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Introduction
The study of Spin structures and classical Riemannian and pseudo-Riemannian
Dirac operators acting on them is a well-established area of mathematical re-
search. It was mainly motivated by physics but it soon gained its popularity
within the mathematical community. It has been shown multiple times that the
Dirac operators, respectively their spectrum, contain information about the Rie-
mannian geometry and topology of the underlying manifold see [Friedrich, 2000]
or Baum [1981]

The symplectic Dirac operators are analogues of the classical Riemannian
Dirac operators, but constructed in the framework of symplectic geometry. They
have been firstly introduced by Katharina Habermann in 1995 [Habermann, 1995]
with the idea that they may be another tool for studying symplectic geome-
try/topology. However, there are several differences to the classical case.

In the classical case, it is required for the manifold to have a Spin structure,
that is a lift of the structure group of the tangent bundle to a Spin group which is
a connected double cover of the group SO(n,R). The reduction of the structure
group to the group O(n,R) is, of course, always present. In the symplectic case,
one needs to start with the symplectic manifold (i.e. reduction to Sp(2n,R) and
some integrability condition) and then one requires a lift to the Metaplectic group
which is the connected double covering of the symplectic group. A small differ-
ence is that the Spin group is actually simply-connected while the metaplectic
group has Z as its fundamental group. However, when manifolds admit a sym-
plectic structure, the conditions on existence of metaplectic and spin structures
are equivalent.

Next step is to construct the space of spinors - space on which the Dirac
operators act. In the classical case, the choice is clear, it is the associated bundle
via the Spin representation - representation that does not exist for SO(n,R). In
the symplectic case, one takes the metaplectic representation, which is (under
some constrains) a unique representation of the metaplectic group. Here the
difference is much more noticeable since the Riemannian spinor bundle is a bundle
with finite-dimensional fibers while the symplectic spinor bundle is a bundle with
the space L2(Rn) as the typical fiber.

Lastly one constructs the Dirac operators themselves using the connection
compatible with the Riemannian metric and the Clifford multiplication of the
Clifford algebra on the space of spinors. In the symplectic case, one usually does
not have a clear choice of a connection since there are several torsion free con-
nections compatible with the symplectic structure. However, sometimes there
are other circumstances that can make one’s choice of a connection more privi-
leged. Last difference is the discrepancy in the Clifford algebrae. The symplectic
Clifford algebra (the Weyl algebra) is constructed using the symplectic form and
thus, leads again to an infinite-dimensional algebra in contrary to the standard
Clifford algebra that is finite-dimensional.

Computing the spectrum of the Dirac operators on symmetric spaces G/H has
been done using the Parthasarathy formula [Bourguignon et al., 2015, Proposition
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15.7.] which states that

D2(A) = A ◦ Ω + Scal
8 A

where Scal is the scalar curvature of the symmetric space and Ω is a representation
of a Casimir element of the Lie algebra of G.

Nevertheless, such a general formula probably does not hold for the symplectic
Dirac operators. Habermann has computed the associated second order operator
P (similar to D2 in Riemanninan case) on a Riemannian sphere [Habermann and
Habermann, 2006] and showed that it is

P(φ) = −Ω(φ)− 12H2
0 (φ)

where H0 is quantum Hamiltonian of the harmonic oscillator and Ω is again a
representation of the Casimir element. Wyss then computed P generally on the
odd-dimensional complex projective spaces CP n [Wyss, 2003], where it holds that

P(φ) = −Ω(φ)− 12H2
0 (φ)− 3n(n− 1)

2 φ.

In this thesis we try to continue the effort and compute the operator P on the
Grassmannian Gr2(C4) where we found that

P(φ) = −Ω(φ)− 12H2
0 (φ) + 12φ− Φ · φ

where the operator Φ· is a bit more complicated to define. The proper definition
is given at the chapter 4 of this thesis.

Next we have computed a part of the spectra of this operator but we have not
yet found a nice expression (in contrary to the work of Habermann and Wyss)
that describes the whole spectrum. However, we have found an iterative method
of finding eigenvalues one by one. Our hope is to continue this work and find the
all encompassing expressions.

In the first chapter we present basic definitions and properties of the objects
of interests. Namely, symplectic vector spaces, Weyl algebra, symplectic Clif-
ford multiplication, the Metaplectic group and its representation and symplectic
manifold with connections on them.

The second chapter consists of providing more details on the construction of
the symplectic Dirac operators hinted above.

The third chapter serves as a small introduction to homogeneous and symmet-
ric spaces. Then we present the Grassmannian Gr2(C4) as a Kähler symmetric
space and we prove that it has a unique metaplectic structure.

The last chaper is the main computation of the associated second order oper-
ator P . It shows the splitting of the operator into the expression written above
and the chapter concludes with the computation of a part of the point spectrum
of the operator. Throughout the computation of the spectrum, it is hinted how
the general inductive procedure works.
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1. Symplectic Clifford Algebra
and Symplectic manifolds

1.1 Symplectic Clifford algebra
Let us start by making some basic definitions. We follow Crumeyrolle [1990]

Definition 1.1.1 (Symplectic vector space). Given a vector space V over a field
F where F is R or C and a bilinear form on this vector space ω : V × V → F.
We say that (V, ω) is a symplectic vector space if ω is skew-symmetric and non-
degenerate. We say that ω is the symplectic form.

Remark. Let us note that this implies that if V is finite-dimensional then it
must be even dimensional. Consider vector space V of dimension n and let
us choose its basis B. With respect to this basis the symplectic form must
have a skew-symmetric matrix A. Now let us look at the determinant det(A) =
det(AT ) = det(−A) = (−1)n det(A). This clearly yields det(A) = − det(A) and
thus det(A) = 0 for odd-dimensional vector space violates the non-degeneracy
condition.

Definition 1.1.2 (Symplectic basis). Consider a symplectic vector space (V, ω)
and its basis (a1, . . . , an, b1 . . . , bn). We say that this basis is symplectic if

ω(ai, aj) = ω(bi, bj) = 0 and ω(ai, bi) = 1 for 0 ≤ i, j ≤ n.

Example 1.1.1 (Standard symplectic vector space). Consider the vector space R2n

and a matrix
J0 :=

(︄
0 −In
In 0

)︄
.

then the standard symplectic structure is defined as ω0(v, w) := ⟨J0v, w⟩ where
⟨·, ·, ⟩ is the standard Euclidean inner product.

This example shows how does the symplectic form look like with respect to
the symplectic basis.

Given two symplectic vector spaces (V1, ω1) and (V2, ω2) we can define a no-
tion of symplectomorphism as a linear isomorphism f : V1 → V2 such that
ω1 = f ∗ω2 where the last equation means that for all v, w ∈ V1 it holds that
ω1(v, w) = ω2(f(v), f(w)). Thus finding a symplectic basis of (V, ω) is actually
equivalent to finding a symplectomorphism f : (V, ω) → (R2n, ω0). Moreover, it
can be shown that each finite-dimensional symplectic vector space is symplec-
tomorphic to the standard symplectic vector space, i.e., each symplectic vector
space has a symplectic basis.

Now we shall define a symplectic Clifford algebra, sometimes also called the
Weyl algebra and describe some of its basic properties.

Definition 1.1.3 (Generalised Symplectic Clifford algebra). Let V be a vector
space over a field F and let η : V × V → F be a skew-symmetric form. Let us
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consider the tensor algebra T (V ) and its two-sided ideal I generated by the set
{x ⊗ y − y ⊗ x + η(x, y)|x, y ∈ V }. We define the symplectic Clifford algebra as
the quotient of the tensor algebra by this ideal, i.e. Cl(V, η) := T (V )/I.

Remark. Note that in Crumeyrolle [1990] the ideal I is defined with a different
sign, i.e. it is generated by the set {x⊗ y − y ⊗ x− η(x, y)|x, y ∈ V }. But these
constructions are the same, it is enough to define η′ = −η.

Compare this to the orthogonal Clifford algebra where the two-sided ideal
is generated by the set x ⊗ x = B(x, x) where B is a symmetric form. If we
choose B = 0 we obtain the algebra of skew-symmetric tensors. However, if in
the symplectic case we choose η = 0 we obtain the algebra of symmetric tensors
on V , i.e. Cl(V, 0) = S(V ). In general, it holds that the standard Clifford algebra
is finite-dimensional while the symplectic one is infinite dimensional.

Since there is a canonical injection i : V → T (V ), we can compose it with the
projection π : T (V ) → Cl(V, η) to obtain a morphism ι : V → Cl(V, η). Since
i(V ) generates T (V ) as an algebra, we have that ι(V ) generates Cl(V, η) as an
algebra.

Symplectic Clifford algebra can be also defined via the universal property as
is shown in the next proposition.

Proposition 1.1.1 (Universal property of symplectic Clifford algebra). Let (V, η)
be a vector space over F with a skew-symmetric form η and let A be an associative
F-algebra with · as a multiplication. Then for a morphism F : V → A satisfying

F (x) · F (y)− F (y) · F (x) = −η(x, y), for all x, y ∈ V

there exists a unique algebra homomorphism F̂ : Cl(V, η)→ A such that F̂ ◦ι = F

Proof. Existence. We can use the universal property of the tensor algebra to
obtain a unique algebra homomorphism F0 : T (V ) → A such that F0 ◦ i = F
where i is the canonical injection of vector space into its tensor algebra. Then
from F0(x⊗ y − y ⊗ x+ η(x, y)) = 0, we get that F0(I) = 0. Thus we can factor
F0 through the projection map π : T (V )→ Cl(V, η) to obtain F0 = F̂ ◦ π where
F̂ is the map we had to construct.

Uniqueness. Because of the relation F̂ ◦ ι = F , we have at most one choice on
how to define F̂ on ι(V ) and since ι(V ) generates Cl(V, η) it gives the uniqueness
of F̂ .

It can be shown Crumeyrolle [1990] that the symplectic Clifford algebra is
isomorphic as a vector space to the symmetric algebra S(V ). Thus the canonical
morphism ι : V → Cl(V, η) is actually injective. Furthermore also the composed
morphism F → T (V ) π−→ Cl(V, η) is injective as well. Therefore, we will identify
elements of the field F and of the vector space V with appropriate elements from
the Clifford algebra.

From now onward we will work only with the real symplectic Clifford algebra
with a symplectic form as the skew-symmetric form. If V is a symplectic vector
space we will write simply Cl(V ) instead of Cl(V, ω).
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Let us make a remark about the Heisenberg group and its Lie algebra.
Suppose that we have a symplectic vector space (V, ω). Let us define a Heisen-

berg group H(2n) as V × R with multiplication defined by

(x, t) · (y, s) := (x+ y, t+ s+ 1
2ω(x, y)),

where (x, s), (y, t) ∈ V × R. It can be shown Folland [1989] that its Lie algebra
can be identified with h(2n) := V × R with the obvious addition and the Lie
bracket given by

[(x, t), (y, s)] = ω(x, y)(0, 1),

for any (x, t), (y, s) ∈ V ×R. Define a map f : V ×R→ T (V ) by f(x, t) = x− t1
where x ∈ V, t ∈ R and the 1 is the unit of the tensor algebra. This morphism
is clearly linear and since T (V ) is an algebra there is a unique morphism φ :
T (h)→ T (V ) such that φ◦ i = f where i is the canonical inclusion i : h→ T (h).
For (x, t), (y, s) ∈ h = V × R, (x, t) ⊗ (y, s) − (y, s) ⊗ (x, t) − [(x, t), (y, s)] =
(x, 0)⊗(y, 0)+(ty, 0)+(sx, 0)+st1−(y, 0)⊗(x, 0)−(sx, 0)−(ty, 0)−st1−ω(x, y)1 =
(x, 0)⊗ (y, 0)− (y, 0)⊗ (x, 0)− ω(x, y)1 φ↦→ x⊗ y − y ⊗ x+ ω(x, y).

That is the ideal K generated by the elements a ⊗ b − b ⊗ a − [a, b] where
a, b ∈ h, is sent into the ideal I. Therefore, the morphism φ factors to the
universal enveloping algebra [see Dixmier and Society, 1996] : φ̂ : U(h)→ Cl(V ).
Since φ is surjective so is the φ̂ and thus we see that the symplectic Clifford
algebra is just the factor of the enveloping algebra of the Heisenberg algebra.

It can actually be shown that the universal enveloping algebra U(h) is, up to
identification of the new coordinate with the negative unit of the algebra, isomor-
phic as a real associative algebra to the symplectic Clifford algebra Cl(V ), but
we will not need that.

If (V, ω) is a 2n-dimensional symplectic vector space with a symplectic basis
(a1, . . . , an, b1, . . . , bn), then Cl(V ) has basis Habermann and Habermann [2006]

aα1
1 · . . . · aαn

n bβ1
1 · . . . · bβn

n ,

where αi, βi are non-negative integers. Here we consider ai, bi as elements of V ⊆
Cl(V ) which is included via the monomorphism ι. Furthermore for v, w ∈ Cl(V )
we can define the bracket [v, w] := v ·w−w ·v which turns the real algebra Cl(V )
into a real Lie algebra.

1.2 Symplectic and Metaplectic group
Definition 1.2.1 (Symplectic group). Given a standard symplectic vector space
(R2n, ω0), we define the group of all linear automorphisms that preserve the sym-
plectic structure as the symplectic group Sp(2n,R).

This group is thus the set of all automorphisms A ∈ Aut(R2n) ∼= GL(2n,R)
such that for all v, w ∈ R2n it holds that

ω0(Av,Aw) = ω0(w, v).
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If we consider a matrix J0 from the example 1.1.1 the symplectic group is also
the set of matricies A such that

AJ0A
T = J0.

If we choose any 2n-dimensional real symplectic vector space (V, ω), its au-
tomorphism group (subset of all linear automorphisms preserving the symplectic
structure) will be denoted by Sp(V ). It is isomorphic to the symplectic group
Sp(2n,R).

Note that the symplectic group can be identified with the set of all symplectic
bases. This is due to the fact that since the elements of the symplectic group
preserves the symplectic structure we can choose a symplectic basis B and obtain
all others as f(B) where f ∈ Sp(V ).

A known result, whose proof can be found for example in Folland [1989] states
that

Proposition 1.2.1 (Topological properties of Symplectic group). (i) U(n) is
a maximal compact subgroup of Sp(2n,R)

(ii) Sp(2n,R) is homeomorphic to the product U(n)× Rn2+n

Since it is well-known that the fundamental group of U(n) is isomorphic to
Z, we have the following corollary.

Corollary 1.2.2 (Fundamental group of symplectic group). Sp(2n,R) has a Z
as its fundamental group.

From this we can see that the connected double cover exists and it is a unique
Lie group and so we set

Definition 1.2.2 (Metaplectic group). We define the Metaplectic group to be the
unique connected double covering space of the symplectic group. We denote the
covering homomorphism by ρ : Mp(2n,R)→ Sp(2n,R)

It can be shown that the Metaplectic group does not admit a faithful finite-
dimensional representation see theorem 1 in Krýsl [2017] and thus it is a Lie
group, which cannot be realised as a subgroup of Gl(m,R) for any m ∈ N.

Let us look at Lie algebrae of Symplectic and Metaplectic groups. They
are of course isomorphic because of the double cover. However, we will realise
them differently in order to separate them and make the later computation of
the differential of the double cover easier and more organised. Our description
will be the same as in Habermann and Habermann [2006]. We will identify the
symplectic Lie algebra with the space S2(R2n) of symmetric 2-tensors on R2n and
the metaplectic Lie algebra with a Lie subalgebra of the symplectic Clifford Lie
algebra.

If we are given a Lie group Sp(2n,R) then its Lie algebra sp(2n,R) is by
definition a set of endomorphsim X ∈ End(R2n) ∼= M2n(R) such that for vectors
v, w ∈ R2n holds

ω0(Xv,w) + ω0(v,Xw) = 0
or in matricies

XJ0 + J0X
T = 0.
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Let us define a morphism φ : S2(R2n)→ sp(2n,R) as follows, for v, v1, v2 ∈ R2n

φ(v1 ⊙ v2)(v) = ω0(v, v1)v2 + ω0(v, v2)v1. (1.1)

We denote the symmetric product by ⊙. The morphism is well defined since for
v, w ∈ R2n it holds that

ω0(φ(v1 ⊙ v2)v, w) + ω0(v, φ(v1 ⊙ v2)w) = ω0(ω0(v, v1)v2 + ω0(v, v2)v1, w)+
+ ω0(v, ω0(w, v1)v2 + ω0(w, v2)v1) = ω0(v, v1)ω0(v2, w) + ω0(v, v2)ω0(v1, w)+
+ ω0(v, v2)ω0(w, v1) + ω0(v, v1)ω0(w, v2) = 0

where the last equality follows by the skew-symmetry of ω0. This is the defining
property of the symplectic Lie algebra and so the morphism is well defined. On
the other hand, we can define ψ : sp(2n,R)→ S2(R2n) for X ∈ End(R2n) and a
symplectic basis (a1, . . . , an, b1, . . . , bn) as

ψ(X) = 1
2

n∑︂
j=1

(Xaj ⊙ bj − aj ⊙Xbj).

