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Abstract
Let (M,ω) be a symplectic manifold admitting a metaplectic structure

(a symplectic analogue of the Riemannian spin structure) and a torsion-free
symplectic connection ∇. Symplectic Killing spinor fields for this structure are
sections of the symplectic spinor bundle satisfying a certain first order partial
differential equation and they are the main object of this paper. We derive a
necessary condition satisfied by a symplectic Killing spinor field. The advantage
of this condition consists in the fact that it is expressed by a zeroth order
operator. This condition helps us substantionally to compute the symplectic
Killing spinor fields for the standard symplectic vector spaces and the round
sphere S2 equipped with the volume form of the round metric.
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1 Introduction

In this article we shall study the so called symplectic Killing spinor fields on
Fedosov manifolds admitting a metaplectic structure. A Fedosov manifold is a
structure consisting of a symplectic manifold (M2l, ω) and the so called Fedosov
connection on (M,ω). A Fedosov connection ∇ is an affine connection on (M,ω)
such that it is symplectic, i.e., ∇ω = 0, and torsion-free. Let us notice that
in contrary to the Riemannian geometry, a Fedosov connection is not unique.
Thus, it seems natural to add the Fedosov connection into the studied structure
obtaining the notion of a Fedosov manifold in this way. See, e.g., Tondeur [13]
for symplectic connections for presymplectic structures and Gelfand, Retakh,
Shubin [3] for Fedosov connections.

It is known that if l > 1, the curvature tensor of a Fedosov connection
decomposes into two invariant parts, namely into the so called symplectic Ricci
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curvature and symplectic Weyl curvature tensor fields. If l = 1, only the
symplectic Ricci curvature occurs. See Vaisman [14] for details.

In order to define a symplectic Killing spinor field, we shall briefly describe
the so called metaplectic structures with help of which these fields are defined.
Any symplectic group Sp(2l,R) admits a non-trivial, i.e., connected, two-fold
covering, the so called metaplectic group, denoted by Mp(2l,R) in this paper.
A mataplectic structure over a symplectic manifold is a symplectic analogue
of the Riemannian spin structure. In particular, one of its parts is a principal
Mp(2l,R)-bundle which covers twice the bundle of symplectic reperes of (M2l, ω).
Let us denote this principal Mp(2l,R)-bundle by q : Q →M.

Now, let us say a few words about the symplectic spinor fields. These fields
are sections of the so called symplectic spinor bundle S →M. This vector bundle
is the bundle associated to the principal Mp(2l,R)-bundle q : Q →M via the
so called Segal-Shale-Weil representation. The Segal-Shale-Weil representation
is a distinguished representation of the metaplectic group and plays a similar
role in the quantization of boson particles as the spinor representations of spin
groups play in the quantization of fermions. See, e.g., Shale [12]. The Segal-
Shale-Weil representation is unitary and does not descend to a representation
of the symplectic group. The vector space of the underlying Harish-Chandra
(g,K)-module of the Segal-Shale-Weil representation is isomorphic to S•(Rl),
the symmetric power of a Lagrangian subspace Rl in the symplectic vector space
R2l. Thus, the situation is parallel to the complex orthogonal case, where the
spinor representation can be realized on the exterior power of a maximal isotropic
subspace. The Segal-Shale-Weil representation and some of its analytic versions
are sometimes called oscillatory representation, metaplectic representation or
symplectic spinor representation. For a more detailed explanation of the last
name, see, e.g., Kostant [8].

The symplectic Killing spinor field is a non-zero section of the symplectic
spinor bundle S → M satisfying certain linear first order partial differential
equation formulated by the connection ∇S : Γ(M,S)× Γ(M,TM) → Γ(M,S),
the associated connection to the Fedosov connection ∇. This partial differential
equation is a symplectic analogue of the classical symplectic Killing spinor
equation from at least two aspects. One of them is rather formal. Namely,
the defining equation for a symplectic Killing spinor is of the ”same shape”
as that one for a Killing spinor field on a Riemannian spin manifold. The
second similarity can be expressed by comparing this equation with the so
called symplectic Dirac equation and the symplectic twistor equation and will be
discussed bellow in this paper. Let us mention that any symplectic Killing spinor
field determines a unique complex number, the so called symplectic Killing spinor
number. Notice that the symplectic Killing spinor fields were considered already
in a connection with the existence of a linear embedding of the spectrum of the
so called symplectic Dirac operator into the spectrum of the so called symplectic
Rarita-Schwinger operator. The symplectic Killing spinor fields represent an
obstruction for the mentioned embedding. See Krýsl [10] for this aspect.

