo
o

oo
o
oo
o o

o

o
o

o

o

oo

o

o
o

o
ooo

o
o

o

o
oo oo

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

ooo

oo

o
o

o
o

o

o

oo
o

o

o
oo o oo

o

o o
o

o

o

o

o

oooo o oo oo o oooo oooo oo oo
o

oooooooo oo ooo ooo oooo ooo oo oo

oo
o

o
oo o

o

o
o

o
oo

o

o
oo

o
o

o

o
o

oo
oo

ooo

ooo o

o
o o oooo
o o

o
o

ooo o

o

o

o

o
ooo

o

o

o
o o

oo
o

oo oo

oo

o
o

o

o

o
o o

oo
o oo o
o

o
o

o
oo

o
oo
oo

oo
ooooo

oo oo o oooo o oooo o ooo ooo o
o

ooo ooooo o oooo ooo ooo o o o
o oo oo

oo
o

o
oo o

o

o
o

o
oo

o

o
oo

o
o

o

o
o

o o
oo

o o
o

ooo o

o
o ooo oo

o o
o

o

o ooo

o

o

o

o
ooo
o

o

o
o o

oo o
o o oo

oo

o
o

o

o

o
oo

o o
o oo o
o
o

o
o

oo
o
oooo
oo

oo o oo

Petal.Length

11

2

2

3

3

4

4

4

4

5

5
6

67 7

ooooo
oooooooooo oooooo o

o
ooo ooooo oooooooooooo oo

ooooo

oo
o

o
oo o

o

o
o

o
oo

o

o
oo

o
o

o

o
o

oo
oo
o o
o

ooo o

o
oooooo

o o
o

o

oooo

o

o

o

o
oo o
o

o

o
o o

oo o
o ooo

oo

o
o

o

o

o
oo

oo
oo oo
o

o
o

o
oo

o
o o

oo
o o
ooo oo

oooo o
oo oo o oooo o

ooo oo o
o

o
o

oo
o

oooo
o

o ooo ooo oooo

o
oo oo oo

oo o
o

o
o

o

o
oo

o

o

o

oo oo

o

o

o

o

o
o

o ooo
o

o

ooo
o

oo o o
oooo

o
o

o
ooo o

o
o

o

o
o

o

o o

o oo

o

oo
oo

o o

o

oo

o

o
o o

o
o

ooo
o

o
o o

o

oo

oo

oo
o

oo

o

o
o
o

oo
o

o

oo oo o
oooo o oooo o

ooo ooo
o

o
o
oo
o
oooo

o
oooo ooo ooo o

o
oo oo oo

ooo
o

o
o

o

o
oo

o

o

o

oo oo

o

o

o

o

o
o

oooo
o

o

ooo
o

o o oo
o ooo

o
o

o
o ooo

o
o

o

o
o

o

oo

o oo

o

oo
oo

o o

o

oo

o

o
oo

o
o

oo o
o

o
o o
o

oo

o o

oo
o
oo

o

o
o

o

o o
o

o

ooooo
oooooooooo

oooooo
o

o
o
oo

o
oooo
o
oooooooo

ooo

o
oooooo

ooo
o

o
o
o

o
oo

o

o

o

oo oo

o

o

o

o

o
o

oooo
o

o

ooo
o

oooo
oooo
o

o
o

ooooo
o

o

o
o

o

o o

o oo

o

oo
oo

oo

o

oo

o

o
o o
o

o
ooo

o

o
oo

o

o o

oo

oo
o
oo

o

o
o

o

oo
o

o

Petal.Width

0
0

0.5
0.5

1

1

1.5

1.5

2

22.5 2.5

Setosa Versicolor Virginica

Figure 10: The function splom with the data “iris” (1).

splom(˜iris[1:3] | Species, data = iris, pscales = 0,
varnames = c("Sepal\nLength", "Sepal\nWidth", "Petal\nLength"))

The sub-graphs being relatively small, we added two options to improve the legibility of the
figure: pscales = 0 removes the tick-marks on the axes (all sub-graphs are drawn on the same
scales), and the names of the variables were re-defined to display them on two lines (" � n" codes
for a line break in a character string).