Let us denote v1 = ∑︁n
i (α1

i ai + β1
i bi) and v2 = ∑︁n

i (α2
i ai + β2

i bi). Now we can
compute the composition

ψ(φ(v1 ⊙ v2)) = 1
2

n∑︂
j=1

((ω0(aj, v1)v2 + ω0(aj, v2)v1)⊙ bj − aj ⊙ (ω0(bj, v1)v2+

+ ω0(bj, v2)v1)) = 1
2

n∑︂
j=1

(β1
j v2 + β2

j v1)⊙ bj + aj ⊙ (α1
jv2 + α2

jv1) = 1
2

n∑︂
j=1

n∑︂
k=1

(β1
jα

2
k + α2

kβ
1
j )ak ⊙ bj + (β1

jβ
2
k + β2

jβ
1
k)bk ⊙ bj + (β2

jα
1
k + α1

kβ
2
j )ak ⊙ bj+

+ (α1
kα

2
j + α2

jα
1
k)ak ⊙ aj = v1 ⊙ v2.

Where in the third equality we have expanded the v1 and v2 as written above and
in the second summand we have switched k and j. A proof of the second possible
composition is Lemma 1.1.4 in Habermann and Habermann [2006].

We return to the symplectic Clifford algebra Cl(R2n). It can be shown [see
Habermann and Habermann, 2006, Lemma 1.1.6] that the vector subspace gen-
erated by {v ·w+w · v| v, w ∈ R2n} is a Lie subalgebra of Cl(R2n). Furthermore,
it is isomorphic to the Lie algebra sp(2n,R). We will thus identify it with the Lie
algebra mp(2n,R). We will think of the differential of ρ as

dρ(v · w + w · v) = 2v ⊙ w (1.2)

Let us proceed with definitions of particular representations of groups and
show that there exists a unique unitary representation of the metaplectic group
with a certain property. This is essential for the later definition of the symplectic
Dirac operator. For proofs and a more elaborate description of the constructions
we refer to Wallach [2018].

If we are given a separable complex Hilbert vector space H, we endow the
space GL(H) of invertible bounded operators on H with the strong topology.
That is a sequence of operators Tk converges to T if and only if the sequence
Tk(h) converges to T (h) for every h ∈ H.
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Definition 1.2.3 (Group representation). Let G be a Lie group and H a sepa-
rable complex Hilbert vector space. By a representation of G on H we mean a
continuous group homomorphism φ : G→ GL(H). We will denote it by (φ,H).

It is called a unitary representation if it maps into the group of unitary oper-
ators, i.e. φ(G) ⊆ U(H).

A closed subspace V ⊆ H is called an invariant subspace with respect to
this representation (sometimes called φ-invariant) if for all g ∈ G it holds that
φ(g)(V ) ⊆ V .

A representation is said to be irreducible if there are precisely two invariant
subspaces. Those are {0} and H.

Given two representations (φ,H1), (ψ,H2) of the same group G we say that
they are equivalent if there exists a linear homeomorphism T : H1 → H2 such
that T ◦ φ = ψ ◦ T .

The are called unitary equivalent if T is an isometric isomorphism.

Let V = (R2n, ω0) be a standard symplectic vector space as in example 1.1.1.
Consider the Heisenberg group H(2n) on V . We can define the Schrödinger
representations ψSλ

: H(2n)→ GL(L2(Rn)) for λ ∈ R\{0} by

(ψSλ
(
(︄
x
y

)︄
, s)(f))(t) = e−iλ(s+⟨x,t− 1

2y⟩f(t− y),

where (
(︄
x
y

)︄
, s) ∈ H(2n), f : Rn → C and t ∈ Rn. Note that this definition relies

on the fact, that the symplectic structure on the vector space is the standard one.
Also it clearly holds that for f, g : Rn → C

∫︂
Rn
ψSλ

(
(︄
x
y

)︄
, s)(f)(t)ψSλ

(
(︄
x
y

)︄
, s)(g)(t)dt =

∫︂
Rn
e−iλ(s+⟨x,t− 1

2y⟩f(t− y)

eiλ(s+⟨x,t− 1
2y⟩g(t− y)dt =

∫︂
Rn
f(t− y)g(t− y) =

∫︂
Rn
f(t′)ḡ(t′)dt′,

where the last equality follows from the translation invariance of the Lebesgue
measure. This shows that the representation is unitary. Furthermore, it can be
shown that these representations are irreducible Folland [1989]. It holds that

ψSλ
(0, s)(f) = e−iλsf.

If λ = 1, the representation is denoted by ψS. It turns out, that these are all
irreducible unitary representations of the Heisenberg group up to equivalence.

Theorem 1.2.3 (Stone-von Neumann). Let (φ,H) be an irreducible unitary rep-
resentation of the Heisenberg group on a separable complex Hilbert space. Then
there is λ ∈ R such that φ(0, s)h = e−iλsh where h ∈ H and s ∈ R and either

(i) λ = 0 and dim(H) = 1 and φ(x, s) = eiα(x)Id, where α ∈ V ∗ or

(ii) λ ̸= 0 and then φ is unitary equivalent to ψSλ
.

Let us outline a construction of the metaplectic representation which can be
found in Weil [1964].
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Consider the standard symplectic vector space (R2n, ω0) and the associated
Heiseneberg group H(2n). There is an action of the symplectic group Sp(2n,R)
on H(2n) given by τA(x, s) := (Ax, s) where A ∈ Sp(2n,R) and (x, s) ∈ H(2n).
Since this action is an automorphism of the Heisenberg group, the composition
ψS ◦τA : H(2n)→ U(L2(Rn)) is again an irreducible representation of the Heisen-
berg group. Because (ψS ◦ τA)(0, s)(f) = ψS(0, s)(f) = e−isf , we see that it is
the irreducible representation with the same factor λ = 1 with the notation from
the theorem above. Therefore, it is unitary equivalent to the Schrödinger rep-
resentation ψS. In other word for each A ∈ Sp(2n,R) there exist an element
T (A) ∈ U(L2(Rn)) such that

T (A) ◦ ψS = ψS ◦ τA ◦ T (A).

Thanks to the Schur lemma for Hilbert spaces [see Deitmar and Echterhoff, 2014]
and the fact that the Schrödinger representation is irreducible, we deduce that the
operator T (A) is unique up to a complex multiple. This means that the operator
T gives rise to a projective unitary representation of Sp(2n,R), i.e. there exists
a function c : Sp(2n,R)× Sp(2n,R)→ S1 such that

T (AB) = c(A,B)T (A) ◦ T (B).

It was shown in Weil [1964] that this representation lifts to a unitary repre-
sentation of the metaplectic group.

Proposition 1.2.4 (Segal-Shale-Weil representation). There exists a unique uni-
tary representation

m : Mp(2n,R)→ U(L2(Rn)
which satisfies

m(q) ◦ ψS(x, s) = ψS(ρ(q)x, s) ◦m(q)
for all q ∈Mp(2n,R) and (x, s) ∈ H(2n)

Elements of L2(Rn) are called the symplectic spinors and they present an
analogue of the classical spinors in the orthogonal case.

Let us note that this representation is faithful, but not irreducible. It decom-
poses into the sum of two inequivalent irreducible representations - even and odd
functions [see Robinson and Rawnsley, 1989]. Its space of smooth vectors (those
are the elements f ∈ L2(R) such that the map Mp(2n,R) ∋ A ↦→ m(A)f is
C∞-Fréchet differentiable) is exactly the Schwartz space S(Rn), i.e. the space of
rapidly decreasing smooth functions, which is dense in L2(Rn) [see Borel et al.,
2000].

To the end of this chapter we shall define the Symplectic Clifford multiplica-
tion. We shall see that these operators are up to a constant factor just the differ-
entiation of the Segal-Shale-Weil representation [see Habermann and Habermann,
2006, p. 11].

First consider the position and momentum operators from Physics, i.e. Qj, Pj :
S(Rn) → S(Rn) for j ∈ {1, . . . , n}, defined by (Qjf)(x) := ixjf(x) and Pjf :=
∂f
∂xj

. Consider the symplectic vector space (V, ω) and its symplectic basis
(a1, . . . , an, b1, . . . , bn). We define σ : V → End(S(Rn)) by extending the map
σ(aj) := Qj and σ(bj) := Pj linearly.
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We define a map σ̂ : T (V ) → End(S(Rn)) as the linear extension from the
generators where it is defined by

σ̂(1) = iId
σ̂(v1) = σ(v1)

σ̂(v1 ⊗ . . .⊗ vm) = σ̂(v1) ◦ . . . ◦ σ̂(vm),

where v1, . . . , vm ∈ V . This map is clearly linear but it is not an algebra homo-
morphism (σ̂(1) ̸= Id).

Since Qj ◦Qk = Qk ◦Qj and Pj ◦ Pk = Pk ◦ Pj and also

Pk ◦Qj −Qj ◦ Pk = ∂

∂xk
i(xj·)− i(xj·)

∂

∂xk
= iδjk.

By linearity we obtain that

σ(v) ◦ σ(w)− σ(w) ◦ σ(v) = −iω(v, w) (1.3)

for any v, w ∈ V and thus σ̂(I) = 0. Hence we can factor it down and obtain a
well-defined linear map Cl(V )→ End(S(Rn)) which we will also denote σ. Note
that this map is also not an algebra homomorphism, however it is a Lie algebra
homomorphism.
Definition 1.2.4 (Symplectic Clifford multiplication). The symplectic Clifford
multiplication is the map

µ0 : R2n ⊗ S(Rn)→ S(Rn)

defined by
µ0(v ⊗ f) = σ(v)(f),

where f ∈ S(Rn) and v ∈ R2n.
In the following, we will omit the σ symbol and write just the dot · instead,

i.e. σ(v)(f) = v · f . There are two results about this multiplication that will
be needed later. We state them and the proofs can be found in Habermann and
Habermann [2006] as Lemma 1.4.4 and Proposition 1.4.5.
Proposition 1.2.5 (Equivariance of symplectic Clifford multiplication).
The symplectic Clifford multiplication is Mp(2n,R)-equivariant. That is

µ0(ρ(g)v ⊗m(g)f) = m(g)µ0(v ⊗ f),

where g ∈Mp(n,R), v ∈ R2n and f ∈ S(Rn).
Proposition 1.2.6 (Differential of the metaplectic representation). The differ-
ential of the metaplectric representation is the symplectic Clifford multiplication
up a factor of −i. That is

dm(v)f = −iv · f,
where v ∈ R2n and f ∈ S(Rn).
Example 1.2.1. One important example of symplectic Clifford multiplication is
the Hamiltonian of the Harmonic oscillator H0 defined by

H0(f) := 1
2

2n∑︂
j=1

e2
j · f = 1

2

n∑︂
j=1

(P 2
j +Q2

j)(f) = 1
2

n∑︂
j=1

( ∂
2

∂x2
j

− x2
j)(f),

where (e1, . . . , e2n) is some symplectic basis of R2n.
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1.3 Symplectic manifolds
Definition 1.3.1. We say that a pair (M,ω) is a symplectic manifold if M is
a manifold and ω is an everywhere non-degenerate closed 2-form. That is ω ∈
Ω2(M) such that (ωp, TpM) is a symplectic vector space for every p ∈ M and
dω = 0.

We say that a diffeomorphism between two symplectic manifolds
f : (M1, ω1)→ (M2, ω2) is a symplectomorphism if f ∗ω2 = ω1.

Remark. It is also possible to define a symplectic structure by saying that there
exists a reduction of the structure group of the tangent bundle from GL(2n,R)
to Sp(2n,R) (which is called an almost symplectic manifold) and the so called
integrability condition, i.e. that dω = 0.

Since each tangent space must be a symplectic vector space and we know that
these can only be even dimensional. We obtain that also the symplectic manifold
must be even dimensional because the dimension of the manifold is the same as
the dimension of its tangent spaces.

The non-degeneracy condition implies that ω∧n is a nowhere zero volume
form, where 2n is the dimension of the manifold. Thus each symplectic manifold
is orientable.

Note also that the closedness condition, i.e. dω = 0 gives a constrain on the
topology of the manifold. If the manifold is closed, i.e. compact and without a
boundary, ω cannot be exact because of the following computation. Suppose that
ω = dη for the contradiction. Then∫︂

M
ωn =

∫︂
M
d(ωn−1 ∧ η) =

∫︂
∂M

ωn−1 ∧ η = 0,

where in the second equality the Stokes theorem is used and the last equality
follows because M has no boundary, i.e. ∂M = 0. Thus the second deRham
cohomology of such a manifold cannot be zero. An interesting consequence of
this is that the 2-sphere is actually the only sphere which posses a symplectic
structure.
Example 1.3.1 (symplectic manifolds). The standard symplectic vecor space (see
1.1.1) is a typical example of a symplectic manifold. The closedness can be seen
via a simple computation.

Another example is the already mentioned 2-sphere with any volume form.
Non-degeneracy follows by definition and the closedness is clear since there are
no 3-forms on a 2-dimensional manifold.

Similarly as in the Riemannian case, there is a canonical isomorphism between
the tangent and cotangent bundle of the underlying manifold ψω : TM → T ∗M
defined by X ↦→ ω(X,−). Note that this isomorphism can be used to relate
differentials of functions with vector fields, so called Hamiltonian vector fields.

The following is a well-known result, whose proof can be found for example
in Berndt [2001]. It states that symplectic manifolds of a fixed dimension look
locally the same.

Theorem 1.3.1 (Darboux theorem). Let (M,ω) be a symplectic manifold and
let p ∈M be a point. Then there exists an open neighborhood of p ∈ U ⊆M such
that (U, ω|U) is symplectomorphic to (V ⊆ R2n, ω0|V ).
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This essentially means that there are no local invariants in symplectic geom-
etry (except of the dimension), since the theorem guarantees that around each
point we can choose such a coordinate chart (U, xi) that the tangent vectors ( ∂

∂xi )
form a symplectic basis at each point of U .

Although there are no local invariants, we can define a notion of a connection
for symplectic manifolds.

Definition 1.3.2. Let (M,ω) be a symplectic manifold and ∇ : Γ(TM) →
Γ(T ∗M ⊗ TM) an affine connection. We say that the connection is symplectic if
∇ω = 0, i.e. ∇X(ω(Y, Z)) = ω(∇XY, Z) + ω(Y,∇XZ) for all X, Y, Z ∈ Γ(TM).

Furthermore the connection is called a Fedosov connection if it is in addition
torsion free, i.e. ∇XY −∇YX = [X, Y ] for all X, Y ∈ Γ(TM).

Remark. Note that every symplectic manifold admits a Fedosov connection. We
can choose a cover by coordinate charts that we obtain from the Darboux theorem.
On these charts the coordinate vector fields form local symplectic frames ∂

∂xi .
Thus if we choose the connection to be trivial (i.e. ∇ ∂

∂xi

∂
∂xj = 0) it can be easily

checked that this connection is symplectic and torsion free within our coordinate
chart. Note that this cannot be done on general Riemanian manifold since we do
not have these coordinate charts with canonical structure (”Riemannian geometry
has local invariant”). Now we can choose a partition of unity subordinated to
this cover and glue these connections together.

As one may expect this notion is not unique. For example suppose that we
have a Fedosov connection ∇ and choose any (2, 1)-tensor field A. Now we can
compute a torsion of the connection ∇′ := ∇+ A

T∇′(X, Y ) = ∇′
XY −∇′

YX − [X, Y ] = T∇(X, Y ) + A(X, Y )− A(Y,X) =
= A(X, Y )− A(Y,X).

Hence ∇′ is torsion free if and only if A is symmetric, i.e. A(X, Y ) = A(Y,X).
Similarly we can compute the symplecticity of ∇′

(∇′
Xω)(Y, Z) = (∇Xω)(Y, Z) + ω(A(X, Y ), Z) + ω(Y,A(X,Z)) =

= ω(A(X, Y ), Z) + ω(Y,A(X,Z)).

Thus the new connection ∇′ is symplectic if and only if ω(A(X, Y ), Z) =
= ω(A(X,Z), Y ) for all X, Y, Z ∈ Γ(TM). This is equivalent to saying that A is
a symplectic Lie algebra valued 1-form, i.e. A ∈ Ω1(M, sp(TM)).