In many particular cases, the equation for symplectic Killing spinor fields
seems to be rather complicated. On the other hand, in many cases it is known
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that its solutions are rare. Therefore it is reasonable to look for a necessary
condition satisfied by a symplectic Killing spinor field which is simpler than
the defining equation itself. Let us notice that similar necessary conditions
are known and parallel methods were used in Riemannian or Lorentzian spin
geometry. See, e.g., Friedrich [2].

In this paper, we shall prove that any symplectic Killing spinor field nec-
essarilly satisfies certain zeroth order differential equation. More precisely, we
prove that any symplectic Killing spinor is necessarily a section of the kernel of a
symplectic spinor bundle morphism. We derive this equation by prolongating the
symplectic Killing spinor equation. We make such a prolongation that enables
us to compare the result with an appropriate part of the curvature tensor of the
associated connection ∇S acting on symplectic spinors. An explicit formula for
this part of the curvature action was already derived in Krýsl [11]. Especially,
it is known that the symplectic Weyl curvature of ∇ does not show up in this
part and thus, the mentioned morphism depends on the symplectic Ricci part
of the curvature of the Fedosov connection ∇ only. This will make us able to
prove that the only symplectic Killing number of a Fedosov manifold of Weyl
type is zero. This will in turn imply that any symplectic Killing spinor on the
standard symplectic vector space of an arbitrary finite dimension and equipped
with the standard flat connection is constant. This result can be obtained easily
when one knows the prolongated equation, whereas computing the symplectic
Killing spinors without this knowledge is rather complicated. This fact will be
illustrated when we will compute the symplectic Killing spinors on the standard
symplectic 2-plane using just the defining equation for symplectic Killing spinor
field.

The cases when the prolongated equation does not help so easily as in the
case of the Weyl type Fedosov manifolds are the Ricci type ones. Nevertheless,
we prove that there are no symplectic Killing spinors on the 2-sphere, equipped
with the volume form of the round metric as the symplectic form and the
Riemannian connection as the Fedosov connection. Let us remark that in this
case, the prolongated equation has a shape of a stationary Schrödinger equation.
More precisely, it has the shape of the equation for the eigenvalues of certain
oscillator-like quantum Hamiltonian determined completely by the symplectic
Ricci curvature tensor of the Fedosov connection.

Let us notice that there are some applications of symplectic spinors in physics
besides those in the mentioned article of Shale [12]. For an application in string
theory physics, see, e.g., Green, Hull [4].

In the second section, some necessary notions from symplectic linear alge-
bra and representation theory of reductive Lie groups are explained and the
Segal-Shale-Weil representation and the symplectic Clifford multiplication are
introduced. In the third section, the Fedosov connections are introduced and
some properties of their curvature tensors acting on symplectic spinor fields are
summarized. In the fourth section, the symplectic Killing spinors are defined
and symplectic Killing spinors on the standard symplectic 2-plane are computed.
In this section, a connection of the symplectic Killing spinor fields to the eigen-
functions of symplectic Dirac and symplectic twistor operators is formulated and
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proved. Further, the mentioned prolongation of the symplectic Killing spinor
equation is derived and the symplectic Killing spinor fields on the standard
symplectic vector spaces are computed. At the end, the case of the round sphere
S2 is treated.

2 Symplectic spinors and symplectic spinor val-
ued forms

Let us start recalling some notions from symplectic linear algebra. Let us mention
that we shall often use the Einstein summation convention without mentioning it
explicitly. Let (V, ω0) be a symplectic vector space of dimension 2l, i.e., ω0 is a
non-degenerate anti-symmetric bilinear form on the vector space V of dimension
2l. Let L and L′ be two Lagrangian subspaces1 of (V, ω0) such that L⊕ L′ = V.
Let {ei}2li=1 be an adapted symplectic basis of (V = L⊕ L′, ω0), i.e., {ei}2li=1 is a
symplectic basis and {ei}li=1 ⊆ L and {ei}2li=l+1 ⊆ L′. Because the definition of
a symplectic basis is not unique, we shall fix one which we shall use in this text.
A basis {ei}2li=1 of (V, ω0) is called symplectic, if ω0(ei, ej) = 1 iff 1 ≤ i ≤ l and
j = l + i; ω0(ei, ej) = −1 iff l + 1 ≤ i ≤ 2l and j = i − l and ω0(ei, ej) = 0 in
the remaining cases. Whenever a symplectic basis will be chosen, we will denote
the basis of V∗ dual to {ei}2li=1 by {εi}2li=1. Further for i, j = 1, . . . , 2l, we set
ωij := ω0(ei, ej) an similarly for other type of tensors. For i, j = 1, . . . , 2l, we
define ωij by the equation