The last example uses the method of parallel coordinates for the exploratory analysis of mul-
tivariate data. The variables are disposed on an axis (e.g., the y-axis), and the observed values
are plotted on the other axis (the variables are scaled similarly, e.g., by standardizing them). The
different values of the same individual are joined by a line. With the data iris,the Fig. 12 is
obtained with the following code:

parallel(˜iris[, 1:4] | Species, data = iris, layout = c(3, 1))

5 Statistical analyses with R

Even more than for graphics, it is impossible here to go in the details of the possibilities offered
by R with respect to statistical analyses. My goal here is to give some landmarks with the aim to
have an idea of the features of R to perform data analyses.

Except the functions in the packages grid and lattice, all the functions we have seen up to
now are localized in the package base. Some functions for data analysis are in base but the vast
majority of statistical methods available in R are distributed as packages. Some of these packages
are installed with base, others are recommanded since they cover methods often used in data
analysis, and finally many other packages are contributed and must be installed by the user.

We will start with a simple example which requires no other package than base in order to
introduce the general approach to data analysis in R. Then, we will detail some notions, formulae
and generic functions, which are useful whatever the type of analysis performed. We will conclude
with an overview on packages.

42

Scatter Plot Matrix

Sepal
Length

Sepal
Width

Petal
Length

setosa

Sepal
Length

Sepal
Width

Petal
Length

versicolor

Sepal
Length

Sepal
Width

Petal
Length

virginica

Figure 11: The function splom with the data “iris” (2).

Sepal.Length

Sepal.Width

Petal.Length

Petal.Width

Min Max

setosa versicolor

Min Max

Min Max

virginica

Figure 12: The function parallelwith the data “iris”.

43

5.1 A simple example of analysis of variance

There are three main statistical functions in the package base: lm, glm and aov for linear re-
gressions, generalized linear models, and analyses of variance, respectively. We can also mention
loglin for log-linear models but this function takes a contingency table as its main argument
instead of a formula18. In order to try the analysis of variance, let us take a data set distributed
with R: InsectSprays. Six insecticides were tested in field conditions, the observed response
was the number of insects. Each insecticide was tested 12 times, thus there are 72 observations.
We will not consider here the graphic exploration of the data, but will focus on a simple analysis
of variance of the response with respect to the insecticide. After loading the data in memory with
the function data, the analysis is performed with the function aov (after transformation of the
response):

> data(InsectSprays)
> aov.spray <- aov(sqrt(count) ˜ spray, data = InsectSprays)

The main (and mandatory) argument of aov() is a formula which specifies the response
on the left-hand side of the tilde symbol ˜ and the predictor on the right-hand side. The op-
tion data = InsectSprays specifies that the variables must be found in the data frame
InsectSprays. This syntax is equivalent to:

> aov.spray <- aov(sqrt(InsectSprays$count) ˜ InsectSprays$spray)

or still (if we know the column numbers of the variables):

> aov.spray <- aov(sqrt(InsectSprays[, 1]) ˜ InsectSprays[, 2])

The first syntax is to be preferred since it is clearer.
The results are not displayed since they are assigned to an object called aov.spray. We

will then used some functions to extract the results, for example print() to display a brief
summary of the analysis (mostly the estimated parameters) and summary() to display more
details (included the statistical tests):

> aov.spray
Call:

aov(formula = sqrt(count) ˜ spray, data = InsectSprays)

Terms:
spray Residuals

Sum of Squares 88.43787 26.05798
Deg. of Freedom 5 66

Residual standard error: 0.6283453
Estimated effects may be unbalanced
> summary(aov.spray)

Df Sum Sq Mean Sq F value Pr(>F)
spray 5 88.438 17.688 44.799 < 2.2e-16 ***
Residuals 66 26.058 0.395

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

18The package MASS has the fonction loglm which allows a formula interface for loglin.

44

We may remind ourselves that typing the name of the object as a command is similar to the
command print(aov.spray). A graphical representation of the results can be done with
plot() or termplot(). Before typing plot(aov.spray)we will divide the graphics into
four parts so that the four diagnostics plots will be done on the same graph. The commands are:

> opar <- par()
> par(mfcol = c(2, 2))
> plot(aov.spray)
> par(opar)
> termplot(aov.spray, se=TRUE, partial.resid=TRUE, rug=TRUE)

and the resulting graphics are on Fig. 13 et Fig. 14.