If we put these conditions together and use the isomorphism between tangent
and cotangent bundle ψω, we see that A is actually a symmetric 3-tensor, i.e.
A ∈ Γ(S3(TM)) where S denotes the symmetric product. So we obtain that the
space of Fedosov connections is an affine space modeled on symmetric 3-tensor
fields.

However we can put on some extra constrains to get a unique connection. We
shall describe one important example here.

Definition 1.3.3 (Compatible triple). Let V be 2n-dimensional real vector space
and let (ω, g, J) be a symplectic structure, an inner product and a complex struc-
ture on V , respectively. We say that they form a compatible triple if ω(−,−) =
g(J(−),−).
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Note that each 2 of these 3 structures determines the third one. Thus we can
say for example that a pair (ω, J) is compatible if the map V ×V → R defined as
(v, w) ↦→ ω(v, Jw) is an inner product.

Remark. This exactly corresponds to the so-called 2 out of 3 property of the
unitary group. That is that the unitary group U(n) is the intersection of any of
2 different groups from the set {Sp(2n,R), O(2n), GL(n,C)}.

Now we translate these conditions to a manifolds.

Definition 1.3.4 (Kähler manifold). Let (M,ω) be a symplectic manifold, J ∈
Γ(End(TM)) be a complex structure and g ∈ Γ(S2(TM)) be a Riemannian metric
such that at each point p ∈ M we have a compatible triple (ωp, gp, Jp) on TpM .
Then M is called an almost Kähler manifold.

If furthermore the complex structure is integrable. We say that the manifold
is Kähler.

Remark. Note that this corresponds to the reduction of the structure group of the
tangent bundle from GL(2n,R) to U(n,C) (this is called an almost Hermitian
structure) and two integrability conditions, the known dω = 0 (producing almost
kähler structure) and integrability of J , i.e. vanishing of the Nijenhuis tensor
yielding Kähler structure.

If we dropped the first integrability condition (dω = 0) we would obtain Her-
mitian manifolds, which are complex analogue of Riemannian manifolds, where
the complex inner product is h = g + iω.

Note also that these conditions on integrability can be rephrased by saying
that there exists a torsion-free connection ∇ such that ∇g = 0, ∇J = 0 and
∇ω = 0. From the first equation it is visible that the connection must be unique
since it must be a Levi-Civita connection. Thus Kähler manifolds poses unique
compatible connection which is by definition also symplectic.

As in the case of Riemannian geometry we can define the curvature tensor.

Definition 1.3.5. Let (M,ω) be a symplectic manifold and ∇ a symplectic con-
nection. We define the curvature tensor as (3, 1)-tensor field given by the equation

R(X, Y, Z) = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z for all X, Y, Z ∈ Γ(TM)

and the curvature 4-tensor field by

S(X, Y, Z,W ) = ω(R(X, Y, Z),W ) for all X, Y, Z,W ∈ Γ(TM).

Note that the 4-tensor has different symmetries from its Riemannian analogue
since ω is skew-symmetric. Namely it holds that S(X, Y, Z,W ) = S(X, Y,W,Z).

Similarly as in the Riemannian case we can define different contractions re-
sulting in Ricci curvature and symplectic Ricci curvature - the third contraction
is zero. If the connection is also torsion-free we get that these Ricci curvatures
are the same symmetric tensor. Since ω is skew-symmetric the contraction of
the symmetric Ricci tensor would be zero. Therefore, there is no notion of scalar
curvature on symplectic manifolds. However, it is possible to choose compatible
almost complex structure J and define a scalar curvature using it. It is obvious
that in the Kähler case we would obtain the same notion as in the Riemannian
case since the connection is compatible with all of the three structures. For this
see Gelfand et al. [1998]
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2. Symplectic spinor bundle and
symplectic Dirac operators
In this section we are going to construct a symplectic spinor bundle which is a
Hilbert space bundle obtained via the Segal-Shale-Weil representation. Then we
are also going to construct the symplectic Dirac operators which operate on the
sections of the symplectic spinor bundle and show some of its basic properties.

2.1 Symplectic spinor bundle
We follow Habermann and Habermann [2006]

Let (M,ω) be a 2n-dimensional symplectic manifold. Consider a space Rp of
all symplectic bases of the space (TpM,ωp), elements of which are called symplec-
tic frames at p.

Recall that all symplectic bases of the space (TpM,ωp) can be identified with
the symplectic group Rp

∼= Sp(2n,R) but not canonically. Also, note that
each symplectic frame F ∈ Rp at p can be considered as a symplectomorphism
F : (R2n, ω0)→ (TpM,ωp), since it produces coordinates and preserves the sym-
plectic structure.

We can take the disjoint union of all symplectic frames through all points on
the manifolds M and denote it by R := ∪̇p∈MRp. We have the projection map
π : R→M defined by Rp ∋ F ↦→ p ∈M .

Because of the Darboux theorem we obtain local trivialization of this space.
In more detail, let p ∈ M be a point and consider a Darboux chart φ : U ∋ p→
V ⊆ R2n, its differential is the symplectomorphism dφ : (TU, ω|U) → (TV ∼=
V × R2n, ω0|V ) and so we have a map

π−1(U) U × Sp(2n,R)

U

π

(π,dφ◦−)

pr1

,

where pr1 is the projection onto the first coordinate. It is obvious that the sym-
plectic group Sp(2n,R) acts simply transitively on each fiber by the precompo-
sition. Therefore we have obtained a principal Sp(2n,R)-bundle. Local sections
of this bundle are called local symplectic frames.
Remark. Note that this bundle can also be obtained via the reduction of the
structure group from GL(2n,R) to Sp(2n,R) of the frame bundle of the tangent
bundle. This reduction is possible due to the symplectic structure of the manifold.

Also, because of this the tangent bundle can be identified with the associ-
ated bundle to the symplectic frame bundle using the defining representation
ν : Sp(2n,R)→ Aut(R2n), i.e. ν(A)(v) = Av where A ∈ Sp(2n,R) and v ∈ R2n.
The isomorphism R×ν R2n ∼= TM can be explicitly written as [F, v] ↦→ F (v). It
is well-defined since [F, v] = [F ◦A,A−1v] ↦→ F ◦ ν(A) ◦ ν(A−1)(v) = F (v), where
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F ∈ R, v ∈ R2n, A ∈ Sp(2n,R). This can be seen also from the construction of
the local trivialization which gives also a trivialization of the tangent bundle.

Now we define metaplectic structure which is an analogue to the spin struc-
ture. It is a double cover of the symplectic frame bundle compatible with the
double cover ρ : Mp(2n,R)→ Sp(2n,R).

Definition 2.1.1 (Metaplectic structure). Given a symplectic manifold (M,ω)
and its symplectic frame bundle R we say that πP : P → M is the metaplectic
structure if it is a principal Mp(2n,R)-bundle and there exists a bundle map
FP : P→ R such that FP(pA) = FP(p)ρ(A), where p ∈ P and A ∈Mp(2n,R).

We can also say that the metaplectic structure is an equivariant lift of the
symplectic frame bundle with respect to the double cover ρ. Good illustration is
the following commutative diagram.

P×Mp(2n,R) P

M

R× Sp(2n,R) R

(FP,ρ) FP

πP

π

,

where the horizontal arrows represent the action of the particular group.
Of course such a lift does not need to exist in general. The topological ob-

structions are the same as in the case of spin structure [see Bourguignon et al.,
2015, Proposition 3.6].

The following proposition is the proposition 3.1.2 from Habermann and Haber-
mann [2006].

Proposition 2.1.1 (Existence of metaplectic structure). A symplectic manifold
(M,ω) admits a metaplectic structure if and only if the second Stiefel-Whitney
class w2(M) ∈ H2(M ;Z2) vanishes.

In this case the isomorphism classes of metaplectic structures on (M,ω) are
classified by the first cohomology group H1(M ;Z2).

Note that the first Stiefel-Whitney class vanishes since every symplectic man-
ifold is orientable.

Easy consequence of this is the following corollary.

Corollary 2.1.2 (Uniqueness of Metaplectic structure). A simply connected sym-
plectic manifold (M,ω) admits at most one metaplectic structure.

Proof. From the universal coefficient theorem we obtain an isomorphism
H1(M ;Z2) ∼= HomZ(H1(M),Z2) and since H1(M) ∼= π1(M)ab = {1} we see that
H1(M ;Z2) ∼= HomZ({1},Z2) = {1}.

Remark. Note that a metaplectic structure can be thought of as a reduction of
the structure group along the double covering ρ : Mp(2n,R) → Sp(2n,R). In
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this case the term reduction may be somewhat misleading since we have actually
enlarged the structure group.

Consequence of this process is that the symplectic frame bundle R can be
realised as the associated bundle to the metaplectic structure, i.e. R = P ×ρ
Sp(2n,R).

Since the tangent bundle of the manifold is associated to the principal
Sp(2n,R)-bundle and associated bundle of an associated bundle can be realised
as associated bundle to the original one, we obtain a tangent bundle associated to
the principal Mp(2n,R)-bundle. That is TM ∼= P×ν◦ρR2n where ν is the defining
representation and ρ is the double covering between metaplectic and symplectic
group.

Given a metaplectic structure we may now define the spinor bundle.

Definition 2.1.2 (Symplectic spinor bundle). Let (M,ω) be a symplectic mani-
fold with metaplectic structure P. The symplectic spinor bundle Q is the bundle
associated to the principal Mp(2n,R)-bundle via the Segal-Shale-Weil represen-
tation 1.2.4 m : Mp(2n,R)→ U(L2(R))

Q := P×m L2(Rn).

Recall that given a principal G-bundle P and its associated bundle E :=
P ×ν V , where ν : G → Aut(V ) is a representation, we have a correspondence
between continuous sections of the associated bundle E and the G-equivariant
continuous functions f : P → V . Here by the G-equivariant functions we mean
functions such that f(pg) = ν(g−1)f(p). In other words there is a bijection
Γ(E)→ C(P, V )G.

Here is an overview of how the correspondence work. Given a section s ∈ Γ(E)
we can write s(π(p)) = [p, v], where p ∈ P and v ∈ V . Such v ∈ V always exists
and is unique, this is exactly due to the fact that on the principal bundle the group
G acts freely (unique) an transitively (exists). We define the map fs ∈ C(P, V )G
to be the map fs(p) = v where v is the element which was described above. On
the other hand if we are given a map f : P → V which is G-equivariant we
may construct a section sf : M → E such that sf (m) := [p, f(p)] this map is
well-defined because of the G-equivariance of f . And easy computation shows
that these mappings are mutually inverse.

If we apply this construction to our case, i.e. P = P and E = Q we ob-
tain a correspondence Γ(Q)→ C(P, L2(Rn)). In the latter space we know what a
smooth function is, thus we may define a smooth sections of Q as such that under
this correspondence the appropriate Mp(2n,R)-equivariant function is smooth.
From now onwards the symbol Γ(Q) will denote the space of smooth sections
which are called symplectic spinor fields.

We can do the same procedure with the Schwartz space S(Rn) and obtain an
associated bundle S = P ×m S(Rn). Again the smooth sections will be denoted
by Γ(S). It can be proved [Habermann and Habermann, 2006, Lemma 3.2.3]
that the smooth sections of Q are in fact sections of S. However, this does not
necessarily mean that Γ(S) = Γ(Q).
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2.2 Multiplication and the connection on the
symplectic spinor bundle

Recall that we have defined the symplectic Clifford multiplication 1.2.4 as the
map µ0 : R2n ⊗ S(Rn) → S(Rn). We shall extend this notion to the bundle S
where we will replace the R2n with the tangent bundle and obtain a bundle map

µ : TM ⊗ S→ S.

We have already remarked that the tangent bundle can be identified with the
associated bundle to the metaplectic structure, i.e. TM ∼= P×ν◦ρ R2n where ν is
the defining representation and ρ is the double covering between metaplectic and
symplectic groups. We use this fact to obtain the desired bundle map

µ([p, v]⊗ [p, f ]) := [p, µ0(v ⊗ f)],

where p ∈ P, v ∈ R2n and f ∈ S. This map is well-defined. Consider g ∈
Mp(2n,R) then

µ([pg, ρ(g−1)v], [pg,m(g−1)f ]) = [pg, µ0(ρ(g−1)v ⊗m(g−1)f)] = [p, µ0(v ⊗ f)],

where the last equality follows from the Mp(2n,R)-equivariance of the symplectic
Clifford multiplication and the definition of equivalence relation on the associated
bundle.

As in the vector space case we shall omit the µ and write the dot · instead,
i.e. µ(X ⊗ φ) = X · φ, where X ∈ Γ(TM) and φ ∈ Γ(S).

We shall also use the convention that X · Y · φ = X · (Y · φ).
Remark. Since all smooth sections of Q are in fact sections (not necessarily
smooth) of the bundle S (see the last paragraph before the section 2.2) we can
extend the notion of symplecitc Clifford multiplication, thought of as a map
Γ(S) → Γ(S) defined by φ ↦→ X · φ for a fixed X ∈ Γ(TM), to the map from
Γ(Q). However, since the result need not always be smooth we shall implicitly
consider it as a partial function whose domain D is contained between the space
of sections Γ(S) ⊆ D ⊆ Γ(Q).

Important special case of these constructions is the case where the original
manifold M is actually a Kähler manifold. In this case we can make a bundle of
unitary frames in the same way as we make a bundle of symplectic frames. This
corresponds to the reduction of the structure group of the tangent bundle from
Gl(2n,R) to U(n). In this scenario the symplectic frame bundle is actually asso-
ciated to the unitary frame bundle. Also the metaplectic structure is associated
to the principal Û(n)-bundle, obtained as the equivariant lift of the unitary frame
bundle, here the Û(n) denotes the preimage of the unitary group U(n) under the
double cover ρ : Mp(2n,R)→ Sp(2n,R).

We can then, of course, construct the symplectic spinor bundle as an asso-
ciated vector bundle to the principal Û(n)-bundle. This allows the existence of
some new operators. Consider the following observation, which will be of use
later.
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Observation 2.2.1. Given a principal G-bundle P → M and an associated
vector bundle E = P ×µ V , where µ : G→ Aut(V ) is a representation of G, and
we are given an operator T on V such that it commutes with the representation
µ. Then the operator T̃ : Γ(E) → Γ(E) defined by T̃ (φ)(p) = T̃ (φ(p)) where
φ ∈ C(P, V )G is a well-defined operator.

Example 2.2.1. If we now consider the operator from the example 1.2.1 H0 :
L2(Rn)→ L2(Rn) defined as

(H0(f))(x) := 1
2

n∑︂
j=1

(︄
∂2f

∂x2
j

(x)− x2
jf(x)

)︄

it can be shown [Habermann and Habermann, 2006, Proposition 1.5.1] that
it commutes with the metaplectic representation restricted onto Û(n). Thus,
thanks to the observation above, it defines an operator on global sections of the
symplectic spinor bundle.

We now bring our attention to constructing a connection on the symplectic
spinor bundle, but first let us recall some basic properties of connections.
Remark. If we are given a fibre bundle π : E → M over a manifold and we talk
about a connection we generally mean a horizontal distribution HE such that for
all p ∈ E it holds that HpE⊕VpE = TpE where VpE = Ker(dπp). However, if the
fibre bundle is a vector bundle there is a correspondence between the covariant
derivative ∇ : Γ(E)→ Γ(T ∗M ⊗ E) and the horizontal distribution.

In short we can define the covariant derivative using the horizontal lift which
is given by the distribution. On the other hand we can say that the differentials
of sections with zero covariant derivatives are horizontal and thus they span the
distribution. Therefore the covariant derivative is also referred to as a connection.

Let us also recall that on a principal bundle π : P → M there is the notion
of a principal connection. It is such a horizontal distribution that is compatible
with the action, i.e. for every p ∈ P it holds that HpgP = (dRg)(HpP ) where g
is an element of the group G that has a free transitive action on the fibers of the
bundle P and Rg denotes this action.

This principal connection can be equivalently described in terms of the so
called connection 1-form, that is an element η ∈ Ω1(P, g) such that some com-
patible relations hold. Then the original distribution is the kernel of such 1-form,
i.e. HpP := Ker(η)

If we are given a principal G-bundle P →M and its associated vector bundle
π̂ : P ×ρ V = E → M . Then each principal connection on the principal bundle
induces connection on the associated vector bundle. Let us briefly show this
inducing.

First note that for every v ∈ V there is a bundle map Fv : P → E defined by
Fv(p) := [p, v]. Given a principal connection on P , i.e. a horizontal distribution
HP we can use the differential of Fv to obtain a distribution on E. That is
we define H[p,v]E := dFv(HpP ). It can be shown that this correctly defines a
horizontal distribution and moreover, it does not depend on the element v ∈ V .