∑2l
k=1 ωikω

jk = δij .
As in the orthogonal case, we would like to rise and lower indices. Because

the symplectic form ω0 is antisymmetric, we should be more careful in this case.
For coordinates Kab...c...d

rs...t...u of a tensor K over V, we denote the expression
ωicKab...c...d

rs...t by Kab...
i
...d

rs...t
and Kab...c

rs...t...uωti by Kab...c
rs...

i
...u and

similarly for other types of tensors and also in a geometric setting when we will
be considering tensor fields over a symplectic manifold (M,ω).

Let us denote the symplectic group Sp(V, ω0) of (V, ω0) by G. Because the
maximal compact subgroup of G is isomorphic to the unitary group U(l) which
is of homotopy type Z, we have π1(G) ' Z. From the theory of covering spaces,
we know that there exists up to an isomorphism a unique connected double cover
of G. This double cover is the so called metaplectic group Mp(V, ω0) and will
be denoted by G̃ in this text. We shall denote the covering homomorphism by
λ, i.e., λ : G̃→ G is a fixed member of the isomorphism class of all connected
2:1 coverings.

Now, let us recall some notions from representation theory of reductive Lie
groups which we shall need in this paper. Let us mention that these notions are
rather of technical character for the purpose of our article. For a reductive Lie
group G in the sense of Vogan [15], let R(G) be the category the object of which
are complete, locally convex, Hausdorff vector spaces with a continuous action of
G which is admissible and of finite length; the morphisms are continuous linear
G-equivariant maps between the objects. Let us notice that, e.g., finite covers

1i.e., maximal isotropic wr. to ω0, in particular dim L = dim L′ = l
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of the classical groups are reductive. It is known that any irreducible unitary
representation of a reductive group is in R(G). Let g be the Lie algebra of G
and K be a maximal compact subgroup of G. It is well known that there exists
the so called L2-globalization functor, denoted by L2 here, from the category
of admissible Harish-Chandra modules to the category R(G). See Vogan [15]
for details. Let us notice that this functor behaves compatibly wr. to Hilbert
tensor products. See, e.g., Vogan [15] again. For an object E in R(G), let us
denote its underlying Harish-Chandra (g,K)-module by E and when we will be
considering only its gC-module structure, we shall denote it by E. If gC happens
to be a simple complex Lie algebra of rank l, let us denote its Cartan subalgebra
by hC. The set Φ of roots for (gC, hC) is then uniquely determined. Further
let us choose a set Φ+ ⊆ Φ of positive roots and denote the corresponding set
of fundamental weights by {$i}li=1. For λ ∈ hC, let us denote the irreducible
highest weight module with the highest weight λ by L(λ).

Let us denote by U(W) the group of unitary operators on a Hilbert space
W and let L : Mp(V, ω0) → U(L2(L)) be the Segal-Shale-Weil representation of
the metaplectic group. It is an infinite dimensional unitary representation of the
metaplectic group on the complex valued square Lebesgue integrable functions
defined on the Lagrangian subspace L. This representation does not descend
to a representation of the symplectic group Sp(V, ω0). See, e.g., Weil [16] and
Kashiwara, Vergne [7]. For our convenience, let us set S := L2(L) and call it the
symplectic spinor module and its elements symplectic spinors. It is well known
that as a G̃-module, S decomposes into the direct sum S = S+ ⊕ S− of two
irreducible submodules. The submodule S+ (S−) consists of even (odd) functions
in L2(L). Further, let us notice that in Kýsl [9], a slightly different analytic
version (based on the so called minimal globalizations) of this representation
was used.