1.5 2.5 3.5

−
1.

5
0.

0
1.

0

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
27 39

25

−2 −1 0 1 2

−
2

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s Normal Q−Q plot

2739

25

1.5 2.5 3.5
0.

0
0.

5
1.

0
1.

5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s Scale−Location plot

27 3925

0 20 40 60

0.
00

0.
04

0.
08

Obs. number

C
oo

k’
s

di
st

an
ce

Cook’s distance plot
27

39
25

Figure 13: Graphical representation of the results from the function aov with plot().

0 1 2 3 4 5 6

−
3

−
2

−
1

0
1

2

spray

P
ar

tia
l f

or
 s

pr
ay

Figure 14: Graphical representation of the results from the function aov with termplot().

45

5.2 Formulae

Formulae are a key-element in statistical analyses with R: the notation used is the same for (almost)
all functions. A formula is typically of the form y ˜ model where y is the analysed response
and model is a set of terms for which some parameters are to be estimated. These terms are
separated with arithmetic symbols but they have here a particular meaning.

a+b additive effects of a and of b
X if X is a matrix, this specifies an additive effect of each of its columns,

i.e. X[,1]+X[,2]+...+X[,ncol(X)]; some of the columns may
be selected with numeric indices (e.g., X[,2:4])

a:b interactive effect between a and b
a*b additive and interactive effects (identical to a+b+a:b)
poly(a, n) polynomials of a up to degree n
ˆn includes all interactions up to level n, i.e. (a+b+c)ˆ2 is identical to

a+b+c+a:b+a:c+b:c
b %in% a the effects of b are nested in a (identical to a+a:b or a/b)
a-b removes the effect of b, for example: (a+b+c)ˆ2-a:b is identical to

a+b+c+a:c+b:c
-1 y˜x-1 regression through the origin (id. for y˜x+0 or 0+y˜x)
1 y˜1 fits a model with no effects (only the intercept)
offset(...) adds an effect to the model without estimating any parameter (e.g.,

offset(3*x))

We see that the arithmetic operators of R have in a formula a different meaning than they have
in expressions. For example, the formula y˜x1+x2 defines the model y � β1x1 � β2x2 � α, and
not (if the operator + would have its usual meaning) y � β

�
x1 � x2 � � α. To include arithmetic

operations in a formula, we can use the function I(): the formula y˜I(x1+x2) defines the
model y � β

�
x1 � x2 � � α. Similarly, to define the model y � β1x � β2x2 � α, we will use the

formula y ˜ poly(x, 2) (and not y ˜ x + xˆ2).
For analyses of variance, aov() accepts a particular syntax to define random effects. For

instance, y ˜ a + Error(b)means the additive effects of a fixed terms (a) and a random one
(b).

5.3 Generic functions

We remember that R’s functions act with respect to the attributes of the objects possibly passed
as arguments. The objects resulting from an analysis have a particular attribute called the class
which contains the “signature” of the function used for the analysis. The functions that we can
use subsequently to extract the results will act specifically with respect to the class of the object.
These functions are called generic.

For instance, the function which is most used to extract results from analyses is summary
which displays detailed results. Whether the object given as argument is of class "lm" (linear
model) or "aov" (analysis of variance), it sounds obvious that the information to display will not
be the same. The advantage of generic functions is that the syntax is the same for all analyses.

An object containing the results of an analysis is generally a list, and its display is determined
by its class. We have already seen this notion that the action of a function depends on the kind of
object given as argument. It is a general feature of R19. The following table gives the main generic
functions which can be used to extract information from objects resulting from an analysis. The
typical usage of these functions is:

19There are more than 100 generic functions in R.