This works in the opposite direction in some cases, in particular for the frame
bundles of the vector bundles. We refer for details to [Čap and Slovák, 2009, in
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section 1.3.5]

In the case that we are interested in, this means that given a symplectic
connection on the tangent bundle ∇ : Γ(TM) → Γ(T ∗M ⊗ TM) we obtain a
principal connection of the symplectic frame bundle R. That is we have the
connection 1-form η ∈ Ω1(R, sp(2n,R)). We can take the lift of this form to
obtain a 1-form η̄ ∈ Ω1(P,mp(2n,R)) via the pullback by FP and the differential
of ρ, i.e.

F ∗
Pη = dρ ◦ η.

This lift is possible since dρ is an isomorphism. We now use this connection to
induce a connection on the symplectic spinor bundle Q. Which in turn translates
to the covariant derivative ∇ : Γ(Q) → Γ(T ∗M ⊗Q). This covariant derivative
is known as spinor derivative.

2.3 Symplectic Dirac operators
We shall now define the core operator of this thesis whose part of the point
spectrum we are going to calculate.

Recall that from the last section we have the bundle map µ : TM ⊗ S → S
which can also be viewed as a map between sections, i.e. µ : Γ(TM ⊗S)→ Γ(S).
Also given a symplectic connection we have constructed the spinor derivative
∇ : Γ(Q) → Γ(T ∗M ⊗ Q). We can see that these two maps ”can almost be
composed”, we are only missing the translation from T ∗M to TM which can be
provided using the isomorphism ψω : TM → T ∗M , where ψω(X) := ω(X,−). In
this way we can define the symplectic Dirac operator.

Definition 2.3.1 (Symplectic Dirac operator). Given a symplectic manifold
(M,ω) together with a symplectic connection and a metaplectic structure, we can
define the symplectic Dirac operator

D = µ ◦ ∇ : Γ(Q) ∇−→ Γ(T ∗M ⊗Q) ψ−1
ω ⊗Id−−−−→ Γ(TM ⊗Q) µ−→ Γ(Q).

If we are furthermore given a Riemannian metric g ∈ S2(T ∗M) we can define
the so called second symplectic Dirac operator in a similar way but using the
isomorphism ψg : TM → T ∗M defined as ψg(X) := g(X,−).

Definition 2.3.2 (Second symplectic Dirac operator). Given a symplectic mani-
fold (M,ω) together with a symplectic connection, a metaplectic structure and the
Riemannian metric we can define the second symplectic Dirac operator

D̃ = µ ◦ ∇ : Γ(Q) ∇−→ Γ(T ∗M ⊗Q) ψ−1
g ⊗Id−−−−→ Γ(TM ⊗Q) µ−→ Γ(Q).

Remark. It is always possible to choose a Riemannian metric that is compati-
ble with the symplectic structure and thus defines the second symplectic Dirac
operator. However this choice is usually not unique.

Note that these operator generally may depend (and do) on the symplectic
connection and choice of a metaplectic structure. However in some situations
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these dependencies do not matter. For example on a simply connected Kähler
manifold there is a canonical choice of the connection (the Levi-Civita one) which
is also compatible with the symplectic structure and the simple connectedness
guarantees the uniqueness of the metaplectic structure.

It is possible to give local descriptions of these operators using the local sym-
plectic frames as it is given in [Habermann and Habermann, 2006, Lemma 4.1.2]

Lemma 2.3.1 (Local expression for symplectic Dirac operators). Let
(e1, . . . , en, f1, . . . , fn) be a local symplectic frame on the symplectic manifold
(M,ω) of dimension 2n with a Riemannian metric g. Then the symplectic Dirac
operators can be written as

D(φ) =
n∑︂
j=1

(ej · ∇fj
φ− fj · ∇ej

φ)

and
D̃(φ) =

n∑︂
j=1

(Jej · ∇fj
φ− Jfj · ∇ej

φ),

where J is the almost complex structure associated to the Riemannian and sym-
plectic structure to be a compatible triple and φ ∈ Γ(Q).

Proof. First we write

∇φ =
n∑︂
j=1

(e∗
j ⊗∇ej

φ+ f ∗
j ⊗∇fj

φ).

Since the basis at each point is symplectic we can write now that e∗
j = ω(−, fj) =

−ω(fj,−) and so ψω(fj) = −e∗
j .. After applying the isomorphism ψω we get

ψ−1
ω (e∗

j) = −fj. Similarly with the other half of the coordinates we obtain
ψ−1
ω (f ∗

j ) = ej. Thus we have

(ψω ⊗ Id) ◦ ∇φ =
n∑︂
j=1

(−fj ⊗∇ej
φ+ ej ⊗∇fj

φ).

After applying µ we get the desired expression.
The case for the second symplectic Dirac D̃ is similar, only the isomorphism is

different, i.e. e∗
j = ω(−, fj) = −ω(fj,−) = −(Jfj,−) and thus ψ−1

g (e∗
j) = −Jfj,

similarly the other half of the coordinates.

The corollary, which will be useful later, is the case when we have local real
unitary frame (e1, . . . , e2n). By the real unitary frame we mean symplectic frame
which is also compatible with the almost complex structure J , i.e. Jei = ei+n
and Jei+n = −ei for i ∈ {1, . . . , n}. This is equivalent to saying that we have a
local symplectic frame (e1, . . . , en, Je1, . . . , Jen) or to saying that (e1, . . . , en) is
a local unitary frame of the tangent bundle with the almost complex structure
being J .
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Corollary 2.3.2 (Dirac operator with respect to local unitary frame). Let
((e1, . . . , e2n)) be a local real unitary frame on a symplectic manifold (M,ω) with
respect to a compatible triple (ω, g, J). Then the symplectic Dirac operators can
be expressed as follows

Dφ = −
2n∑︂
j=1

Jej · ∇ej
φ D̃φ =

2n∑︂
j=1

ej · ∇ej
φ

We now present the easiest non-trivial example, which can be also found as
Example 4.1.4 in Habermann and Habermann [2006].
Example 2.3.1 (Dirac operators on R2). Let (R2, ω0) be the standard symplectic
vector space thought of as a symplectic manifold. We denote the standard global
coordinates as x := (1, 0) and y := (0, 1). The tangent bundle of this manifold is
trivial, i.e. TR2 = R2×R2. Therefore it is easy to construct the symplectic frame
bundle R = R2 × Sp(2,R). If we define the bundle P := R2 ×Mp(2,R) we have
the bundle map FP(x, g) = (x, ρ(g)) where ρ is the double covering. Therefore
the bundle P is the metaplectic structure on R2. Since the manifold is simply
connected (it is even contractible) we see that the metaplectic structure is unique.

We can easily construct the symplectic spinor bundle by just substituting the
L2(R) to the fiber, i.e. Q := R2×L2(R), since there are no ’twists’. We will use t
as the coordinate along each fiber. Recall that sections of the symplectic spinor
bundle Γ(Q) are exactly maps R2 → R2×L2(R) where on the first 2 coordinates
it is just identity and in the last one we assign a function R→ C which depends
on (x, y). Therefore the section may be identified with function R3 → C.

R2 can be made into a Kähler manifold with the standard Euclidean inner
product and the complex structure J ∂

∂x
:= ∂

∂y
, i.e. at each point ( ∂

∂x
, ∂
∂y

) is the real
unitary frame. With this structure we have the canonical Levi-Civita connection,
which is flat. This means that ∇ ∂

∂x
X = ∂

∂x
X, where we identify the elements

of Γ(TM) with functions R2 → R2 by assigning to each point coordinates of
this vector field with respect to the basis ( ∂

∂x
, ∂
∂y

). This work similarly for the
derivative along ∂

∂y
.

We can now use the corollary 2.3.2 to describe the symplectic Dirac operators
on this manifold. Let φ : R3 → C be a section of the symplectic spinor bundle,
then we can compute

Dφ = − ∂

∂y
· ∇ ∂

∂x
φ+ ∂

∂x
· ∇ ∂

∂y
φ = − ∂

∂y
· ∂φ
∂x

+ ∂

∂x
· ∂φ
∂y

= − ∂2φ

∂t∂x
+ it

∂φ

∂y
.

Almost identical is a computation for acquiring the expression for the second
symplectic Dirac operator. It yields

D̃φ = it
∂φ

∂x
+ ∂2φ

∂t∂y
.

Note that since the unitary frame is global both of these expressions hold globally
as well.

We are however mostly interested in the so-called associated second order
operator. This operator is the analogue of the Laplace operator for the classical
Riemannian Dirac operator.

22



Definition 2.3.3 (Associated second order operator). Given the same setting
as we had when we defined the symplectic Dirac operators, we define the second
order operator P : Γ(Q)→ Γ(Q) as

P := i[D̃,D]

In the example above we would obtain an operator

P = i[D̃,D] = i[(it ∂
∂x

+ ∂2

∂t∂y
), (− ∂2

∂t∂x
+ it

∂

∂y
)] =

= i(i ∂
2

∂y2 + i
∂2

∂x2 ) = −∆

which is the standard Laplace operator on the space R2.

The last thing that we discuss is the formal self-adjointness of the operator,
sometimes it is said that the operators are symmetric.

Recall that there is a Hermitian inner product on the space of L2(Rn) given by
the integration. From it we can construct a Hermitian structure on the symplectic
spinor bundle Q. We define

⟨[p, f1], [p, f2]⟩ := ⟨f1, f2⟩,

where f1, f2 ∈ L2(Rn) and p ∈ P. This is again well-defined since the metaplectic
representation is a unitary representation of the metaplectic group.

Moreover, we can further construct the inner product on the space of sections
Γ(Q) in the following way

Definition 2.3.4. Let (M,ω) be a symplectic manifold which possesses a meta-
plectic structure, we then define

(φ, ψ) :=
∫︂
M
⟨φ, ψ⟩dM,

where φ ∈ Γ(Q) and ψ ∈ Γ0(Q), where by Γ0(Q) we mean the space of compactly
supported smooth sections of Q.

The condition of ψ ∈ Γ0(Q) is, of course, in order for the integral to converge.
We cite one more result, the [Habermann and Habermann, 2006, Theorem

4.5.3.].

Theorem 2.3.3. If we are given a symplectic manifold (M,ω) with a Fedosov
connection ∇. Then the symplectic Dirac operator D is symmetric with respect
to the inner product (−,−), that is

(φ,Dψ) = (Dφ,ψ),

where φ ∈ Γ(Q) and ψ ∈ Γ0(Q). If in addition the almost complex structure
J is chosen to be compatible with the connection, i.e. ∇J = 0, we also get the
symmetry of the second symplectic Dirac operator, that is

(φ, D̃ψ) = (D̃φ, ψ).

Note that a special consequence of this result is that in the second case (∇J =
0) we also get the symmetry of the associated second order operator P . In
particular, on a Kähler manifold, all of these operators are symmetric.
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3. Grassmannian Gr2(C4) as a
Kähler symmetric space with
metaplectic structure
In this chapter we are going to present short introduction to homogeneous and
symmetric spaces and then describe Grassmannians, in particular the Grassman-
nian Gr2(C4) as a symmetric space. We are going to show that this Grassmannian
posses a unique metaplectic structure and therefore it is possible to define the
symplectic Dirac operators on it.

We are also going to define local unitary frames, in which we can describe the
symplectic Dirac operators as seen in 2.3.2, respectively the associated second
order operator - P . These frames will be essential in the main computation of
the spectrum.

3.1 Symmetric spaces
We start by a definition of a homogeneous space, which formalises the intuition
of a space which ”locally looks everywhere the same”.
Definition 3.1.1 (Homogeneous space). Given a differentiable manifold M and
a Lie group G with a smooth left action on M we say that M is a homogeneous
space if G acts transitively (i.e. for each p, q ∈ M there exists g ∈ G such that
gp = q).

If we are given a homogeneous space M and a point p ∈ M there is a notion
of a isotropy subgroup Hp - a subgroup of all elements g ∈ G such that it fixes
the point p ∈ M , that is Hp := {g ∈ G | gp = p}. The Lie subgroup H is
closed and this therefore produces a diffeomorphism of the manifold with the
left coset space M ∼= G/Hp of M . This notion is independent of the chosen
point p since if we are given some other point q = g′p ∈ M there is a group
morphism ψ : Hq → Hp given by ψ(g) = g′−1gg′. This is well defined because
ψ(g)p = g′−1gg′p = g′−1gq = g′−1q = p where we have used that g ∈ Hq. It has
an obvious inverse and thus it is a group isomorphism.

Because of this we will omit the point and write the homogeneous spaces only
as G/H.

Note that for any homogeneous space there is a canonical map π : G→ G/H
which is a surjective submersion and thus it can be made into a principal H-
bundle. Also there is an inclusion of Lie algebrae h ⊆ g. Since the kernel of
the differential of the projection π at the identity of the group G is exactly h, it
is possible to identify the tangent space with the factor of the Lie algebrae (as
vector spaces), i.e. TeH(G/H) ∼= g/h.

It can further be shown [see Čap and Slovák, 2009, Example 1.4.3] that the
whole tangent bundle of the homogeneous spaces can be identified with the asso-
ciated bundle to the bundle π : G → G/H via the adjoint representation. That
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is
T (G/H) ∼= G×Ad g/h.

Note that h is an invariant subspace for the adjoint representation restricted from
G to H and thus the corresponding factor g/h is also a representation, therefore
the associated bundle on the right hand side is well defined.

If we put some extra constrains on the homogeneous space we will be able to
create a canonical connection on it. With this notion there are two connected
definitions of reductive homogeneous and symmetric spaces.

Definition 3.1.2 (reductive and symmetric space). Let G/H be a homogeneous
space. If there exists vector space p such that there is a vector space decomposition
of the Lie algebra g = h⊕p where h is the Lie algebra of the Lie subgroup H such
that it holds that Ad(H)(p) ⊆ p we say that G/H is a reductive homogeneous
space.

If it even holds that [p, p] ⊆ h we say that G/H is a symmetric space.

Remark. The condition on the reductivity of the homogeneous space implies that
dAd(h)(p) = ad(h)(p) = [h, p] ⊆ p. In the case where H is a connected group it
is actually equivalent condition.

Also note that if H is compact or its adjoint representation on g is reductive
we can always find such subspace.

There are a lot of equivalent definitions of symmetric spaces. One that is
frequently seen in literature is a Riemannian manifold M with isometries sp :
M → M for each point p ∈ M such that dsp = −Id and sp(p) = p. An
equivalence of different definitions and some basic properties of symmetric spaces
may be find in Helgason [1962].

As we mentioned in front of the definition we can identify the tangent space
T (G/H) with the associated bundle via the adjoint representation. Note that
in the reductive and symmetric cases we may go even further and restrict the
adjoint representation only on the subspace p, thus giving us the isomorphism
T (G/H) ∼= G×Ad p.

Furthermore, we can extend by the left translation the vector subspace p on
the whole G and thus form a distribution H on the principal H-bundle G→ G/H
which is clearly complementary to the distribution obtained by left translation of
the Lie subalgebra h ⊆ g which forms a vertical subbundle of the tangent bundle
TG→ G. This therefore defines a so-called canonical connection on the reductive
homogeneous space.

Given an associated bundle E = G×µV where µ : H → Aut(V ) is a represen-
tation. We can induce a connection on E from the canonical one and thus define
a covariant derivative on it. We now try to express this covariant derivative more
explicitly.

Suppose we have a smooth section φ ∈ Γ(E) which can be identified with
a smooth H-equivariant map φ̂ ∈ C∞(G, V )H , i.e. φ(gH) = [g, φ̂(g)] and we
are given a vector [a,X] ∈ G ×Ad p ∼= T (G/H). There exists a curve γ : t ↦→
a exp(tX)H in G/H with tangent vector [a,X] at a point aH, whose horizontal
lift on the principal H-bundle is the curve γ̂ : t ↦→ a exp(tX). The parallel
transport of the vector φ(γ(t)) from γ(t) to γ(0) is

P t
0(φ(γ(t))) = [a, φ̂(a exp(tX))].
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Therefore by the definition of covariant derivative we have found the expression

∇[a,X](φ) = [a, d
dt

⃓⃓⃓⃓
0
φ̂(a exp(tX))] (3.1)

From the Proposition 1.4.8 in [Čap and Slovák, 2009] we can see that the
torsion of such connection is exactly

T (X, Y ) = [X, Y ]h − [X, Y ],

where X, Y ∈ p and by the Zh we mean the component of the vector Z ∈ g in
the Lie algebra h under the decomposition g = h ⊕ p. Hence we can see that if
we require the original homogeneous space to be a symmetric space the torsion
vanishes.