As in the orthogonal case, we may multiply spinors by vectors. The multipli-
cation . : V× S → S will be called symplectic Clifford multiplication and it is
defined as follows. For f ∈ S and i = 1, . . . , l, we set

(ei.f)(x) := ıxif(x),

(el+i.f)(x) :=
∂f

∂xi
(x), x ∈ L

and extend it linearly to get the symplectic Clifford multiplication. The sym-
plectic Clifford multiplication (by a fixed vector) has to be understood as an
unbounded operator on L2(L). See Habermann, Habermann [6] for details. Let
us also notice that the symplectic Clifford multiplication corresponds to the so
called Heisenberg canonical quantization known from quantum mechanics. (For
brevity, we shall write v.w.s, instead of v.(w.s), v, w ∈ V and s ∈ S.)

It is easy to check that the symplectic Clifford multiplication satisfies the
relation described in the following

Lemma 1: For v, w ∈ V and s ∈ S, we have

v.(w.s)− w.(v.s) = −ıω0(v, w)s.
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Proof. See Habermann, Habermann [6]. �
Let us consider the representation

ρ : G̃→ Aut(
•∧

V∗ ⊗ S)

of the metaplectic group G̃ on
∧• V∗ ⊗ S given by

ρ(g)(α⊗ s) := λ∗∧r(g)α⊗ L(g)s,

where r = 0, . . . , 2l, α ∈
∧r V∗, s ∈ S and λ∗∧r denotes the rth wedge power of

the representation λ∗ dual to λ, and extended linearly. For definiteness, let us
consider the vector space

∧• V∗ ⊗ S equipped with the topology of the Hilbert
tensor product. Because the L2-globalization functor behaves compatibly wr. to
the Hilbert tensor products, one can easily see that the representation ρ belongs
to the class R(G̃).

In the next theorem, the space o symplectic valued exterior two-forms is
decomposed into irreducible summands.

Theorem 2: For 1
2dim(V) =: l > 2, the following isomorphisms

2∧
V∗ ⊗ S± ' E20

± ⊕E21
± ⊕E22

±

hold. For j2 = 0, 1, 2, the E2j2 are uniquely determined by the conditions that
first, they are submodules of the corresponding tensor products and second,

E20
− ' S− ' L($l−1 −

3
2
$l), E20

+ ' S+ ' L(−1
2
$l),

E21
− ' L($1 −

1
2
$l), E21

+ ' L($1 +$l−1 −
3
2
$l),

E22
+ ' L($2 −

1
2
$l) and E22

− ' L($2 +$l−1 −
3
2
$l).

Proof. This theorem is proved in Krýsl [10] or Krýsl [9] for the so called minimal
globalizations. Because the L2-globalization behaves compatibly wr. to the
considered Hilbert tensor product topology, the statement remains true. �

Remark: Let us notice that for l = 2, the number of irreducible summands
in symplectic spinor valued two-forms is the same as that one for l > 2. In this
case (l = 2), one only has to change the prescription for the highest weights
described in the preceding theorem. For l = 1, the number of the irreducible
summands is different from that one for l ≥ 2. Nevertheless, in this case the
decomposition is also multiplicity-free. See Krýsl [9] for details.

In order to make some proofs in the section on symplectic Killing spinor
fields simpler and more clear, let us introduce the operators
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F+ :
•∧

V∗ ⊗ S →
•+1∧

V∗ ⊗ S, F+(α⊗ s) :=
2l∑
i=1

εi ∧ α⊗ ei.s,

F− :
•∧

V∗ ⊗ S →
•−1∧

V∗ ⊗ S, F−(α⊗ s) := −
2l∑

i,j=1

ωijιeiα⊗ ej .s,

H :
•∧

V∗ ⊗ S →
•∧

V∗ ⊗ S, H := {F+, F−}.

Remark:

1) One easily finds out that the operators are independent of the choice of an
adapted symplectic basis {ei}2li=1.

2) Let us remark that the operators F+, F− and H defined here differ from
the operators F+, F−,H defined in Krýsl [9]. Though, by a constant real
multiple only.

3) The operators F+ and F− are used to prove the Howe correspondence
for Mp(V, ω0) acting on

∧• V∗ ⊗ S via the representation ρ. More or less,
the ortho-symplectic super Lie algebra osp(1|2) plays the role of a (super
Lie) algebra, a representation of which is the appropriate commutant. See
Krýsl [9] for details.

In the next lemma the G̃-equivariance of the operators F+, F− and H is
stated, some properties of F± are mentioned and the value of H on degree-
homogeneous elements is computed. We shall use this lemma when we will be
treating the symplectic Killing spinor fields in the fourth section.

