Ellipticity of complexes of symplectic twistor operators

Svatopluk Krýsl

Charles University in Prague

Geometry and Physics, Srní, Jan. 13 - 20, 2024

Motivation

- 1) Symplectic twistor operators are parallel to Penrose's twistor operators ([Penrose-Rindler]) used for studying spin particles in general rel. of Gravitation; also in gauge complexes for charges of massless 3/2-spin fields.
- 2) We study them in **symplectic** and infinite rank bundle setting.
- 3) The symplectic operators (called symplectic twistor operators) are known to form *complexes* under an integrability condition expressed by the Weyl curvature ([KryslMonat, KryslACCA]).
- 4)Two of them already known to be *elliptic* ([KryslArch]).
- 5) We show how to prove the ellipticity of the remaining ones.

Background from algebra

Use of centralizers of a group action on a (complex) vector space W in analysis of operators on functions with values in W

Setting:

- 1) A associative algebra over \mathbb{C} , ie., A is a ring and and \mathbb{C} -module (the ring plus-operation is considered to coincide with the module plus-operation) with compatibility $r \cdot (s \cdot t) = (rs) \cdot t$, $r, s \in \mathbb{C}$ and $t \in A$.
- 2) $\rho:A\to \operatorname{Aut}_{\mathbb{C}}(W)$ representation of A on W. Thus W is A-mod.
- 3) Centralizer (commutant algebra) $B = \text{Comm}_A(W) = \{T : W \to W | T \circ \rho(a) = \rho(a) \circ T \text{ for all } a \in A\}$ space of all A-equivariant maps/A-homomorphisms/intertwiners
- 4) If A is semi-simple (sum of algs w. no proper $\neq 0$ ideals), W is multiplicity-free as $A \otimes B$ -module, i.e., if $W' \neq W''$ are $A \otimes B$ -submodules of W, then $W' \not\cong W''$ as $A \otimes B$ -modules.

i) Basic example: Schur duality

$$G = GL(V)$$
 and $W = \bigotimes^k V$, $\rho(g)(v_1 \otimes \ldots \otimes v_k) = gv_1 \otimes \ldots gv_k$
 $\Longrightarrow (c_1g_1 + c_2g_2) \cdot w = c_1\rho(g_1)(w) + c_2\rho(g_2)(w)$, $g_1, g_2 \in G$,
 $c_1, c_2 \in \mathbb{C}$ be the extension of the action to the group algebra
 $A = \mathbb{C}[G]$; $\tau(\pi)(v_1 \otimes \ldots \otimes v_k) = v_{\pi^{-1}(1)} \otimes \ldots \otimes v_{\pi^{-1}(k)}$, where
 $\pi \in S_k$ (permutation group on k letters), $v_1 \otimes \ldots \otimes v_k \in \bigotimes^k V$

Result: Comm_A(W) = $\mathbb{C}[\tau(S_k)]$.

ii) Example of **harmonic polynomials**: $O(n,\mathbb{R})$ on $P=P[x^1,\ldots,x^n]$ by the regular representation: $p\in P,$ $g\in O(n,\mathbb{R}),$ $x=(x^1,\ldots,x^n),$ $[\rho(g)(p)](x)=\rho(g^{-1}(x)).$ Centralizer algebra generated by $\Delta=-\frac{1}{2}\sum_{i=1}^n\partial_{x^i}^2,$ $E=-\sum_{i=1}^nx^i\partial_{x^i}-\frac{n}{2}$ and multiplication by $r^2=\frac{1}{2}\sum_{i=1}^n(x^i)^2.$ Forms a representation of Lie algebra $\mathfrak{sl}(2,\mathbb{C})=\langle e^+,h,e^-\rangle$ by $e^+\mapsto \Delta,$ $h\mapsto E,$ $e^-\mapsto r^2.$

Literature on examples of commutant algebras

iii) **Further examples**: H. Weyl (Theory of Groups and Quantum mechanics); R. Howe [Ho] (systematic unifying approach for so called classical groups); Goodman, Wallach [GN] (text-book); Slupinski [Slup] - Spin(n) acting on spinor valued anti-symmetric forms; Leites, Shchepochkina ('super cases') [L], Krýsl [KrLie] - Mp(2n) acting on symplectic spinor valued wedge forms; Bracx, De Schepper, Eelbode, Lávička, Souček [Br]; De Bie, Souček, Somberg [Bie] (in Clifford algebras).