If we are given an H-invariant inner product g on the vector space p. We can
see that it induces a Riemannian metric on the underlying homogeneous space
G/H since we may define

g̃([a,X], [a, Y ]) := g(X, Y )

where X, Y ∈ p, a ∈ G and we are using the identification of the tangent bun-
dle mentioned above. The H-invariance is necessary for the expression to be
well-defined. This procedure works similarly with the symplectic and complex
structure.

Note that we may view g̃ as a section of the bundle S2(T ∗(G/H)) and thus,
thanks to the identifications above, as an H-equivariant map ĝ ∈ C∞(G,S2(p∗))H .
Looking at the definition of g̃ we have actually defined ĝ as a constant function,
i.e. ĝ(a) = g.

From this it is easily seen that the covariant derivative of g̃ is 0, that is g̃
is parallel. This shows that the metric is then compatible with the connection.
Again similar relations hold with the symplectic and complex structure.

Altogether and with the remark after definition 1.3.4 about integrability con-
ditions with respect to the compatible connection, we have proved the following

Observation 3.1.1 (Structures on symmetric space). Let G/H be a symmetric
space with decomposition g = h ⊕ p. An Ad(H)-invariant inner product on the
vector space p defines a Riemannian metric tensor on the manifold G/H and the
canonical connection is the Levi-Civita connection for this metric.

Moreover if we have an Ad(H)-invariant compatible triple on p it defines a
Kähler structure on the manifold G/H where again the canonical connection is
the unique one compatible with all the structures.

These spaces are sometimes called Kähler symmetric spaces.

3.2 Grassmannian as symmetric space
In this section we are going to describe the Grassmannian Gr2(C4) as a Kähler
symmetric space and show that it possesses a metaplectic structure (and thus
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symplectic Dirac operators can be defined). This description will be important
for the computation of the spectrum later on.

For this we are mainly going to use Ballmann [2006].

Definition 3.2.1 (Grassmannians). We define a Grassmannian Grk(Cn) as all
k-dimensional vector subspaces of the complex vector space Cn . That is

Grk(Cn) := {V ⊆ Cn|dimC(V ) = k}.

We are mainly going to focus on the Grassmannian Gr2(C4), but a lot of these
computations can be easily generalised.

Let us choose a plane Gr2(C4) ∋ p = span{
(︂
1 0 0 0

)︂T
,
(︂
0 1 0 0

)︂T
}.

Now we define an action on p by the Lie group SU(4) given by the multiplication
from the left.

This action is transitive since for any 2-dimensional plane we can find two
vectors inside that are orthonormal with respect to the standard complex inner
product. And it is easy to see that we can find two more vectors in C4, so that
these 4 vectors form a unitary basis. Thus a matrix with these vectors as columns
is a unitary matrix and by multiplying one of the vectors by an appropriate
complex unit we can take such matrix from SU(4).

Let us compute the stabiliser of this action. Consider
(︂
A B
C D

)︂
∈ SU(4) where

A,B,C,D ∈ M2(C) that stabilises the point p. This happens if and only if(︂
A
C

)︂
=
(︂
I2
0

)︂
, thus forcing C = 0. But since the matrix is from SU(4) its columns

must be orthonormal with respect to the standard inner product, thus forcing
also B = 0. It can be easily verified that each matrix of the form

(︂
A 0
0 D

)︂
∈

SU(4) stabilises the point p. Also A,D ∈ U(2), because the matrix is in SU(4),
therefore the stabiliser is the group S(U(2)×U(2)). We have thus described the
Grassmannian Gr2(C4) as homogeneous space SU(4)/S(U(2)× U(2)).
Remark. Using essentially identical computations one may find that all complex
Grassmannians are homogeneous spaces of the form Grk(Cn) = SU(n)/S(U(k)×
U(n− k)).

Notation: We will write G = SU(4) and H = S(U(2)× U(2)).

Let us examine the Lie algebrae g and h. It is well known That the Lie
algebra of G is the space of all skew-Hermitian matricies of zero trace. Analogous
arguments show that the Lie algebra of H is h = {

(︂
X 0
0 Y

)︂
|Tr(X + Y ) = 0, X∗ =

−X, Y ∗ = −Y }. Consider the space

p :=
{︃(︄ 0 X
−X∗ 0

)︄ ⃓⃓⃓⃓
X ∈M2(C)

}︃
.

These clearly serve for the decomposition g = h ⊕ p. We are now going to
show that the space p is exactly the necessary subspace in order to make the
Grasssmaniann a symmetric space.

Recall that if we have a matrix group, the adjoint representation is realised
via conjugation. Consider the following computation(︄

A 0
0 D

)︄(︄
0 X
−X∗ 0

)︄(︄
A∗ 0
0 D∗

)︄
=
(︄

0 AXD∗

−DX∗A∗ 0

)︄
. (3.2)
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And since (AXD∗)∗ = DX∗A∗, this shows that Ad(H)(p) ⊆ p. Thus the Grass-
mannian Gr2(C4) is a reductive homogeneous space. Furthermore we have that(︄

0 X
−X∗

)︄(︄
0 Y
−Y ∗ 0

)︄
−
(︄

0 Y
−Y ∗

)︄(︄
0 X
−X∗ 0

)︄
=

=
(︄
−XY ∗ + Y X∗ 0

0 −X∗Y + Y ∗X

)︄
.

Using the fact that Tr(XY ) = Tr(Y X) we can easily see that this matrix is
indeed in h. Thus we have also proved that [p, p] ⊆ h, therefore showing that the
considered Grassmannian is actually a symmetric space.
Remark. Again a similar choice of p makes any Grassmannian into a symmetric
space.

We will now introduce a Kähler structure on p. Consider the mapping

h
(︃(︄ 0 X
−X∗ 0

)︄
,

(︄
0 Y
−Y ∗ 0

)︄)︃
:= Tr(XY ∗).

this mapping defines a complex inner product on the space p. Using the equation
3.2 and the fact that Tr(DXC∗CY ∗D∗) = Tr(XY ∗) we see that this mapping
is Ad(H)-invariant. Furthermore since Tr(XX∗) ≥ 0 and for each X ∈ M2(C)
we may find Y ∈ M2(C) such that Tr(XY ∗) ̸= 0 the mapping h defines Ad(H)-
invariant complex inner product on the space p. This defines an almost Hermitian
structure on the Grassmannian.

Moreover, we may define g := Re(h) and ω = Im(h), thus obtain the de-
composition h = g + iω. It is possible to verify that g is Ad(H)-invariant inner
product and ω is Ad(H)-invariant symplectic form. They are compatible and the
complex structure on p is then given by

J
(︃(︄ 0 X
−X∗ 0

)︄)︃
=
(︄
−iI2 0

0 iI2

)︄(︄
0 X
−X∗ 0

)︄
=
(︄

0 −iX
−iX∗ 0

)︄
. (3.3)

Using the observation 3.1.1 we have proved that Grassmannian Gr2(C4) has
Kähler structure with the canonical connection being the Levi-Civita connection.

Note that with this Kähler structure the adjoint action of the Lie group H
on the subspace p is therefore unitary representation, that is Ad : H → U(p).
Thus the unitary frame bundle can also be written using this representation, i.e.,
G×Ad U(p).

Now we are going to show that the Grassmannian admits a metaplectic struc-
ture and therefore it is possible to define the symplectic Dirac operators on it.

If we choose some a unitary basis on p we obtain an isomorphism U(p) ∼= U(4)
with the unitary group realised as subgroup of complex matrices. Since U(4) ⊆
Sp(8,R) consider the preimage of this group under the double cover ρ from the
first chapter 1.2.2. We shall denote it by Û(4) ⊆Mp(8,R). Our strategy is to find
a lift Ad̂ of the adjoint representation such that the following diagram commutes

Û(4)

S(U(2)× U(2)) U(4)

ρ

Ad

Ad̂ .
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For this we are going to use the fact that Û(4) is a covering space of U(4) and
there is a lifting criterion [see Hatcher, 2002, Proposition 1.3.3].

Proposition 3.2.1 (Lifting criterion). Suppose given a covering space
p : (X̃, x̃0)→ (X, x0) and a map f : (Y, y0)→ (X, x0) with Y path-connected and
locally path-connected. Then a lift f̃ : (Y, y0)→ (X̃, x̃0) of f exists if and only if
f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)).

Since we know that the group H = S(U(2)×U(2)) is locally path-connected,
because it is a manifold, we just need to prove that it is path connected and prove
the property of the push-forward of the fundamental group.

For this we are going to use a topological result, whose proof can be found in
Hatcher [2002] as Theorem 4.41 and Proposition 4.48.

Theorem 3.2.2 (Fibre bundles induce homotopy exact sequences). Given a fibre
bundle p : E → B with B a path-connected space and base points b0 ∈ B and
x0 ∈ p−1(b0) = F . Then there is a long exact sequence of homotopy groups

. . .→ πn(F, x0)→ πn(E, x0)
p∗−→ πn(B, b0)→ πn−1(F, x0)→ . . .→ π0(E, x0)→ 1

where 1 denotes the trivial group.

It is well known that the special unitary groups are connected and simply
connected π0(SU(n)) = π1(SU(n)) = 1. Consider a short exact sequence

1→ SU(2)× SU(2)→ S(U(2)× U(2)) detu

−−→ U(1)→ 1,

where the map detu is the determinant of the upper-left 2 × 2 matrix. In other
words we have the principal bundle S(U(2)×U(2))→ S(U(2)×U(2))/SU(2)×
SU(2) ∼= U(1). By the above proposition this fiber bundle induces the following
long exact sequence in homotopy

. . .→ π1(SU(2)× SU(2))→ π1(S(U(2)× U(2))) detu
∗−−→ π1(U(1))→

→ π0(SU(2)× SU(2))→ π0(S(U(2)× U(2)))→ 1.

Using the fact that the homotopy groups are compatible with the product,
that is πn(U × V ) = πn(U) × πn(V ) [see Hatcher, 2002, Proposition 4.2], the
knowledge of the first two homotopy groups of SU(n) and the fundamental group
of a circle, i.e. π1(U(1)) = π1(S1) = Z, we obtain the following sequence

. . .→ 1→ π1(S(U(2)× U(2))) detu
∗−−→ Z→ 1→ π0(S(U(2)× U(2)))→ 1.

From this it is immediate that π0(S(U(2) × U(2))) = 1 and π1(S(U(2) ×
U(2))) ∼= Z. To compute the generator of the fundamental group it is enough to
find a loop γ : [0, 1] → S(U(2) × U(2)) such that detu ◦γ is the generator of the
fundamental group of U(1). One such a choice is

γ : t ↦→
⎛⎝ e2πit 0 0 0

0 1 0 0
0 0 1 0
0 0 0 e−2πit

⎞⎠ .
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Let us compute the adjoint representation of this curve on p.

Ad(γ(t))(
⎛⎝ 0 0 z1 z2

0 0 z3 z4
−z1̄ −z3̄ 0 0
−z2̄ −z4̄ 0 0

⎞⎠) =

=
⎛⎝ e2πit 0 0 0

0 1 0 0
0 0 1 0
0 0 0 e−2πit

⎞⎠⎛⎝ 0 0 z1 z2
0 0 z3 z4

−z1̄ −z3̄ 0 0
−z2̄ −z4̄ 0 0

⎞⎠⎛⎝ e−2πit 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2πit

⎞⎠ =

=
⎛⎝ 0 0 e2πitz1 e4πitz2

0 0 z3 e2πitz4
−e−2πitz1̄ −z3̄ 0 0
−e−4πitz2̄ −e−2πitz4̄ 0 0

⎞⎠ ,
where the coordinates z1, . . . , z4 ∈ C come from the isomorphism U(p) ∼= U(4).

Thus we have shown that

Ad(γ(t)) =
⎛⎝ e2πit 0 0 0

0 e4πit 0 0
0 0 1 0
0 0 0 e2πit

⎞⎠ .
Now consider a short exact sequence

1→ SU(4)→ U(4) det−→ U(1)→ 1.

As before we get a long exact sequence of homotopy groups, but since π0(SU(4)) =
π1(SU(4)) = 1 we obtain that det∗ is an isomorphism of the fundamental groups
of U(4) and U(1). Thus composing the morphism, one obtains det(Ad(γ(t))) =
e8πit which means that Ad∗ : π1(S(U(2) × U(2))) → π1(U(4)) maps the chosen
generator to the multiple of four, i.e., Ad∗(π1(S(U(2)×U(2)))) = 4π1(U(4)) ∼= 4Z.

We know that the mapping ρ : Mp(8,R)→ Sp(8,R) is a double cover and so
is its restriction ρ|Û(4) : Û(4) → U(4) (recall that U(n) is a deformation retract
of Sp(2n,R)). Thus the fundamental group is mapped onto the multiple of 2, i.e.
ρ∗(π1(Û(4))) = 2π1(U(4)) ∼= 2Z.

Putting this altogether we obtain Ad∗(π1(S(U(2) × U(2)))) = 4π1(U(4)) ⊆
2π1(U(4)) = ρ∗(π1(Û(4))). Therefore the condition to the lifting criterion is
fulfilled and there exists a lift Ad̂ making the following diagram commutative

Û(4)

S(U(2)× U(2)) U(4)

ρ

Ad

Ad̂ . (3.4)

We have thus proved the existence of a metaplectic structure on the Grass-
mannian Gr2(C4), since it is given by SU(4)×Ad̂Mp(8,R).

Consider the short exact sequence of the Grassmannian

1→ S(U(2)× U(2))→ SU(4)→ Gr2(C4)→ 1.
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Let us look at the long exact sequence in a homotpy that it induces

. . .→ π1(SU(4))→ π1(Gr2(C4))→ π0(S(U(2)× U(2)))→ π0(SU(4))→ 1.

When we fill in the known facts we obtain a sequence

. . .→ 1→ π1(Gr2(C4))→ 1→ 1→ 1.
So we can conclude that the Grassmannian is simply connected and thus by

the corollary 2.1.2 we have shown that the metaplectic structure on the Grass-
mannian is unique.
Remark. We were (very specifically) talking about the Grassmannian Gr2(C4) in
order not to introduce extra notation, but almost identical arguments work for a
general Grassmannian Grk(C2l) where k, l ∈ N.

We will make an (important) remark about working in local coordinates on
symmetric spaces.
Remark. If we are given a local section of the principal H-bundle G → G/H
denoted by s : U ⊆ G/H → G and an element X ∈ p we automatically have
a local section of the tangent bundle T (G/H) → G/H defined by s̃ : gH ↦→
[s(gH), X] where we are using the isomorphism T (G/H) ∼= G×Ad R8.

Therefore if we are given a unitary basis of the vector space p with respect to
the Kähler structure mentioned above we can always (using a local section of the
principal H-bundle G → G/H) turn it into a local unitary frame. This justifies
computing the Dirac operators only on p.

However, we are going to make one specific choice of such section coming from
the exponential map on a Lie group G. Consider a map π◦exp |V : V ⊆ p→ G/H.
The exponential map is a local diffeomorphism and the projection restricted on
the embedded submanifold Im(exp |V ) has full rank differential at an identity.
This implies that there exists V ′ ⊆ V ⊆ p such that we have an diffeomorphism
π : Im(exp |V ′) → G/H. Taking an inverse of this map gives the required local
section.

This section has an important property. Namely, the local vector fields ob-
tained via the construction in the previous paragraph have actually zero covariant
derivative at the point eH, where e is the identity of the group G.

Of course, the symplectic spinor bundle with the metaplectic structure char-
acterised above is then Q := SU(4) ×m◦Ad̂ L

2(R4). Given a local symplectic
spinor field φ : U ⊆ G/H → Q consider the associated H-equivariant function
φ̂ ∈ C∞(π−1(U), L2(R4))H , where π : G → G/H is the projection, we define the
application of the vector X ∈ p as

X(φ̂)(a) := d

dt

⃓⃓⃓⃓
0
φ̂(a exp(tX)), (3.5)

where a ∈ π−1(U). Compare this definition with the covariant derivative3.1
together with the local frames in which we are working as introduced above.

Observe that with this definition, if we are given a local section s : U ⊆
G/H → G we may write

(∇[s(aH),X]φ̂)(a) = X(φ̂)(a),
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where aH ∈ U .
Analogous definition can be made for sections of other bundles, but we do not

need those. Also let us write explicitly that if the section s is obtained from the
exponential map as described in the remark above, we obtain

∇[s(eH),X][s(−), Y ] = 0, (3.6)

where X, Y ∈ p are arbitrary.
Note also, that the definition of a field application may be used even for a

global symplectic spinor fields.

Now we are going to introduce coordinates in which we will be computing the
point spectrum in the next chapter. There are basically 4 independent entries
in matricies in p. To have a more compact notation we are going to introduce a
map τ : {1, 2, 3, 4} → {1, 2} × {1, 2}, defined by

τ(1) := (1, 1) τ(2) := (1, 2) τ(3) := (2, 1) τ(4) := (2, 2). (3.7)

We are going to make the following choice of the real unitary frame of p.