Lemma 3: Let (V = L⊕L′, ω0) be a 2l dimensional symplectic vector space.
Then

1) the operators F+, F+ and H are G̃-equivariant,

2) a) F−|E11 = 0,

b) F+
|E00 is an isomorphism onto E10

c) (F+)2|S = − ı
2ω ⊗ Id|S and it is an isomorphism onto E20.

3) For r = 0, . . . , 2l, we have

H|
Vr V∗⊗S = ı(r − l)Id|Vr V∗⊗S.

Proof. See Krýsl [9]. �
Let us remark that the items 1 and 3 of the preceding lemma follow by a direct

computation, and the second item follows from the first item, decomposition
theorem (Theorem 2), a version of the Schur lemma and a direct computation.
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3 Curvature of Fedosov manifolds and its ac-
tions on symplectic spinors

After we have finished the ”algebraic part” of this paper, let us recall some basic
facts on Fedosov manifolds, their curvature tensors, metaplectic structures and
the action of the curvature tensor on symplectic spinor fields.

Let us start recalling some notions and results related to the so called Fedosov
manifolds. Let (M2l, ω) be a symplectic manifold of dimension 2l. Any torsion-
free affine connection ∇ on M preserving ω, i.e., ∇ω = 0, is called Fedosov
connection. Let us recall that torsion-free means T (X,Y ) := ∇XY −∇YX −
[X,Y ] = 0 for all vector fields X,Y ∈ X(M). The triple (M,ω,∇), where ∇
is a Fedosov connection, will be called Fedosov manifold. As we have already
mentioned in the Introduction, a Fedosov connection for a given symplectic
manifold (M,ω) is not unique. Let us remark that Fedosov manifolds are used
for a construction of geometric quantization of symplectic manifolds due to
Fedosov. See, e.g., Fedosov [1].

To fix our notation, let us recall the classical definition of the curvature tensor
R∇ of the connection ∇, we shall be using here. We set

R∇(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for X,Y, Z ∈ X(M).
Let us choose a local adapted symplectic frame {ei}2li=1 on a fixed open subset

U ⊆ M. By a local adapted symplectic frame {ei}2li=1 over U, we mean such a
local frame that for each m ∈ U the basis {(ei)m}2li=1 is an adapted symplectic
basis of (TmM,ωm). Whenever a symplectic frame is chosen, we denote its
dual frame by {εi}2li=1. Although some of the formulas bellow hold only locally,
containing a local adapted symplectic frame, we will not mention this restriction
explicitly.

From the symplectic curvature tensor field R∇, we can build the symplectic
Ricci curvature tensor field σ∇ defined by the classical formula

σ∇(X,Y ) := Tr(V 7→ R∇(V,X)Y )

for each X,Y ∈ X(M) (the variable V denotes a vector field on M). For the
chosen frame and i, j = 1, . . . , 2l, we define

σij := σ∇(ei, ej).

Let us define the extended Ricci tensor field by the equation

σ̃(X,Y, Z, U) := σ̃ijknX
iY jZkUn, X, Y, Z, U ∈ X(M),

where for i, j, k, n = 1, . . . , 2l,

2(l + 1)σ̃ijkn := ωinσjk − ωikσjn + ωjnσik − ωjkσin + 2σijωkn.

A Fedosov manifold (M,ω,∇) is called of Weyl type, if σ = 0. Let us notice,
that it is called of Ricci type, if R = σ̃. In Vaisman [14], one can find more
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information on the Sp(2l,R)-invariant decomposition of the curvature tensors of
Fedosov connections.

Now, let us describe the geometric structure with help of which the symplectic
Killing spinor fields are defined. This structure, called metaplectic, is a symplectic
analogue of the notion of a spin structure in the Riemannian geometry. For
a symplectic manifold (M2l, ω) of dimension 2l, let us denote the bundle of
symplectic reperes in TM by P and the foot-point projection of P onto M by
p. Thus (p : P →M,G), where G ' Sp(2l,R), is a principal G-bundle over M .
As in the subsection 2, let λ : G̃ → G be a member of the isomorphism class
of the non-trivial two-fold coverings of the symplectic group G. In particular,
G̃ ' Mp(2l,R). Further, let us consider a principal G̃-bundle (q : Q → M, G̃)
over the symplectic manifold (M,ω). We call a pair (Q,Λ) metaplectic structure
if Λ : Q → P is a surjective bundle homomorphism over the identity on M and
if the following diagram,

Q× G̃

Λ×λ

��

// Q

Λ

��

q

��@
@@

@@
@@

@

M

P ×G // P
p

>>}}}}}}}}

with the horizontal arrows being respective actions of the displayed groups,
commutes. See, e.g., Habermann, Habermann [6] and Kostant [8] for details on
metaplectic structures. Let us only remark that typical examples of symplectic
manifolds admitting a metaplectic structure are cotangent bundles of orientable
manifolds (phase spaces), Calabi-Yau manifolds and complex projective spaces
CP2k+1, k ∈ N0.