Symplectic spinors

 (V,ω) real symplectic vector space of dimension 2n

 $\lambda:\widetilde{G}=Mp(V,\omega)\to Sp(V,\omega)$, connected double cover of $G=Sp(V,\omega),\ \widetilde{G}$ - so called **metaplectic group**, non-compact Lie group - parallel to the covering $Spin(n)\to SO(n)$

 $\mathbb{L} \subseteq V$ maximal isotropic vector subspace: $\omega(v, w) = 0$ for all $v, w \in \mathbb{L}, \mathbb{L} \simeq \mathbb{R}^n$

 $L: Mp(V,\omega) \to U(L^2(\mathbb{L}))$ distinguished Segal–Shale–Weil/symplectic spinor/metaplectic/oscillator representation [Shale], [Weil], [Kostant]

 $S = L^2(\mathbb{L})$ - symplectic spinors, $E = \bigoplus_{i=0}^{2n} \bigwedge^i V \otimes S$ - symplectic spinor valued wedge forms

$$\rho(g)(\alpha \otimes s) = \lambda(g)^* \alpha \otimes L(g)s$$

Decomposition of $E = \bigoplus_{i=0}^{2n} \bigwedge^i V \otimes S$

The module E decomposes [KrLie] as \widetilde{G} -module into direct sum

$$\bigoplus_{(i,j)\in\Xi}E^{ij},$$

where Ξ is a finite set ((n+1)(2n+1) elements), $E^{ij}=E^+_{ij}\oplus E^-_{ij}\subseteq \bigwedge^i V\otimes S$ and E^\pm_{ij} are irreducible \widetilde{G} -modules.

 p^{ij} projection of $\bigwedge^i V \otimes S$ onto E^{ij}

$$E^{0}$$
 E^{1} E^{2} E^{3} E^{4} E^{5} E^{6}
 E^{00} E^{10} E^{20} E^{30} E^{40} E^{50} E^{60}
 E^{11} E^{21} E^{31} E^{41} E^{51}
 E^{22} E^{32} E^{42}
 E^{33}

Lie super algebras

 $\mathfrak f$ is a super-graded vector space, i.e., $\mathfrak f=\mathfrak f_0\oplus\mathfrak f_1$ is a direct sum of vector spaces

$$|z| = i \text{ if } 0 \neq z \in \mathfrak{f}_i, i \in \mathbb{Z}_2 = \{0, 1\}$$

- $[\![,]\!]:\mathfrak{f}\times\mathfrak{f}\to\mathfrak{f}$ is 1) complex bilinear
 - 2) $[\![,]\!]:\mathfrak{f}_i\times\mathfrak{f}_j\to\mathfrak{f}_{i+j},\ i+j$ is considered $mod\ 2$
 - 3) super anti-symmetric: $[x, y] = -(-)^{|x||y|}[y, x]$
 - 4) super-Jacobi rule $(-)^{|x||z|} [\![x, [\![y, z]\!]\!] + (-)^{|z||y|} [\![z, [\![x, y]\!]\!] + (-)^{|y||x|} [\![y, [\![z, x]\!]\!] = 0$ where for each $x, y, z \in f$ satisfy $x \in f$, $y \in f$, $y \in f$, $z \in f$, i.e. they

where for each $x,y,z\in\mathfrak{f}$ satisfy $x\in\mathfrak{f}_{|x|},y\in\mathfrak{f}_{|y|},z\in\mathfrak{f}_{|z|},$ i.e., they are homogeneous wr. to $\mathfrak{f}_0\oplus\mathfrak{f}_1$

Lie super algebra $\mathfrak{f} = \mathfrak{osp}(1|2)$

$$\begin{split} \mathfrak{f} &= \mathfrak{f}_0 \oplus \mathfrak{f}_1 \text{ (bosonic and fermionic part)} \\ \mathfrak{f}_0 &= \mathsf{Lin}_{\mathbb{C}}(e^+,h,e^-) \cong \mathfrak{sl}(2,\mathbb{C}) \\ \mathfrak{f}_1 &= \mathsf{Lin}_{\mathbb{C}}(f^+,f^-) \\ & \quad \llbracket h,e^{\pm} \rrbracket = \pm e^{\pm} \qquad \llbracket e^+,e^- \rrbracket = 2h \\ & \quad \llbracket h,f^{\pm} \rrbracket = \pm \frac{1}{2}f^{\pm} \qquad \llbracket f^+,f^- \rrbracket = \frac{1}{2}h \\ & \quad \llbracket e^{\pm},f^{\mp} \rrbracket = -f^{\pm} \qquad \llbracket f^{\pm},f^{\pm} \rrbracket = \pm \frac{1}{2}e^{\pm} \end{split}$$