Fj :=
(︄

0 −ET
τ(j)

Eτ(j) 0

)︄

JFj :=
(︄

0 iET
τ(j)

iEτ(j) 0

)︄ for j ∈ {1, 2, 3, 4}, (3.8)

where by Eij we mean a 2 × 2 matrix with one at a position (i, j) and with
zeros elsewhere.

Using the corollary 2.3.2, we can write how do the symplectic Dirac operators
look in this frame

Dφ =
4∑︂
j=1

Fj · JFj(φ)−
4∑︂
j=1

JFj · Fj(φ)

D̃φ =
4∑︂
j=1

Fj · Fj(φ) +
4∑︂
j=1

JFj · JFj(φ).
(3.9)

We recall that the dot · represents the symplectic Clifford multiplication.
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4. Computation of the point
spectrum of P on Gr2(C4)
In this chapter we are going to perform the main computation of the point spec-
trum of the associated second order operator P to the symplectic Dirac operators
on the Grassmannian Gr2(C4). We are going to us the notation introduced in
the previous chapter.

Let us recall some notation introduced in the previous chapters. We have
proven that Gr2(C4) ∼= SU(4)/S(U(2) × U(2)) and we will continue with the
shorter notation G = SU(4) and H = S(U(2)× U(2)). We have constructed the
decomposition of the Lie algebra g = h⊕ p together with an Ad-invariant Kähler
structure and found a lift Ad̂ : H → Û(4).

Also recall the remark at the end of the previous chapter 3.2. Throughout the
chapter we are going to work in the frame that is constructed using the section
from the exponential map explained in that remark.

4.1 Split into 2 operators
Recall that we have a metaplectic representation m : Mp(8,R) → Aut(L2(R4)).
Note however, that the symplectic spinor bundle on the Grassmannian is given
by Q = SU(4) ×m◦Ad̂ L

2(R4). And since Ad̂(H) ⊆ Û(4), we can consider the
restriction of the metaplectic representation onto the subgroup Û(4) ⊆Mp(8,R)
and denote it by u := m|Û(4).

Consider the Hermite functions

hα(x) := hα1(x1)hα2(x2)hα3(x3)hα4(x4),

where
hαi

(xi) := e
x2

i
2

(︄
d

dxi

)︄αi

e−x2
i .

This convention is compatible with the one used by Habermann and differs
only by a sign from the classical Hermite functions presented in Folland [1989]
on p. 51. So we will refer there for the properties of these functions. Hermite
functions gives the orthogonal decomposition

L2(R4) = ˆ︃⨁︂∞

l=0Ml = ˆ︃⨁︂∞

l=0(
⨁︂
α∈N4

0
|α|=l

⟨hα⟩).

Let us also mention that the space Ml of Hermite functions with the given
order of the multiindex l is the eigenspace of the operator H0 with eigenvalue
−(l + 2). Because of the observation 2.2.1 and the note below, we know that
the operator H0 commutes with u. Thus we have that the subspace Ml is an
invariant subspace for the representation u.

Putting this together we obtain a splitting of the symplectic spinor bundle as
follows
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Q = ˆ︃⨁︂∞

l=1Ql = ˆ︃⨁︂∞

l=1(SU(4)×u◦Ad̂Ml).

Furthermore, it can be shown [see Habermann and Habermann, 2006, section
5.3] that on a Kähler manifold the associated second order operator P leaves
the subbundles Ql invariant. Thus for the spectral problem we can restrict the
computation only on these subbundles.

For a smooth section φ ∈ Γ(Ql) considered as an element of C(G,Ml)H , let
us extend the definition of the application of an element of p to any Lie algebra
element X ∈ g = su(4) as

X(φ)(a) := d

dt

⃓⃓⃓⃓
0
φ(a exp(tX)),

where a ∈ G. This is inspired by the covariant derivative obtained from the
canonical connection (see 3.1). This extends the action from p to g.

This application is linear. We distinguish 2 possibilities. If X ∈ p we have
already observed that X(φ) = ∇Xφ, where we consider X and φ as appropriate
local sections. If X ∈ h we can compute

X(φ)(a) = d

dt

⃓⃓⃓⃓
0
φ(a exp(tX)) = d

dt

⃓⃓⃓⃓
0
(m ◦ Ad̂)(exp(−tX))φ(a) =

= −d(m ◦ Ad̂)(X)φ(a) = idAd̂(X) · φ(a),
(4.1)

where the second equality follows from the definition of an H-invariant function,
the third is the definition of the Lie algebra representation and the fourth is the
proposition 1.2.6. Note that this expression make sense since Ad̂ : H → Û(4) and
thus dAd̂ : h→ û(4) ⊆ mp(8,R) ⊆ Cl(R8). We recall the identification of the Lie
algebra of the metaplectic group as introduced in chapter 1 (see the paragraph
above 1.2.

Let us observe, that this definition is actually a representation of a Lie algebra
g [see Wyss, 2003, p.33], i.e. it holds that

[X, Y ](φ)(a) = X(Y (φ))(a)− Y (X(φ))(a) (4.2)

Let us state without a proof a proposition 3.2.7 from Habermann and Haber-
mann [2006], stating that for a vector fields X, Y ∈ Γ(TM) and a symplectic
spinor field φ ∈ Γ(Q) it holds that

∇X(Y · φ) = (∇XY ) · φ+ Y · ∇X(φ).

The proposition applied to our homogeneous case (i.e. X(−) = ∇X) says that
it even holds that

X(Y · φ) = Y ·X(φ), (4.3)

where X, Y ∈ p are arbitrary, since we have noted that the local vector fields
have zero covariant derivative at eH 3.6.

We will restrict ourselves to the computation on the sections of the subbundle
Ql whose fibers are finite-dimensional, and their smooth sections can be consider
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as maps φ ∈ C(G,Ml)H .

We may now proceed to the main computation. We use the coordinates
defined at the end of the previous chapter 3.8, Fj and JFj. First step is to
rewrite the associated second order operator into 2 operators, one of which only
uses the applications of the vectors from the Lie algebra g and the other one which
can be completely described using just the symplectic Clifford multiplication. We
will use the definition of the symplectic Dirac operators 3.9 and the fact 4.3. For
φ ∈ Γ(Ql), compute

[D̃,D](φ) =
4∑︂

j,k=1
Fj · Fj(Fk · JFk(φ)) + JFj · JFj(Fk · JFk(φ))−

− Fj · Fj(JFk · Fk(φ))− JFj · JFj(JFk · Fk(φ))−
− Fk · JFk(Fj · Fj(φ)) + JFk · Fk(Fj · Fj(φ))−
− Fk · JFk(JFj · JFj(φ)) + JFk · Fk(JFj · JFj(φ)) =

=
4∑︂

j,k=1
Fj · Fk · Fj(JFk(φ)) + JFj · Fk · JFj(JFk(φ))−

− Fj · JFk · Fj(Fk(φ))− JFj · JFk · JFj(Fk(φ))−
− Fk · Fj · JFk(Fj(φ)) + JFk · Fj · Fk(Fj(φ))−
− Fk · JFj · JFk(JFj(φ)) + JFk · JFj · Fk(JFj(φ)).

We set [X, Y ](φ) := X(Y (φ))− Y (X(φ)) and [X, Y ]· · φ := X · Y · φ− Y ·X · φ
for any X, Y , not only for X, Y ∈ p. Also we are going to use the equality

X · Y ·W (Z(φ))− Y ·X · Z(W (φ)) = [X, Y ]· ·W (Z(φ)) + Y ·X · [W,Z](φ).

We use this equality to obtain the expression

[D̃,D](φ) =
4∑︂

j,k=1
([Fj, Fk]· · Fj(JFk(φ)) + Fk · Fj · [Fj, JFk](φ)+

+ [JFj, Fk]· · JFj(JFk(φ)) + Fk · JFj · [JFj, JFk](φ)+
+ [JFk, Fj]· · Fk(Fj(φ)) + Fj · JFk · [Fk, Fj](φ)+
+ [JFk, JFj]· · Fk(JFj(φ)) + JFj · JFk · [Fk, JFj](φ)).

Here we note that the equation 1.3 can be written in the following way

[X, Y ]· · φ = −iω(X, Y )φ,

where ω denotes the symplectic form on p. Recall however, that the basis
(Fj, JFj) is chosen in such a way, that it forms a real unitary basis. In par-
ticular it is a symplectic basis. Therefore we see that

[Fj, Fk]· · φ = [JFj, JFk]· · φ = 0 [Fj, JFk]· · φ = −iδjkφ.

By the equation 3.3 we have that JX = J0X = −XJ0 for any X ∈ p, where
J0 =

(︂
iI2 0
0 iI2

)︂
. This implies that J0XJ0 = X, since J is a complex structure.
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Using this and the observation 4.2 we get the following equalities

[JFj, JFk] = J0FjJ0Fk − J0FkJ0Fj = FjFk − FkFj = [Fj, Fk]
[Fj, JFk] = FjJ0Fk − J0FkFj = −J0FjFk + FkJ0Fj = [Fk, JFj],

(4.4)

where we have used the fact that the Lie bracket in this situation is just the
matrix commutator.

Altogether we arrive at the expression

[D̃,D](φ) =
⎛⎝ 4∑︂
j=1

(iF 2
j (φ) + iJF 2

j (φ))
⎞⎠+

+
4∑︂

j,k=1
((Fj · Fk + JFj · JFk) · [Fj, JFk](φ)+

+(Fj · JFk − Fk · JFj) · [Fk, Fj](φ)).

(4.5)

We have shown, that the associated second order operator splits into two op-
erators. One (that is in the brackets) is described only using the application and
the other one is not using only symplectic Clifford multiplication as we wanted.
In order to achieve the goal, we need to replace the applications of [Fi, Fj](φ) and
[Fi, JFj](φ) by the symplectic Clifford multiplication which can be done.

We introduce the notation

Aij := Fi · Fj + JFi · JFj
Bij := Fi · JFj − Fj · JFi.

It is easy to see [Habermann and Habermann, 2006, p.17] that when we consider
the Lie algebra û(4) of the preimage of Û(4) of the unitary group U(4) under
the double cover ρ : Mp(8,R)→ Sp(8,R). This algebra has a basis consisting of
Aij and Bij where 1 ≤ i, j ≤ 4 and where we do not consider Bii since those are
clearly 0.

Note the behaviour when swapping the indices, i.e. Aij = Aji, since the com-
mutators [JFi, JFj]·· = [Fi, Fj]·· are trivial, and Bij = −Bji, which holds trivially.

We will now show how it is possible to replace the applications of [Fi, Fj](φ)
and [Fi, JFj](φ) in 4.5 with the symplectic Clifford multiplication.

Recall that we know from chapter 3 that the Grassmannian is a symmetric
space, so [p, p] ⊆ h and thus we consider the second case mentioned in 4.1. This
means that it is actually a symplectic Clifford multiplication. We just need to
compute the vectors dAd̂(X) for all X ∈ h.

Remark. Observe that up to this point, our computations are general and work
for any suitable Grassmannian, but from this point onward the computations
require specifically the Gr2(C4).
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We are now going to sketch how to compute dAd̂([p, p]) by computing the
element dAd̂(E0) and then present a table with our result. Others elements are
computed in completely analogous way.

First we need to compute the commutators [Fj, Fk] and [Fj, JFk] in g. In
order to do that we need to choose suitable basis of h so that we have coordinates
on the whole g. We are going to make the following choice.

E0 :=

⎛⎜⎝ 0 0

0 i 0
0 −i

⎞⎟⎠ E0 :=

⎛⎜⎝ i 0
0 −i 0

0 0

⎞⎟⎠ E1 :=

⎛⎜⎝ 0 0

0 0 1
−1 0

⎞⎟⎠

E1 :=

⎛⎜⎝ 0 1
−1 0 0

0 0

⎞⎟⎠ E2 :=

⎛⎜⎝ 0 0

0 0 i
i 0

⎞⎟⎠ E2 :=

⎛⎜⎝ 0 i
i 0 0

0 0

⎞⎟⎠

S := 1√
2

⎛⎜⎜⎜⎝
i 0
0 i

0

0 −i 0
0 −i

⎞⎟⎟⎟⎠

(4.6)

Remark. This is clearly a basis of the Lie subalgebra h. Note that the inner
product on the subspace p defined as the real part of the trace is actually a
negative multiple of the Killing form on the Lie algebra su(4) which is (X, Y ) =
8Tr(XY ). It is immediate to see that we get g(X, Y ) = −1

2Tr(XY ).
However, since the Lie algebra su(4) comes from a compact group, its Killing

form is negative definite, so the negative multiple (our g) is positive definite, and
thus an inner product. This turns the whole Lie algebra g = su(4) into a vector
space with an inner product. With respect to this inner product the basis of
h is orthonormal and extends the already orthonormal basis (Fj, JFj) into an
orthonormal basis of g. This explains the choice of 1√

2 in the element S.
Now we can compute the commutators which is just a straightforward com-

putation of the regular matrix commutators

[F1, JF1] = −
√

2S − E0 + E0 [F2, JF2] = −
√

2S + E0 + E0

[F3, JF3] = −
√

2S − E0 − E0 [F4, JF4] = −
√

2S + E0 − E0

[F1, JF2] = [F3, JF4] = −E2 [F1, JF3] = [F2, JF4] = E2

[F1, F2] = [F3, F4] = −E1 [F1, F3] = [F2, F4] = −E1.

(4.7)

(All the other commutators we have not written are zero, except the ones which
can be obtained from these ones by applying the identities mentioned above 4.4.)

Knowing the commutators, we can compute the explicit formula for the appli-
cation using the symplectic Clifford multiplication. For this we need to calculate
dAd̂ applied on the elements of the basis 4.6. For this let us write the diagram

û(4)

s(u(2)× u(2)) u(4)

dρ

dAd

dAd̂
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which is obtained from the diagram 3.4 by taking its differential. Map dρ can
be find using the prescription given in 1.2 and the morphism dAd = ad can be
calculated by computing the commutators of appropriate elements from p and h.
Since the diagram above is commutative and the morphism dρ is an isomorphism
(it comes from a differentiating the smooth double cover) we will be able to find
the expression for the morphism dAd̂.

We need to compute the commutators [E0, Fj] for all j ∈ {1, . . . , 4} since p is
a complex vector space with a complex basis given by (Fj). Recall the notation
introduced at the end of the previous chapter given by the map τ : {1, 2, 3, 4} →
{1, 2} × {1, 2}.

dAd(E0)(Fj) = [E0, Fj] =

⎛⎜⎝ 0 0

0 i 0
0 −i

⎞⎟⎠(︄ 0 −ET
τ(j)

Eτ(j) 0

)︄
−

−
(︄

0 −ET
τ(j)

Eτ(j) 0

)︄⎛⎜⎝ 0 0

0 i 0
0 −i

⎞⎟⎠ =

=
(︄

0 (−1)δ2τ(j)1 iET
τ(j)

(−1)δ2τ(j)1 iEτ(j) 0

)︄
= (−1)δ2τ(j)1JFj,

where by τ(j)1 we mean the first element from the pair τ(j), thus the expres-
sion δ2τ(j)1 is 1 only if the τ(j) is either (2, 1) or (2, 2).

Thus we can write dAd(E0) in the matrix form with respect to the complex
basis (Fj) of the vector space p

dAd(E0) =
⎛⎝ i 0 0 0

0 i 0 0
0 0 −i 0
0 0 0 −i

⎞⎠ ,
since multiplying by i is in the vector space p just applying the map J .

On the other hand we wish to compute the image under the map dρ of the
elements Aij and Bij introduced above, respectively their action on the basis
vectors Fj. We have mentioned that the elements Aij and Bij form a basis of the
Lie algebra û(4). Thus computing dρ of these describes the whole morphism dρ.
We are going to use the definition given in the chapter 1 (1.2).

dρ(Akl)(Fj) = (Fk ⊙ Fl + JFk ⊙ JFl)(Fj) = δkjJFl + δljJFk

dρ(Bkl)(Fj) = (Fk ⊙ JFl − Fl ⊙ JFk)(Fj) = δljFk − δkjFl,

where in both equations we have first used the definition and then the isomor-
phism given in 1.1. In the matrix notation we get

dρ(Akl) =
0 0 0 0
0 0 i 0
0 i 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

k l

l

k dρ(Bkl) =
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

k l

l

k .
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Where in the expression for dρ(Akk) we will have only one non-zero entry,
namely 2i at the (k, k) position.

Putting these two computations together we get the following result

dAd(E0) = 1
2dρ(A11 + A22 − A33 − A44),

from which it immediately follows that

dAd̂(E0) = ((dρ)−1 ◦ dAd)(E0) = 1
2(A11 + A22 − A33 − A44).