46

> mod <- lm(y ˜ x)
> df.residual(mod)
[1] 8

print returns a brief summary
summary returns a detailed summary
df.residual returns the number of residual degrees of freedom
coef returns the estimated coefficients (sometimes with their standard-errors)
residuals returns the residuals
deviance returns the deviance
fitted returns the fitted values
logLik computes the logarithm of the likelihood and the number of parameters
AIC computes the Akaike information criterion or AIC (depends on logLik())

A function like aov or lm returns a list with its different elements corresponding to the results
of the analysis. If we take our example of an analysis of variance with the data InsectSprays,
we can look at the structure of the object returned by aov():

> str(aov.spray, max.level = -1)
List of 13
- attr(*, "class")= chr [1:2] "aov" "lm"

Another way to look at this structure is to display the names of the object:

> names(aov.spray)
[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "contrasts"
[10] "xlevels" "call" "terms"
[13] "model"

The elements can then be extracted as we have already seen:

> aov.spray$coefficients
(Intercept) sprayB sprayC sprayD
3.7606784 0.1159530 -2.5158217 -1.5963245

sprayE sprayF
-1.9512174 0.2579388

summary() also creates a list which, in the case of aov(), is simply a table of tests:

> str(summary(aov.spray))
List of 1
$:Classes anova and ‘data.frame’: 2 obs. of 5 variables:
..$ Df : num [1:2] 5 66
..$ Sum Sq : num [1:2] 88.4 26.1
..$ Mean Sq: num [1:2] 17.688 0.395
..$ F value: num [1:2] 44.8 NA
..$ Pr(>F) : num [1:2] 0 NA

- attr(*, "class")= chr [1:2] "summary.aov" "listof"
> names(summary(aov.spray))
NULL

47

Generic functions are also called methods. Schematically, they are constructed as method.foo,
where foo is the analysis function. In the case of summary, we can display the functions which
use this method:

> apropos("ˆsummary")
[1] "summary" "summary.aov"
[3] "summary.aovlist" "summary.connection"
[5] "summary.data.frame" "summary.default"
[7] "summary.factor" "summary.glm"
[9] "summary.glm.null" "summary.infl"
[11] "summary.lm" "summary.lm.null"
[13] "summary.manova" "summary.matrix"
[15] "summary.mlm" "summary.packageStatus"
[17] "summary.POSIXct" "summary.POSIXlt"
[19] "summary.table"

We can see the difference for this method in the case of a linear regression, compared to an
analysis of variance, with a small simulated example:

> x <- y <- rnorm(5);
> mod <- lm(y ˜ x)
> names(mod)
[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "xlevels"
[10] "call" "terms" "model"
> names(summary(mod))
[1] "call" "terms" "residuals"
[4] "coefficients" "sigma" "df"
[7] "r.squared" "adj.r.squared" "fstatistic"
[10] "cov.unscaled"

The objects returned by aov(), lm(), summary(), . . . are lists but they are not displayed
like lists are usually displayed as we have seen in the section relative to this type of object. There
are, indeed, print methods for these objects (reminding that typing the name of the object as a
command is equivalent to use print()):

> apropos("ˆprint")
[1] "print.pairwise.htest" "print.power.htest"
[3] "print" "print.anova"
[5] "print.aov" "print.aovlist"
[7] "print.atomic" "print.by"
[9] "print.coefmat" "print.connection"
[11] "print.data.frame" "print.default"
[13] "print.density" "print.difftime"
[15] "print.dummy.coef" "print.dummy.coef.list"
[17] "print.factor" "print.family"
[19] "print.formula" "print.ftable"
[21] "print.glm" "print.glm.null"
[23] "print.hsearch" "print.htest"
[25] "print.infl" "print.integrate"

48

[27] "print.libraryIQR" "print.listof"
[29] "print.lm" "print.lm.null"
[31] "print.logLik" "print.matrix"
[33] "print.mtable" "print.noquote"
[35] "print.octmode" "print.ordered"
[37] "print.packageIQR" "print.packageStatus"
[39] "print.POSIXct" "print.POSIXlt"
[41] "print.recordedplot" "print.rle"
[43] "print.SavedPlots" "print.simple.list"
[45] "print.socket" "print.summary.aov"
[47] "print.summary.aovlist" "print.summary.glm"
[49] "print.summary.glm.null" "print.summary.lm"
[51] "print.summary.lm.null" "print.summary.manova"
[53] "print.summary.table" "print.table"
[55] "print.tables.aov" "print.terms"
[57] "print.ts" "print.xtabs"

All these print methods allow a display adapted to each analysis.
The following table shows some generic functions that do supplementary analyses from an

object resulting from an analysis, the main argument being this latter object, but in some cases a
further argument is necessary like for predict or update.

add1 tests successively all the terms that can be added to a model
drop1 tests successively all the terms that can be removed from a model
step selects a model with AIC (calls add1 and drop1)
anova computes a table of analysis of variance or deviance for one or several models
predict computes the predicted values for new data from a fitted model
update re-fits a model with a new formula or new data

There are also various utilities functions that extract information from a model object or a
formula, such as alias() which finds the linearly dependent terms in a linear model specified
by a formula.