Commutant for sympl. spinor valued anti-symmetric forms

Consider $E=E_0\oplus E_1$ as super vector space (\mathbb{Z}_2 -grading), where $E_0=\bigoplus_{i=0}^n\bigwedge^{2i}V\otimes S,\ E_1=\bigoplus_{i=1}^n\bigwedge^{2i-1}V\otimes S.$ $p_+(\alpha\otimes s)=\alpha\otimes s_+,\ p_-(\alpha\otimes s)=\alpha\otimes s_-,$ where $s=(s_+,s_-)\in S_+\oplus S_-=S=L^2(\mathbb{L})$ is the decomposition into even and odd part.

Definition: $(e_i)_{i=1,...,2n}$ symplectic basis of $(V,\omega), (\epsilon^i)_{i=1}^{2n} \subseteq V^*$ dual basis

$$F^{+}(\alpha \otimes s) = \frac{i}{2} \sum_{i=1}^{2n} \epsilon^{i} \wedge \alpha \otimes e_{i} \cdot s \text{ (degree rising)},$$

$$F^{-}(\alpha \otimes s) = \frac{1}{2} \sum_{i,j=1}^{2n} \omega^{ij} \iota_{e_{i}} \alpha \otimes e_{j} \cdot s \text{ (degree lowering)}.$$

Theorem ([KrLie] 2012; ArXiv 2008): Setting $\tau(f^{\pm}) = F^{\pm}$ and extending it to a homomorphism of Lie super-algebras $\mathfrak{osp}(1|2)$ and $\operatorname{End}(E)$, we get $\operatorname{Comm}_{\mathbb{C}[\widetilde{G}]}(E) = \langle \tau(\mathfrak{osp}(1|2)), p_{\pm} \rangle$.

Symplectic twistor operators

 $(\mathbb{R}^{2n},\omega_0)$ symplectic vector space

For
$$f: \mathbb{R}^{2n} \to E^{ij} \subseteq \bigwedge^i V \otimes S$$

$$(\nabla f)(y) := \sum_{k=1}^{2n} \epsilon^k \wedge (\frac{\partial f}{\partial x^k})(y) \in \bigwedge^{i+1} V \otimes S, \ y \in \mathbb{R}^{2n},$$

$$(T_{\pm}^{ij}f)(y) = p^{i+1,j\pm 1}(\nabla f)(y)$$
 symplectic twistor operators

Symplectic Dirac operators defined by K. Habermann [KH] in the nineties. ([Habs] monograph on sympl. Dirac.)

Structure of complexes twistor operators

Dim M = 4

Complexes of symplectic twistor operators

Theorem [KrMon], [KrArch]: If (M,ω) is a smooth symplectic manifold $(d\omega=0)$, with vanishing second Stiefel–Whitney class, ∇ is a symplectic torsion-free connection $(\nabla \omega=0$, torsion of $\nabla=0$) and the **symplectic Weyl curvature** of ∇ vanishes, then $(C^{\infty}(M,E^{i+k,j\pm k}),T^{i+k,j\pm k}_{\pm})_k$ is a complex, i.e.,

Complexes of symplectic twistor operators

Theorem [KrMon], [KrArch]: If (M,ω) is a smooth symplectic manifold $(d\omega=0)$, with vanishing second Stiefel–Whitney class, ∇ is a symplectic torsion-free connection $(\nabla\omega=0,$ torsion of $\nabla=0)$ and the **symplectic Weyl curvature** of ∇ vanishes, then $(C^{\infty}(M,E^{i+k,j\pm k}),T^{i+k,j\pm k}_{\pm})_k$ is a complex, i.e., $T^{i+k+1,j\pm k\pm 1}_{\pm}T^{i+k,j\pm k}_{\pm}=0$

Theorem [subm.]: Under the assumptions of preceding theorem, the symplectic twistor complexes are elliptic. *Proof.* C^0_+ and C^{2n}_- proved elliptic in [KryslArch].