We will now write the table for all basis elements of the Lie subalgebra h.

dAd̂(E0) = 1
2(A11 + A22 − A33 − A44)

dAd̂(E0) = 1
2(−A11 + A22 − A33 + A44)

dAd̂(S) = −1√
2

(A11 + A22 + A33 + A44)

dAd̂(E1) = B13 +B24 dAd̂(E1) = B12 +B34

dAd̂(E2) = A13 + A24 dAd̂(E2) = −A12 − A34.

(4.8)

We now proceed to a further computation. Using the commutators from 4.7
and the newly obtained table 4.8 for the morphism dAd̂ together with the formula
4.2 we continue with the equation 4.5

[D̃,D](φ) =
⎛⎝ 4∑︂
j=1

iF 2
j (φ) + iJF 2

j (φ))
⎞⎠+ i(A11 · (2A11 + A22 + A33) ·+

+ A22 · (2A22 + A11 + A44) ·+A33 · (2A33 + A11 + A44) ·+A44 · (2A44+
+ A22 + A33) ·+2(A12 · (A12 + A34) + A13 · (A13 + A24) + A14 · 0+
+ A23 · 0 + A24 · (A13 + A24) + A34 · (A12 + A34) +B12 · (B12 +B34)+
+B13 · (B13 +B24) +B14 · 0 +B23 · 0 +B24 · (B13 +B24)+
+B34 · (B12 +B34)) · φ.

Here the zero terms comes from the vanishing of commutators [F1, F4] =
[F2, F3] = [F1, JF4] = [F2, JF3] = 0, which vanish because they correspond to
the diagonal entries in the matricies in p. Now we have achieved our initial goal,
which is a splitting of the operator into 2 operators, one of which is described only
by the application and other one only by the symplectic Clifford multiplication.

4.2 Simplification of the operators
Parallelly to the computations done by Habermann [Habermann and Habermann,
2006] on CP 1 and by Wyss [Wyss, 2003] on CP 2n+1 we define the Casimir operator
of SU(4) on the symplectic spinor fields by
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Ω(φ) :=
15∑︂
j=1

b2
i (φ), (4.9)

where the terms bi represent an arbitrary orthonormal basis of SU(4) with respect
to our choice of the inner product, which is the negative multiple of the Killing
form. We will show later that this operator has a close relation to the Casimir
element of SU(4) (with respect to the same inner product) represented by the
derivation of the induced representation, hence the name.

Because of this relation it may be a good idea to create the Casimir operator
in the expression (by adding a 0 in a particular form) which would make the
computation of the spectrum more manageable.

Remember that we actually have an orthonormal basis with respect to the
inner product g = −1

2Tr(−,−), i.e. the basis (Fj, JFj, E0, E
0, E1, E

1, E2, E
2, S)

where j ∈ {1, 2, 3, 4}. Thus we almost have the Casimir operator in our formula.
We are just missing the elements coming from the Lie subalgebra h. Because
the elements of h can be viewed as the application or as the symplectic Clifford
multiplication (see the formula 4.1), we can add and subtract them and don’t
break our decomposition into two operators.

We apply the observation and also make a few adjustments to simplify the
formula at the end of the previous section. Thus we obtain

[D̃,D](φ) = iΩ(φ)− i
(︃

(E0)2(φ) + (E0)2(φ) + (E1)2(φ) + (E1)2(φ)+

+ (E2)2(φ) + (E2)2(φ) + S2(φ)
)︃

+ 2i
(︃ 4∑︂
j=1

A2
jj + A11 · A22 + A11 · A33+

+ A22 · A44 + A33 · A44 + (A12 + A34)2 + (A13 + A24)2 + (B12 +B34)2+

+ (B13 +B24)2
)︃
· φ =: iΩ(φ) + iΨ0 · φ,

where we have used

AijAkl = AklAij BijBkl = BklBij, if {i, j} ∩ {k, l} = ∅. (4.10)

As can be seen directly from the definition. Also by the A2
kl we mean the iterative

symplectic Clifford multiplication.

Now we bring our focus to the operator Ψ0·. As hinted earlier we are going to
use again the same trick as in the previous section, that is use the equation 4.1
and the table 4.8 to rewrite the first part of the operator via the multiplication.
Note that the elements (E1)2, (E1)2, (E2)2, (E2)2 under the morphism dAd̂ are
exactly the squares at the end of the operator (the signs cancel out). We arrive
at
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iΨ0 · φ = i

4((A11 + A22 − A33 − A44)2 · φ+ i

4(−A11 + A22 − A33 + A44)2 · φ+

+ i

2(A11 + A22 + A33 + A44)2 · φ+ 2i
(︃ 4∑︂
j=1

A2
jj + A11 · A22 + A11 · A33+

+ A22 · A44 + A33 · A44

)︃
· φ+ 3i

(︃
(A12 + A34)2 + (A13 + A24)2+

+ (B12 +B34)2 + (B13 +B24)2
)︃
· φ

We may further simplify the first part since

i

4((A11 + A22 − A33 − A44)2 · φ+ i

4(−A11 + A22 − A33 + A44)2 · φ+

+ i

2(A11 + A22 + A33 + A44)2 · φ+ 2i
(︃ 4∑︂
j=1

A2
jj + A11 · A22 + A11 · A33+

+ A22 · A44 + A33 · A44

)︃
· φ =

= 3i
(︃ 4∑︂
j=1

A2
jj + A11 · A22 + A11 · A33 + A22 · A44 + A33 · A44

)︃
· φ.

Furthermore there is an observation.

Observation 4.2.1. With the notation described above, consider k, l ∈ {1, 2, 3, 4}
such that k ̸= l. Then it holds that

A2
kl +B2

kl = Akk · All − 1.

Proof. Note that we have proved earlier that [Fk, JFl]· = −iδkl and we will
use this identity in the next calculation without mentioning it. Also for this
computation we will not write the symplectic Clifford multiplication, since there
is no other one to be confused with. By expanding the definitions we have that

A2
kl +B2

kl = F 2
kF

2
l + JF 2

k JF
2
l + FkFlJFkJFl + JFkJFlFkFl + F 2

k JF
2
l +

+ F 2
l JF

2
k − FkJFlFlJFk − FlJFkFkJFl.

Since

JFkJFlFkFl = FkJFkJFlFl + iJFlFl = FkFlJFkJFl + iFkJFk + iFlJFl − 1
FkJFlFlJFk = FkFlJFkJFl + iFkJFk

FlJFkFkJFl = FkFlJFkJFl + iFlJFl,

we obtain that

A2
kl +B2

kl = F 2
kF

2
l + JF 2

k JF
2
l + F 2

k JF
2
l + F 2

l JF
2
k − 1 = AkkAll − 1.
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Using the previous observation, the computation above it, and the commuta-
tion rule 4.10 we have that

iΨ0 · φ = 3i
(︃ 4∑︂
j=1

A2
jj + A11 · A22 + A11 · A33 + A22 · A44 + A33 · A44

)︃
· φ+

+ 3i
(︃
A12 + A34)2 + (A13 + A24)2 + (B12 +B34)2 + (B13 +B24)2

)︃
· φ =

= 3i
(︃ 4∑︂
j=1

A2
jj + A11 · A22 + A11 · A33 + A22 · A44 + A33 · A44

)︃
· φ+

+ 3i
(︃

(A2
12 +B2

12) + (A2
34 +B2

34) + (A2
13 +B2

13) + (A2
24 +B2

24)+

+ 2(A12 · A34 + A13 · A24 +B12 ·B34 +B13 ·B24)
)︃
· φ =

= 3i
(︃ 4∑︂
j=1

A2
jj + 2(A11 · A22 + A11 · A33 + A22 · A44 + A33 · A44)

)︃
· φ−

− 12iφ+ 6i
(︃
A12 · A34 + A13 · A24 +B12 ·B34 +B13 ·B24

)︃
· φ.

It is possible to simplify this expression even a bit further if we recall the
definition of the Hamiltonian of the Harmonic oscillator 1.2.1 which in our current
notation can be written as

H0(f) = 1
2

4∑︂
j=1

Ajj · f,

where f ∈ L2(R4). Therefore we have that

iΨ0 · φ = i12H2
0 (φ)− 12iφ+

+ 6i
(︃
A12 · A34 + A13 · A24 +B12 ·B34 +B13 ·B24 − A11 · A44 − A22 · A33

)︃
.

An interesting property of this operator is that although we have up until
this point worked locally this definition is actually global. It can be shown via
a tedious and lengthy computation that for each element X ∈ h, it holds that
d(m ◦ Ad̂)(X) ◦ (Ψ0·) = (Ψ0·) ◦ d(m ◦ Ad̂)(X). And since the Lie subgroup
H = S(U(2)×U(2)) is connected (as was shown earlier) its representation m◦Ad̂
also commutes with the operator Ψ0·. We can hence make the global definition.
Let φ ∈ C(G,Ml)H we define

(Ψ · φ)(a) := Ψ0 · (φ(a)).
Because the representation of the group H commutes with the map Ψ0· we get a
well defined global operator.
Remark. Note that the operator Ψ0· is an operator on the vector spaceMl (even
on L2(R4)), while the operator Ψ· is an operator on the vector space Γ(Ql). It is
defined using the operator Ψ0· at each point of any fiber and since the operator
Ψ0· commutes with the representation m ◦ Ad̂ it is well defined.
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Also as mentioned before the operators defined via the application map are
defined globally as well.

Furthermore recall that the Casimir operator Ω can be realised as the appli-
cations of the vectors of the chosen basis of g. We have seen that for vectors from
p, the multiplication commutes with the application at a point (see 4.3). On the
other hand we know that the operator Ψ· commutes with the representation of
the Lie subalgebra h given by dAd̂ which is basically the same as applications of
the vectors from h to the symplectic spinor field.

We have thus proved the following theorem.

Theorem 4.2.2. Given the standard Kähler structure on the manifold Gr2(C4)
described in the previous section, then the second order operator P associated
to the symplectic Dirac operators on this manifold can be decomposed into two
commuting operators as follows

P = i[D̃,D] = −Ω(φ)−Ψ · φ,

where the operators Ω and Ψ are defined above.

4.3 Computing the point spectrum of Ω and Ψ·

Point spectrum of the operator Ψ·
We will start with the operator Ψ·. As noted at the end of the previous section
we can calculate its spectrum considering it only as an operator on the spaces
Ml. Because clearly it cannot have other eigenvalues then the ones coming from
operating on the space Ml, but of course it can have (and it will have) bigger
multiplicities when acting on the ”whole” Γ(Ql). On the other hand, given an
eigenfunction of this operator on Ml we can multiply it by a bump function for
some neighbourhood and create a section which will be an eigenvector for the
associated global operator.

Consider a basis B ofMl given by the normalised Hermite functions h̃α where
α ∈ N4

0 and |α| = l. This is an orthonormal basis with respect to the L2-product
onMl. We will show that the operator Ψ0· has a symmetric matrix with respect
to this basis, and thus it is orthogonally diagonalizable with respect to the L2-
product.

This means that there is an orthogonal decomposition of each vector space
Ml into subspaces of eigenvectorsMl = V l

γ1⊕ . . .⊕V
l
γkl

, where γj are eigenvalues
of the operator ψ0 · |Ml

with Vγj
as the appropriate eigenspace. This induces the

further splitting of the vector bundle Ql

Ql =
kl⨁︂
j=1

Qj
l :=

kl⨁︂
j=1

(SU(4)×m◦Ad̂ V
l
γj

).

We will now show that the matrix of Ψ0 is symmetric with respect to the basis
B.
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We will start by noticing that Hermite functions are eigenfunctions of the
operators Ajj since

Ajj · hα(x) = Ajj · (hα1(x1)hα2(x2)hα3(x3)hα4(x4)) = −(2αj + 1)hα(x)

where α1 + α2 + α3 + α4 = |α| = l.
This implies that the operator H0 = ∑︁4

j=1 Ajj maps the Hermite functions to
their multiple, the same works for the operator A11 ·A44 +A22 ·A33 and, of course,
also for the multiplication by a constant -12. Thus this part of the operator Ψ0·
makes up the diagonal and we can focus on the remaining part, i.e. on

6Φ· := 6(A12 · A34 + A13 · A24 +B12 ·B34 +B13 ·B24) · .

We will rewrite the map Φ· using the definition of the symplectic Clifford mul-
tiplication. Also for a less overwhelming notation we will write ∂i instead of ∂

∂xi

We have

Φ· =(∂1∂2∂3∂4 − ∂1∂2x3x4 − ∂3∂4x1x2 + x1x2x3x4)+
+(∂1∂2∂3∂4 − ∂1∂3x2x4 − ∂2∂4x1x3 + x1x2x3x4)+
+(−∂2∂4x1x3 + ∂1∂4x2x3 − ∂1∂3x2x4 + ∂2∂3x1x4)+
+(−∂3∂4x1x2 + ∂1∂4x2x3 − ∂1∂2x3x4 + ∂2∂3x1x4),

where we have used the fact that ∂jxk = xk∂j if j ̸= k. Via a simple calculation
it can be shown that this operator equals

Φ· =(∂1 − x1)(∂4 − x4)(∂3 + x3)(∂2 + x2)+
+(∂1 + x1)(∂4 + x4)(∂3 − x3)(∂2 − x2).

We can see, for example, that elements with an odd number of ”x’s” cancel
out since they have the opposite sign, while the those with an even number of
”x’s” are exactly twice each pair from the set {1, 2, 3, 4}, twice the one with no
”x’s” and twice the one with only ”x’s”.

It is possible to show that the operators ∂i−xi may be called rising operators
for the Hermite functions, i.e. (∂1−x1)hα1(x1) = hα1+1(x1) and the operators ∂i+
xi are lowering operators up to a constant, i.e. (∂1 + x1)hα1(x1) = (−2α1)hα1−1.

This means that the operator Φ· ’works’ in the following way

Φ · hα = 4α2α3(hα1+1hα2−1hα3−1hα4+1) + 4α1α4(hα1−1hα2+1hα3+1hα4−1),

where we are using the convention that h−1 = 0. If we look only at the indicies
and not at the coefficients, we can see that certain subsets of multiindicies are
left invariant. To make it precise.

Proposition 4.3.1. The operator Φ· defined above leaves the subspaces J lk1,k2

invariant, where

J lk1,k2 := span{hα1,α2,α3,α4|α1 + α2 = k1, α1 + α3 = k2, α1 + α2 + α3 + α4 = l},

where k1, k2 ∈ {0, 1, . . . , l} are arbitrary. Furthermore, these subspaces form an
orthogonal decomposition of the space Ml.
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Proof. The proof of the first part is straightforward from the realisation of the
operator Φ· as seen above, i.e. k1 = α1 + α2 = (α1 + 1) + (α2 − 1), etc. It is
also clear that these subspaces are orthogonal with respect to each other, since
the Hermite functions are such. Also from the fact that each Hermite function
belong exactly to one J lk1,k2 , the last assertion follows.

Remark. It is even possible to show that if we require the subspaces of Ml to
be generated by some Hermite functions, the subspaces J lk1,k2 are the smallest
invariant subspaces meeting such requirements.

We can imagine the subspaces J lk1,k2 as a chains of Hermite functions, where
the operator Φ· maps each subspace generated by a Hermite function to the direct
sum of the upper and lower segment. For example J4

2,2 looks like as follows

0←→ ⟨h2,0,0,2⟩ ←→ ⟨h1,1,1,1⟩ ←→ ⟨h0,2,2,0⟩ ←→ 0

where by the angle-brackets we mean the complete linear span. The Φ· then acts
as follows

Φ(h2,0,0,2) = 16h1,1,1,1

Φ(h1,1,1,1) = 4h2,0,0,2 + 4h0,2,2,0

Φ(h0,2,2,0) = 16h1,1,1,1.

Also note that we have thus achieved for each l ∈ N0 a decomposition of Ml

into (l + 1)2 subspaces. The dimension of each subspace J lk1,k2 is min{k1, k2, l −
k1, l − k2} + 1 which can be observed by introspection of the chains. This leads
to the fact that for an even l there is exactly one longest chain and for an odd l
there are 4 of equal maximum length.

We are now going to prove that the operator Φ · |J l
k1,k2

has a symmetric matrix
with respect to the basis B constituted of normalised Hermite functions h̃α in the
same order as they appear in the chain. That is, the inner indicies are rising and
the outer indicies are lowering. We denote this matrix by P . From the way of how
Φ· acts we see that P must be a tri-diagonal matrix with zero diagonal. Therefore
we just need to compute the elements Pi,i+1 and Pi+1,i for all appropriate i’s.