Finally, there are, of course, graphical functions such as plot which displays various diag-
nostics, or termplot (see the above example), though this latter function is not generic but calls
predict().

5.4 Packages

The following table lists the packages which are distributed with the package base. Except ctest
which is loaded in memory when R starts, each package may be used after being loaded:

> library(eda)

The list of the functions in a package can be displayed with:

> library(help=eda)

or by browsing the help in html format. The information relative to each function can be accessed
as previously seen (p. 7).

49

Package Description

ctest classical tests (Fisher, ‘Student’, Wilcoxon, Pearson, Bartlett, Kolmogorov-
Smirnov, . . .)

eda methods described in “Exploratory Data Analysis” by Tukey (only robust line
fitting and median smoothing)

lqs resistant regression and estimation of covariance
methods definition of methods and classes for R objects and programming tools
modreg modern regression (smoothing and local regression)
mva multivariate analyses
nls non-linear regression
splines polynomial representations
stepfun empirical distribution functions
tcltk functions to interface R with Tcl/Tk graphical user interface elements
tools tools for package development and administration
ts time-series analyses

Many contributed packages add to the list of statistical methods available in R. They are dis-
tributed separately, and must be installed and loaded in R. A complete list of the contributed
packages, with descriptions, is on the CRAN Web site20. Several of these packages are recom-
manded since they cover statistical methods often used in data analysis. (Under Windows, the
recommanded packages are distributed with the base installation in the file SetupR.exe.) The
recommanded packages are briefly described in the following table.

Package Description

boot resampling and bootstraping methods
class classification methods
cluster aggregation methods
foreign functions for reading data stored in various formats (S3, Stata, SAS, Minitab,

SPSS, Epi Info)
KernSmooth methods for kernel smoothing and density estimation (including bivariate ker-

nels)
MASS contains many functions, tools and data sets from the libraries of “Modern

Applied Statistics with S-PLUS” by Venables & Ripley
mgcv generalized additive models
nlme linear and non-linear mixed-effects models
nnet neural networks and multinomial log-linear models
rpart recursive partitioning
spatial spatial analyses (“kriging”, spatial covariance, . . .)
survival survival analyses

The procedure to install a package depends on the operating system and whether R was in-
stalled from the sources or pre-compiled binaries. In the latter situation, it is recommended to use
the pre-compiled packages available on CRAN’s site. Under Windows, the binary Rgui.exe has
a menu “Packages” allowing to install packages via internet from the CRAN Web site, or from
zipped files on the local disk.

20http://cran.r-project.org/src/contrib/PACKAGES.html

50

If R was compiled, a package can be installed from its sources which are distributed as a
‘.tar.gz’ file. For instance, if we want to install the package gee, we will first download the file
gee 4.13-6.tar.gz (the number 4.13-6 indiciates the version of the package; generally only one
version is available on CRAN). We will then type from the system (and not in R) the command:

R INSTALL gee_4.13-6.tar.gz

There are several useful functions to manage packages such as installed.packages(),
CRAN.packages() or download.packages(). It is also useful to type regularly the com-
mand:

> update.packages()

which checks the versions of the packages installed against those available on CRAN (this com-
mand can be called from the menu “Packages” under Windows). The user can then update the
packages with more recent versions than those installed on his (or her) computer.

6 Programming with R in pratice

Now that we have done an overview of R’s functionalities, let us come back to the language and
the programmation. We will see very simple ideas likely to be used in practice quite easily.

6.1 Loops and vectorization

An advantage of R compared to softwares with pull-down menus is the possibility to program sim-
ply a series of analyses which will be executed successively. This is common to any computer lan-
guage, but R has some particular features which make programming possible by non-specialists.

Like other languages, R has some control structures which are not dissimilar to those of the
language C. Suppose we have a vector x, and for each element of x with the value b, we want to
give the value 0 to another variable y, else 1. We first create a vector y of the same length than x:

y <- numeric(length(x))
for (i in 1:length(x)) if (x[i] == b) y[i] <- 0 else y[i] <- 1

Several instructions can be executed if they are placed within braces:

for (i in 1:length(x)) {
y[i] <- 0
...