Symbols of symplectic twistor complex

Induction (the +-case): Suppose the complex C_+^{i-1} is elliptic. $\phi \in \text{Ker } \sigma_+^{i+k,k}(v) \subseteq E^{i+k,k}, \ \phi' = (F^+)^{-1}\phi \in E^{i+k-1,k},$

$$\sigma_+^{i+k,k}(v \wedge F^+\phi') = 0.$$

Schur on intertwiners: \exists complex numbers $\lambda \neq 0$ such that

$$\lambda(F^+ \circ \sigma_+^{i+k-1,k})(v \wedge \phi') = \sigma_+^{i+k,k}(v \wedge F^+ \phi') = 0$$

(commutativity up to multiple).

$$i-1+k-1 \qquad i+k-1 \qquad i+k \qquad i+k+1$$

$$k-1 \qquad \phi'' \xrightarrow{F^+} \phi''' \qquad \sigma_+^{i+k-1,k-1}(v) \qquad \bullet$$

$$k \qquad \bullet \sigma_+^{i-1+k-1,k-1}(v) \qquad \phi' \xrightarrow{F^+} \phi \qquad \sigma_+^{i+k,k}(v) \qquad \bullet$$

$$k+1 \qquad \bullet \qquad \bullet \qquad \bullet \qquad \bullet$$

 $\Rightarrow \sigma_+^{i+k-1,k}(v \wedge \phi') = 0 \Rightarrow \sigma_+^{(i-1)+k),k}(v \wedge \phi') = 0.$ Because C_+^{i-1} is elliptic by the induction hypothesis, there exists an element ϕ'' such that ϕ' is the image of ϕ'' by the map $\sigma_+^{(i-1)+(k-1),k-1}(v)$. Setting $\phi''' = \lambda^{-1}F^+\phi'' \in E^{i-1,k-1}$, we get the desired element in the preimage of ϕ by $\sigma_+^{i+k-1,k-1}(v)$.

- [Bie] De Bie, H., Somberg, P., Souček, V., The metaplectic Howe duality and polynomial solutions for the symplectic Dirac operator. J. Geom. Phys. 75 (2014), 120–128.
- [Br] Brackx, F., De Schepper, H., Eelbode, D., Lávička, R., Souček, V., Fischer decomposition for osp(4|2)-monogenics in quaternionic Clifford analysis. Math. Methods Appl. Sci. 39 (2016), no. 16, 4874–4891
- [GN] Goodman, R., Wallach, N., Representations and invariants of the classical groups. Encyclopedia of Mathematics and its Applications, 68. Cambridge University Press, Cambridge, 1998.
- [Hab] Habermann, K., The Dirac operator on symplectic spinors, Ann. Global Anal. Geom. 13 (1995), no. 2, 155–168.
- [Habs] Habermann, K., Habermann, L., Introduction to symplectic Dirac operators, Lecture Notes in Mathematics 1887. Springer–Verlag, 2006.

- [Ho] Howe, R., Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313 (1989), no. 2, 539–570.
- [Kos] Kostant, B., Symplectic spinors. Symposia Mathematica, Vol. XIV (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973), 139–152, Academic Press, London, 1974.
- [KrMon] Krýsl, S., Complex of twistor operators in spin symplectic geometry, Monatshefte für Mathematik, Vol. 161 (2010), no.4, 381–398.
- [KrArch] Krýsl, S., Ellipticity of symplectic twistor complexes, Archivum Math., Vol. 44 (4) (2011), 309–327.
- [KrLie] Krýsl, S., Howe duality for the metaplectic group acting on symplectic spinor valued forms, Journal of Lie theory, Vol. 22 (2012), no. 4, 1049–1063; arxiv 2008.

- [KrCMP] Krýsl, S., Induced C^* -complexes in metaplectic geometry, Comm. Math. Phys., 2019, https://doi.org/10.1007/s00220-018-3275-9
- [L] Leites, D., Shchepochkina, I., The Howe duality and Lie superalgebras. Noncommutative structures in mathematics and physics (Kiev, 2000), 93–111, Kluwer Acad. Publ., Dordrecht, 2001.
- [PenroseRindler] Penrose, R., Rindler, W., Spinors and Space-Time, CUP, 1984.
- [Sh] Shale, D., Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962), 149–167.
- [Slup] Slupinski, M., A Hodge type decomposition for spinor valued forms, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 1, 23–48.
- [Weil] Weil, A., Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143–211.

[Weyl] Weyl, H., Gruppentheorie und Quantummechanik, Hirzel (Leipzig), 1931.