Let us assume we have α = (α1, α2, α3, α4) ∈ N4
0 such that l = α1+α2+α3+α4

fixed. Further we assume that α1 ̸= 0 ̸= α4, i.e. the h̃α is not the last element in
the basis B. If the element h̃α is on the i-th position in the basis B, we are going
to show that Pi,i+1 = Pi+1,i and thus proving the symmetry of the matrix P .

We know from [Folland, 1989, p.51-52] that
||hα1,α2,α3,α4 || = π

√
2lα1!α2!α3!α4!, where as usual l = α1 +α2 +α3 +α4. In other

words h̃α = hα

π
√

2lα1!α2!α3!α4!
Let us now compute the entries explicitly. We have

that
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Φ · (h̃α) = Φ · ( hα

π
√

2lα1!α2!α3!α4!
) = 4α1α4hα1−1,α2+1,α3+1,α4−1

π
√

2lα1!α2!α3!α4!
+

+ 4α2α3hα1+1,α2−1,α3−1,α4+1

π
√

2lα1!α2!α3!α4!
=

=
4α1α4π

√︂
2l(α1 − 1)!(α2 + 1)!(α3 + 1)!(α4 − 1)!h̃α1−1,α2+1,α3+1,α4−1

π
√

2lα1!α2!α3!α4!
+

+
4α2α3π

√︂
2l(α1 + 1)!(α2 − 1)!(α3 − 1)!(α4 + 1)!h̃α1+1,α2−1,α3−1,α4+1

π
√

2lα1!α2!α3!α4!
=

= 4
√︂
α1α4(α2 + 1)(α3 + 1)h̃α1−1,α2+1,α3+1,α4−1+

+ 4
√︂
α2α3(α1 + 1)(α4 + 1)h̃α1+1,α2−1,α3−1,α4+1.

Thus we see that Pi+1,i = 4
√︂
α1α4(α2 + 1)(α3 + 1). Similarly one finds out

that Pi,i+1 = 4
√︂

(α2 + 1)(α3 + 1)((α1 − 1) + 1)((α4 − 1) + 1) =
4
√︂

(α2 + 1)(α3 + 1)α1α4, where the second equality can be seen by renaming the
indicies appropriately in the above chain of equalities (α1 ↔ α1 − 1, . . .). Thus
we have proved the following proposition.

Proposition 4.3.2 (Decomposition of Ml). For each l ∈ N0 there is an or-
thogonal decomposition of Ml into spaces of eigenvectors V l

γj
, associated with the

eigenvalues γj, for the operator Ψ0·

Ml = V l
γ1 ⊕ . . .⊕ V

l
γkl
.

Furthermore there is a splitting of the bundle of symplectic spinors that is pre-
served by the operator P

Ql =
kl⨁︂
j=1

Qj
l :=

kl⨁︂
j=1

(SU(4)×m◦Ad̂ V
l
γj

).

Proof. The orthogonal decomposition follows from the computations above the
proposition

The subbundles are well-defined because the transition function commutes
with Ψ· and therefore they must keep the spaces of eigenvectors invariant.

The last assertion follows from the fact that the operator Ψ· commutes with
the Casimir operator Ω.

Altogether this means that we can compute the spectrum only on the bundles
Ql
j. We just need to describe the spaces V l

kj
using an orthonormal basis obtained

from the decomposition of the Ml’s.
Unfortunately by the time of writing the thesis we have not yet managed to

find explicitly such an orthonormal basis. Nevertheless, we have found a neat
little trick that inserts the smaller chains into the longer chains, while preserving
the eigenvalues. This has 2 important consequences:
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Number one, for computing the eigenvalues of Ψ0· on the spaceMl it is enough
to diagonalise the operator on the longest chain, in case of the even l, or on any
of the maximum length chains, in case of the odd l.

Number two, for computing the eigenvalues of such a chain we can work
inductively. In more detail, we can compute the eigenvalue on the chain of length
1 (that is usually trivial) and insert it into a chain of a length 2. The image under
the insertion is an eigenvector with the same eigenvalue, Therefore it is enough
to find its orthogonal complement and it is guaranteed that it is also a space of
eigenvectors. We just need to compute the eigenvalue by applying Ψ0· on it. In
this way we work through until we come to the desired length.
Remark. This, by the way, determines the dimensions of different eigenspaces. In
a more detail, eigenspaces of the space Ml have the following dimensions: The
first eigenspace has dimension same as is the number of all chains of length at
least 1 - (l+ 1)2, second has the dimension of all the chains of length at least 2 -
(l− 1)2,... 1 or 4, where the last dimension (of the last eigenspace) is determined
by the parity of l.

This is rather a tedious way of finding the eigenvectors and eigenvalues, but
a possible one. We plan to find an easier, more compact, way and release an
article later on with the whole spectrum. However for the thesis we are going
to compute just a small part of the spectrum by taking only the eigenvalues and
eigenvectors from M0, M1 and M2.

Explicitly these are the following:

1. M0 is one dimensional space with eigenvalue 24.

2. M1 is 4-dimensional and constitutes of 4 chains each of length 1 and thus
with the same eigenvalues. The eigenvalue is 72.

3. M2 is 10-dimensional with one chain of length 2 and 8 chains of length 1.
The eigenspace from the ’longer chain’ is ⟨h0,1,1,0 − h1,0,0,1⟩ with eigenvalue
96 and the orthogonal complement (of dimension 9: the 8 chains + the one
dimensional subspace from the 2-chain) has eigenvalue 144.

Point spectrum of the Casimir operator Ω
As in the previous section we start with the overall principle and then apply it
to the subspaces M0,M1 and M2, respectively to the subspaces of the decom-
positions obtained above, i.e. M0 = V 0

24, M1 = V 1
72 and M2 = V 2

96 ⊕ V 2
144.

First let us recall the definition of the induced representation (all of the rep-
resentations considered below are over the field of complex numbers.).

Definition 4.3.1 (Induced representation). Let L be a Lie group with a closed
Lie subgroup K ⊆ L, and consider a representation µ of the group K on the vector
space V , µ : K → Aut(V ). Then we define the space of the induced representation
as the space of K-equivariant maps from L to V

IndLK(V ) := {f : L→ V |f(gh) = µ(h−1)f(g)}
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and the induced representation as

Indµ : L→ Aut(IndLK(V )), (Indµ(g)f)(g′) := f(g−1g′),

where g, g′ ∈ L are arbitrary.

It is easy to verify that this morphism is a well-defined left action. Further-
more if we recall the identification of the sections on a homogeneous bundle with
the equivariant functions, we may see that this is indeed a representation on the
sections of the associated bundle to L→ L/K, i.e. the bundle L×µ V .

Important result that we are going to use is the so-called Frobenius reciprocity
[see Sepanski, 2007, Theorem 7.47]

Theorem 4.3.3 (Frobenius reciprocity). Let L be a Lie group with a closed
Lie subgroup K ⊆ L. If we are given a representations µ : K → Aut(V ) and
ν : L→ Aut(W ) then there is a natural isomorphism

HomL(W, IndLK(V )) ∼= HomK(W |L, V ),

where by the W |K we mean the restriction of the representation ν|K from L to
K.

By HomL(U1, U2) we denote the space of all intertwining operators between
the representations U1 and U2.

Proof. The maps are defined as follows. Given T ∈ HomL(W, IndLK(V )) we
assign ST ∈ HomK(W |L, V ) to it defined by ST (w) := T (w)(e), where w ∈ W
and e is the neutral element in L.

On the other hand given S ∈ HomK(W |L, V ), we assign to it an operator
TS ∈ HomL(W, IndLK(V )) defined by TS(w)(g) := S(g−1w), where w ∈ W and
g ∈ L.

Verifying that these maps are well defined and their compositions are identi-
ties is straightforward.

Remark. In the language of category theory this shows that the inducing functor
IndLK : RepK → RepL and the restricting functor |K : RepL → RepK (also
denoted as ResLK) form an adjoint pair.

Reminder on the notation: We used in the definition and statement of the
theorem, the groups denoted by L and K, because we intend to still keep the
notation from earlier that G = SU(4) and H = S(U(2)× U(2)).

We relate the Casimir operator to the representation of the Casimir element of
the Lie algebra g. We follow the work of Wyss [Wyss, 2003] Given a representation
µ : G → Aut(V ) of the group G. We define a representation of the Casimir
element by

Ωµ(v) :=
15∑︂
j=1

dµ(bj)(dµ(bj)(v)), (4.11)
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where v ∈ V is arbitrary and the bj’s form an orthonormal basis with respect
to our choice of the inner product, i.e. a negative multiple of a Killing form.
Compare this definition to the definition of the Casimir operator given before in
the chapter (see 4.9).
Remark. Given a representation of any Lie group, it induces a representation
of its Lie algebra and thus it also induces the representation of the universal
enveloping algebra of this Lie algebra (If the group is simply connected all of
these are in one-to-one correspondence). Now given an ad-invariant bilinear form
(for example Killing form) it is possible to define a Casimir element in the uni-
versal enveloping algebra [see Dixmier and Society, 1996]. The representation
of the Casimir element given above is exactly the representation of the Casimir
element (given by our choice of the inner product on g) under the appropriate
representation of the universal enveloping algebra.

It is a well-known fact that Casimir elements lie in the center of the universal
enveloping algebrae. Therefore they commute with the representation of each
element from the Lie algebra. Using the Schur’s lemma, we can conclude that
given an irreducible representation µ : g → End(V ) of a Lie algebra g, the
representation of the Casimir element acts as a λ-multiple of the identity where
λ ∈ C.

The next proposition relates a representation of the Casimir element for some
irreducible representation with eigenvalues of the Casimir operator, we have de-
fined earlier in this chapter, via the intertwining map from the induced represen-
tation. This is the Lemma 5.4. in Wyss [2003].

Proposition 4.3.4 (Eigenvalues of Casimir operator). Given an irreducible rep-
resentation µ : G→ Aut(W ), where the representation of the Casimir element is
given by Ωµ = λµId, and an intertwining map
A ∈ HomG(W,Γ(Qj

l )). Then

Ω(Aw) = λµAw, (4.12)

for any w ∈ W .

Proof. First recall that Γ(Qj
l ) = IndGH(Ml) where the representation is m◦Ad̂ :

H →Ml. Now the proof is just a straightforward computation. Take g ∈ G then
we have

Aw(g) = Indm◦Ad̂(g
−1)Aw(e) = A(µ(g−1)w),

where in the second equality we have used the defining property of the intertwin-
ing maps. Given an orthonormal basis (bj) of g with respect to our choice of an
inner product, we can compute

bj(bj(Aw))(g) = d

dt

⃓⃓⃓⃓
0
bj(Aw)(g exp(tbj)) =

= d

dt

⃓⃓⃓⃓
0

d

ds

⃓⃓⃓⃓
0
Aw(g exp(tbj) exp(sbj)) =

= d

dt

⃓⃓⃓⃓
0

d

ds

⃓⃓⃓⃓
0
A(µ(exp(−sbj)) ◦ µ(exp(−tbj)) ◦ µ(g−1)w) =

= (A ◦ dµ(bj) ◦ dµ(bj) ◦ µ(g−1))(w).
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Thus summing over all j gives

Ω(Aw) = A ◦ Ωµ(µ(g−1)w) = λµAw,

thus proving the assertion.

This explains the name Casimir operator.

Let us consider all of the unitary representations of the group G and denote it
by (µ : G → Aut(Wµ))µ∈M . It is a fact from the theory of representations (that
follows from the Schur’s lemma) that we have the decomposition

Γ(Qj
l ) = IndGH(V l

γj
) = ˆ︃⨁︂

µ∈M
Wµ ⊗ HomG(Wµ, Ind

G
H(V l

γj
)).

Where the inclusion of the subspaces Wµ⊗HomG(Wµ, Ind
G
H(V l

γj
)) is given by

the obvious morphism
w ⊗ A ↦→ Aw.

Together with the proposition 4.12, we see that the Casimir operator respects
this decomposition and furthermore it operates as the λµ multiple of the identity
on each, so-called, isotypic component.

Hence for the computing of the spectrum, we are now only interested when
the Hom-space is nonzero. For this we are going to use the Frobenius reciprocity
4.3.3 to obtain that

HomG(Wµ, Ind
G
H(V l

γj
)) ∼= HomH((Wµ)|H , V l

γj
).

This leads to a problem of finding the representations of H = S(U(2)×U(2)) that
appears in the decomposition of the irreducible representations of G = SU(4).
Solution to the problem are the branching rules. However, to compute these
Hom-sets we require more information about the spaces V l

γj
. So we are going to

finish this subsection with the branching rules just for our special cases, i.e. M0,
M1 and M2.

For this we are going to use the paper from Milhorat [Milhorat, 1998] about
computing the spectrum of the classical Dirac operators on the Grassmannians
Gr2(Cm+2) for m = 2. Namely we are going to use the Proposition 2 in section
IV to determine the branching rules. Also, we are going to use the notation de-
scribed in the beginning of section IV.

All weights of the representations V l
γj

can be computed directly by applying
the endomorphisms dAd̂(E0), dAd̂(E0) and dAd̂(S) since they all preserve the
Hermite function. All that is left is to find the dominant weight that charac-
terises each of these representations. We do that using the Lemma 2 and 3 and
the definition of simple roots in Milhorat [1998].

The dominant weight of the irreducible representations V 0
24, V

1
72, V

2
96, V

2
144 are

[−1,−1, 1, 1], [−1,−2, 2, 1], [−2,−2, 2, 2], [−1,−3, 3, 1], respectively.
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Now we use the proposition 2 to obtain the dominant weights for the irre-
ducible representations of SU(4) that have the appropriate irreducible represen-
tation of H, characterised by the dominant weight above, as a direct summand.
(We again skip some tedious computations). We denote by βlλ the obtained dom-
inant weights.

For [−1,−1, 1, 1] we get β0
24 ∈ {[k+ l+1, l+1,−(l+1),−(k+ l+1)]|k, l ∈ N0}.

For [−1,−2, 2, 1] we get β1
72{[k + l + 2, l + 2,−(l + 2),−(k + l + 2)],

[k+l+3, l+1,−(l+2),−(k+l+2)], [k+l+3, l+3,−(l+2),−(k+l+4)]|k, l ∈ N0}.

For [−2,−2, 2, 2] we get β2
96 ∈ {[k+ l+2, l+2,−(l+2),−(k+ l+2)]|k, l ∈ N0.

For [−1,−3, 3, 1] we get β2
144 ∈ {[k + l + 3, l + 3,−(l + 3),−(k + l + 3)]

[k + l + 2, l,−(l + 1),−(k + l + 1)], [k + l + 4, l,−(l + 2),−(k + l + 2)],
[k + l + 3, l + 3,−(l + 1),−(k + l + 5)]|k, l ∈ N0}
or β2

144 ∈ {[k+l+2, l+2,−(l+1),−(k+l+3)]|k, l ∈ N0 and (k, l) ̸= (0, 2), (0, 3)}.
All that is to compute the eigenvalues of the Casimir operator. For this we

refer to the formula (42) in Milhorat [1998].

Proposition 4.3.5 (eigenvalues of Casimir operator). With the notation above,
the eigenvalues of the Casimir operator on the sections of Ql for l ∈ {0, 1, 2} are
given by

c(βlλ) = 1
2⟨β

l
λ, β

l
λ + 2δ⟩,

where ⟨−,−⟩ is the standard Euclidean inner product on R4,
δ = 1

2 [3, 1,−1,−3] and by βlλ we mean any βlλ from the above list.

Note that we have made a correction by a multiple of four, since in the article
the inner product on g differs from our by a multiple of 2 and thus our Casimir
element is 4-times bigger.

We conclude with

Theorem 4.3.6 (eigenvalues of second order operator P). With the notation
above, the eigenvalues of the second operator P associated to the symplectic Dirac
operators on the sections of Ql, for l ∈ {0, 1, 2} are given by

c(βlλ) + λ.
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List of Abbreviations

Grk(Cn) Grassmannian of k-planes in Cn

O(n,R) orthogonal group
U(n) unitary group
H(2n) Heisenberg group
Sp(2n,R) symplectic group
Mp(2n,R) metaplectic group
Û(n) double cover of the unitary group
L2(Rn) space of square integrable functions on Rn

Ml subspace of L2(Rn) generated by Hermite functions
Cl(V ) symplectic Clifford algebra on V

m Segal-Shale-Weil representation
R symplectic frame bundle
P metaplectic structure
Q symplectic spinor bundle
H0 Hamiltonian of the harmonic oscillator
D, D̃ symplectic Dirac operators
P associated second order operator
hα Hermite function
Gj, JFj local unitary frame of Gr2(C4)
Aij, Bij basis of Û(4)
Ω Casimir operator
IndGH induced representation from H to G
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