}

if (x[i] == b) {
y[i] <- 0
...

}

Another possible situation is to execute an instruction as long as a condition is true:

while (myfun > minimum) {
...

}

51

However, loops and control structures can be avoided in most situations thanks to a feature of
R: vectorization. Vectorization makes loops implicit in expressions, and we have seen many cases.
Let us consider the addition of two vectors:

> z <- x + y

This addition could be written with a loop, as this is done in most languages:

> z <- numeric(length(x))
> for (i in 1:length(z)) z[i] <- x[i] + y[i]

In this case, it is necessary to create the vector z beforehand because of the use of the indexing
system. We realize that this explicit loop will work only if x and y are of the same length: it must
be changed if this is not true, whereas the first expression will work in all situations.

The conditional executions (if ... else) can be avoided with the use of the logical
indexing; coming back to the above example:

> y[x == b] <- 0
> y[x != b] <- 1

There are also several functions of the type “apply” which avoids writing loops. apply()
acts on the rows and/or columns of a matrix, its syntax is apply(X, MARGIN, FUN, ...),
where X is a matrix, MARGIN indicates whether to consider the rows (1), the columns (2), or both
(c(1, 2)), FUN is a function (or an operator, but in this case it must be specified within brackets)
to apply, and ... are possible optional arguments for FUN. A simple example follows.

> x <- rnorm(10, -5, 0.1)
> y <- rnorm(10, 5, 2)
> X <- cbind(x, y) # the columns of X keep the names "x" and "y"
> apply(X, 2, mean)

x y
-4.975132 4.932979
> apply(X, 2, sd)

x y
0.0755153 2.1388071

lapply() acts on a list: its syntax is similar to apply and it returns a list.

> forms <- list(y ˜ x, y ˜ poly(x, 2))
> lapply(forms, lm)
[[1]]

Call:
FUN(formula = X[[1]])

Coefficients:
(Intercept) x

31.683 5.377

[[2]]

52

Call:
FUN(formula = X[[2]])

Coefficients:
(Intercept) poly(x, 2)1 poly(x, 2)2

4.9330 1.2181 -0.6037

sapply() is a flexible variant of lapply() which can take a vector or a matrix as main
argument, and returns its results in a more user-friendly form, generally as a table.

6.2 Writing a program in R

Typically, an R program is written in a file saved in ASCII format and named with the extension
‘.R’. A typical situation where a program is useful is when one wants to do the same tasks several
times. In our first example, we want to do the same plot for three different species of birds, the
data being in three distinct files. We will proceed step by step, and see different ways to program
this very simple problem.

First, let us make our program in the most intuitive way by executing successively the desired
commands, taking care to partition the graphical device beforehand.

layout(matrix(1:3, 3, 1)) # partition the graphics
data <- read.table("Swal.dat") # read the data
plot(data$V1, data$V2, type="l")
title("swallow") # add a title
data <- read.table("Wren.dat")
plot(data$V1, data$V2, type="l")
title("wren")
data <- read.table("Dunn.dat")
plot(data$V1, data$V2, type="l")
title("dunnock")

The character ‘#’ is used to add comments in a program, R then goes to the next line.
The problem of this first program is that it may become quite long if we want to add other

species. Moreover, some commands are executed several times, thus they can be grouped together
and executed after changing some arguments. The strategy used here is to put these arguments in
vectors of mode character, and then use the indexing to access these different values.

layout(matrix(1:3, 3, 1)) # partition the graphics
species <- c("swallow", "wren", "dunnock")
file <- c("Swal.dat" , "Wren.dat", "Dunn.dat")
for(i in 1:length(species)) {

data <- read.table(file[i]) # read the data
plot(data$V1, data$V2, type="l")
title(species[i]) # add a title

}

Note that there are no brackets around file[i] in read.table() since this argument is
of mode character.

Our program is now more compact. It is easier to add other species since the vectors containing
the species and file names are at the beginning of the program.

The above programs will work correctly if the data files ‘.dat’ are located in the working
directory of R, otherwise the user must either change the working directory, or specifiy the path

53

in the program (for example: file <- "C:/data/Swal.dat"). If the program is written in
the file Mybirds.R, it will be called by typing:

> source("Mybirds.R")

Like for any reading in a file, it is necessary to give the path to access the file if it is not in the
working directory.

6.3 Writing your own functions

We have seen that most of the R’s work is done with functions which arguments are given within
parentheses. The user can write his (or her) own functions, and these will have exactly the same
properties than other functions in R.

Writing your own functions allows an efficient, flexible, and rational use of R. Let us come
back to our example of reading some data followed by plotting a graph. If we want to do this
operation in different situations, it may be a good idea to write a function:

myfun <- function(S, F)
{

data <- read.table(F)
plot(data$V1, data$V2, type="l")
title(S)

}

To be executed, this function must be loaded in memory, and this can be done in several ways.
The lines of the function can be typed directly on the keyboard, like any other command, or copied
and pasted from an editor. If the function has been saved in an ASCII file, it can be loaded with
source() like another program. If the user wants his (her) functions to be loaded each time
when R starts, they can be saved in a workspace .RData which will be loaded in memory if it is
in the working directory. Another possibility is to configure the file ‘.Rprofile’ or ‘Rprofile’ (see
?Startup for details). Finally, it is possible to create a package, but this will not be discussed
here (see the manual “Writing R Extensions”).

Once the function is loaded, we will be able with a single command to read the data and plot
the graph, for instance with myfun("swallow", "Swal.dat"). Thus, we have now a third
version of our program:

layout(matrix(1:3, 3, 1))
myfun("swallow", "Swal.dat")
myfun("wren", "Wrenn.dat")
myfun("dunnock", "Dunn.dat")

We may also use sapply() leading to a fourth version of our program:

layout(matrix(1:3, 3, 1))
species <- c("swallow", "wren", "dunnock")
file <- c("Swal.dat" , "Wren.dat", "Dunn.dat")
sapply(species, myfun, file)

In R, it is not necessary to declare the variables used within a function (by contrast to languages
such as C or Fortran). When a function is executed, R uses a rule called lexical scoping to decide
whether an object is local to the function, or global. To understand this mechanism, let us consider
the very simple function below:

54

> foo <- function() print(x)
> x <- 1
> foo()
[1] 1

The name x is not used within foo(), so R will seek in the enclosing environment if there
is an object called x, and will print its value (otherwise, a message error is displayed, and the
execution is halted).

If x is used as the name of an object within our function, the value of x in the global environ-
ment is not changed.

> x <- 1
> foo2 <- function() { x <- 2; print(x) }
> foo2()
[1] 2
> x
[1] 1

This time print() uses the object x that is defined within its environment, that is the envi-
ronment of foo2.

The word “enclosing” above is important. In our two example functions, there are two envi-
ronments: the global one, and the one of the function foo or foo2. If there are three or more
nested environments, the search for the objects is made progressively from a given environment to
the enclosing one, and so on, up to the global one.

There are two ways to specify arguments to a function: by their positions or by their names
(also called tagged arguments). For example, let us consider a function with three arguments:

foo <- function(arg1, arg2, arg3) {...}

foo() can be executed without using the names arg1, . . . , if the corresponding objects
are placed in the correct position, for instance: foo(x, y, z). However, the position has no
importance if the names of the arguments are used, e.g. foo(arg3 = z, arg2 = y, arg1
= x). Another feature of R’s functions is the possibility to use default values in their definition.
For instance:

foo <- function(arg1, arg2 = 5, arg3 = FALSE) {...}

Both commands foo(x) and foo(x, 5, FALSE) will have exactly the same result. The
use of default values in function definitions is, of course, very useful and adds to their flexibility.

Another example of function is not purely statistical, but it illustrates well the flexibility of R.
Consider we wish to study the behaviour of a non-linear model: Ricker’s model defined by:

Nt � 1
� Nt exp

�
r � 1 �

Nt

K ���
This model is widely used in population dynamics, particularly of fish. We want, using a func-

tion, simulate this model with respect to the growth rate r and the initial number in the population
N0 (the carrying capacity K is often taken equal to 1 and this value will be taken as default); the
results will be displayed as a plot of numbers with respect to time. We will add an option to allow
the user to display only the numbers in the last time steps (by default all results will be plotted).
The function below can do this numerical analysis of Ricker’s model.

55

ricker <- function(nzero, r, K=1, time=100, from=0, to=time)
{

N <- numeric(time+1)
N[1] <- nzero
for (i in 1:time) N[i+1] <- N[i]*exp(r*(1 - N[i]/K))
Time <- 0:time
plot(Time, N, type="l", xlim=c(from, to))

}

Try it yourself with:

> layout(matrix(1:3, 3, 1))
> ricker(0.1, 1); title("r = 1")
> ricker(0.1, 2); title("r = 2")
> ricker(0.1, 3); title("r = 3")

7 Literature on R

Manuals. Several manuals are distributed with R in the directory R HOME/doc/manual/ (R HOME
being the path where R is installed):

� “An Introduction to R” [R-intro.pdf],
� “R Installation and Administration” [R-admin.pdf],
� “R Data Import/Export” [R-data.pdf],
� “Writing R Extensions” [R-exts.pdf],
� “R Language Definition” [R-lang.pdf].

The files may be in different formats (pdf, html, texi, . . .) depending on the type of installa-
tion.

FAQ. R is also distributed with an FAQ (Frequently Asked Questions) localized in the directory
R HOME/doc/html/. A version of this R-FAQ is regularly updated on CRAN’s Web site:
http://cran.r-project.org/doc/FAQ/R-FAQ.html.

On-line resources. CRAN’s Web site and R’s homepage hosts several documents, bibliographic
resources, and links to other sites. There are also a list of publications (books and articles)
about R or statistical methods21, and some documents and tutorials written by R’s users22.

Mailing lists. There are three discussion lists on R; to subscribe, send a message, or read the
archives see: http://www.R-project.org/mail.html.

The general discussion list ‘r-help’ is an interesting source of information for the users of R
(the two other lists are dedicated to annoucements of new versions, new packages, . . . , and
for developers). Many users have sent to ‘r-help’ fonctions or programs which can be found
in the archives. If a problem is encountered with R, it is thus important to proceed in the
following order before sending a message to ‘r-help’:

1. read carefully the on-line help (possibly using the search engine),

2. read the R-FAQ,

21http://www.R-project.org/doc/bib/R-publications.html
22http://cran.r-project.org/other-docs.html

56

3. search the archives of ‘r-help’ at the above address, or by using one of the search
engines developed on some Web sites23 .

R News. The electronic journal R News aims to fill the gap between the electronic discussion lists
and traditional scientific publications. The first issue was published on January 2001, and
three numbers are issued per year. Kurt Hornik and Friedrich Leisch are the editors24 .

Citing R in a publication. Finally, if you mention R in a publication, you must cite the original
article:

Ihaka R. & Gentleman R. 1996. R: a language for data analysis and graphics.
Journal of Computational and Graphical Statistics 5: 299–314.

23The addresses of these sites are listed at http://cran.r-project.org/search.html
24http://cran.r-project.org/doc/Rnews/

57

	1 Preamble
	2 A few concepts before starting
	2.1 How R works
	2.2 Creating, listing and deleting the objects in memory
	2.3 The on-line help

	3 Data with R
	3.1 Objects
	3.2 Reading data in a file
	3.3 Saving data
	3.4 Generating data
	3.4.1 Regular sequences
	3.4.2 Random sequences

	3.5 Manipulating objects
	3.5.1 Creating objects
	3.5.2 Converting objects
	3.5.3 Operators
	3.5.4 Accessing the values of an object: the indexing system
	3.5.5 Accessing the values of an object with names
	3.5.6 The data editor
	3.5.7 Arithmetics and simple functions
	3.5.8 Matrix computation

	4 Graphics with R
	4.1 Managing graphics
	4.1.1 Opening several graphical devices
	4.1.2 Partitioning a graphic

	4.2 Graphical functions
	4.3 Low-level plotting commands
	4.4 Graphical parameters
	4.5 A practical example
	4.6 The grid and lattice packages

	5 Statistical analyses with R
	5.1 A simple example of analysis of variance
	5.2 Formulae
	5.3 Generic functions
	5.4 Packages

	6 Programming with R in pratice
	6.1 Loops and vectorization
	6.2 Writing a program in R
	6.3 Writing your own functions

	7 Literature on R