Let us denote the vector bundle associated to the introduced principal G̃-
bundle (q : Q →M, G̃) via the representation ρ acting on S by S, and call this
associated vector bundle symplectic spinor bundle. Thus, we have S = Q×ρ S.
The sections φ ∈ Γ(M,S) will be called symplectic spinor fields. Further for
j2 = 0, 1, 2, we define the associated vector bundles E2j2 by the prescription
E2j2 := Q ×ρ E2j2 . Further, we define Er := Γ(M,Q ×ρ

∧r V∗ ⊗ S), i.e., the
space o symplectic spinor valued differential r-forms, r = 0, . . . , 2l. Because the
symplectic Clifford multiplication is G̃-equivariant (see Habermann, Habermann
[6]), we can lift it to the associated vector bundle structure, i.e., to let it act
on the elements from Γ(M,S). For j2 = 0, 1, 2, let us denote the vector bundle
projections Γ(M, E2) → Γ(M, E2j2) by p2j2 , i.e., p2j2 : Γ(M, E2) → Γ(M, E2j2) for
all appropriate j2. This definition makes sense because due to the decomposition
result (Theorem 2) and the Remark bellow the Theorem 2, the G̃-module of
symplectic spinor valued exterior 2-forms is multiplicity-free.

Let Z be the principal bundle connection on the principal G-bundle (p : P →
M,G) associated to the chosen Fedosov connection ∇ and Z̃ be a lift of Z to
the principal G̃-bundle (q : Q → M, G̃). Let us denote by ∇S the covariant
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derivative associated to Z̃. Thus, in particular, ∇S acts on the symplectic spinor
fields.

Any section φ of the associated vector bundle S = Q×ρS can be equivalently
considered as a G̃-equivariant S-valued function on Q. Let us denote this function
by φ̂, i.e., φ̂ : Q → S. For a local adapted symplectic frame s : U → P, let us
denote by s : U → Q one of the lifts of s to Q. Finally, let us set φs := φ̂ ◦ s.
Further for q ∈ Q and ψ ∈ S, let us denote by [q, ψ] the equivalence class in S
containing (q, ψ). (As it is well known, the total space S of the symplectic spinor
bundle is the product Q× S modulo an equivalence relation.)

Lemma 4: Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic
structure. Then for each X ∈ X(M), φ ∈ Γ(M,S) and a local adapted symplectic
frame s : U → P, we have

∇SXφ = [s,X(φs)]−
ı

2

l∑
i=1

[ei+l.(∇Xei).− ei.(∇Xei+l).]φ and

∇SX(Y.φ) = (∇SXY ).φ+X.∇SY φ.

Proof. See Habermann, Habermann [6]. �
The curvature tensor on symplectic spinor fields is defined by the formula

RS(X,Y )φ = ∇SX∇SY φ−∇SY∇SXφ−∇S[X,Y ]φ,

where φ ∈ Γ(M,S) and X,Y ∈ X(M). In the next lemma, a part of the action
of RS on the space of symplectic spinors is described using just the symplectic
Ricci curvature tensor field σ.

Lemma 5: Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic
structure. Then for a symplectic spinor field φ ∈ Γ(M,S), we have

p20RSφ =
ı

2l
σijωklε

k ∧ εl ⊗ ei.ej .φ.

Proof. See Krýsl [11]. �.

4 Symplectic Killing spinor fields

In this section, we shall focus our attention to the symplectic Killing spinor
fields. More specifically, we compute the symplectic Killing spinor fields on some
Fedosov manifolds admitting a metaplectic structure and derive a necessary
condition satisfied by a symplectic Killing spinor field.

Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic structure. We
call a non-zero section φ ∈ Γ(M,S) symplectic Killing spinor field if

∇SXφ = λX.φ

for a complex number λ ∈ C and each vector field X ∈ X(M). The complex
number λ will sometimes be called symplectic Killing spinor number. (Allowing
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the zero section to be a symplectic Killing spinor would make the notion of a
symplectic Killing spinor number meaningless.)

Let us note that one can rewrite equivalently the preceding defining equation
for a symplectic Killing spinor into

∇Sφ = λF+φ.

Indeed, if this equation is satisfied, we get by inserting the local vector field
X = Xiei the equation ∇SXφ = ιX(λεi ⊗ ei.φ) = λεi(X)ei.φ = λXiei.φ = λX.φ,
i.e., the defining equation. Conversely, one can prove that ∇SXφ = λX.φ is
equivalent to ιX∇Sφ = ιX(λF+φ). Because this equation holds for each vector
field X, we get ∇Sφ = λF+φ. We shall call both the defining equation and the
equivalent equation for a symplectic Killing spinor field the symplectic Killing
spinor equation.

In the next example, we compute the symplectic Killing spinors on the
standard symplectic 2-plane.

Example 1: Let us solve the symplectic Killing spinor equation for the
standard symplectic vector space (R2[s, t], ω0) equipped with the standard flat
Euclidean connection ∇. In this case, (R2, ω0,∇) is also a Fedosov manifold.
The bundle of symplectic reperes in TR2 defines a principal Sp(2,R)-bundle.
Because H1(R2,R) = 0, we know that there exists, up to a bundle isomorphism,
only one metaplectic bundle over R2, namely the trivial principal Mp(2,R)-
bundle R2 × Mp(2,R) → R2 and thus also a unique metaplectic structure
Λ : Mp(2,R) × R2 → Sp(2,R) × R2 given by Λ(g, (s, t)) := (λ(g), (s, t)) for
g ∈ Mp(2,R) and (s, t) ∈ R2. Let S → R2 be the symplectic spinor bundle.
In this case S → R2 is isomorphic to the trivial vector bundle S × R2 =
L2(R) × R2 → R2. Thus, we may think of a symplectic spinor field φ as of a
mapping φ : R2 → S = L2(R). Let us define ψ : R3 → C by ψ(s, t, x) := φ(s, t)(x)
for each (s, t, x) ∈ R3. One easily shows that φ is a symplectic Killing spinor if
and only if the function ψ satisfies the system

∂ψ

∂s
= λıxψ and

∂ψ

∂t
= λ

∂ψ

∂x
.

If λ = 0, the solution of this system of partial differential equations is
necessarily ψ(s, t, x) = ψ(x), (s, t, x) ∈ R3, for any ψ ∈ L2(R).

If λ 6= 0, let us consider the independent variable and corresponding dependent
variable transformation s = s, y = t + λ−1x, z = t − λ−1x and ψ(s, t, x) =
ψ̃(s, t + λ−1x, t − λ−1x) = ψ̃(s, y, z). The Jacobian of this transformation is
−2/λ 6= 0 and the transformation is obviously a diffeomorphism. Substituting
this transformation in the studied system, one gets the following equivalent
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transformed system

∂ψ̃

∂s
=

ı

2
λ2(y − z)ψ̃

∂ψ̃

∂y
+
∂ψ̃

∂z
= λ(

∂ψ̃

∂y
λ−1 +

∂ψ̃

∂z
(−λ−1)).

(Let us notice that the substitution we have used is similar to that one which is
usually used to obtain the d’Alemebert’s solution of the wave equation in two
dimensions.) The first equation implies ∂ eψ

∂z = 0, and thus ψ̃(s, y, z) = ψ(s, y)

for a function ψ. Substituting this relation into the second equation of the
transformed system, we get

∂ψ

∂s
=
ı

2
(y − z)λ2ψ.

The solution of this equation is ψ(s, y) = e
ı
2λ

2(y−z)sψ̃(y) for a suitable function

ψ̃. Because of the dependence of the right hand side of the last written equation
on z, we see that ψ does not exist unless λ = 0 or ψ̃ = 0 (More formally, one
gets these restrictions by substituting the last written formula for ψ into the
first equation of the transformed system.) Thus, necessarily ψ = 0 or λ = 0. The
case λ = 0 is excluded by the assumption at the beginning of this calculation.

Summing up, we have proved that any symplectic Killing spinor field φ
on (R2, ω0,∇) is constant, i.e., for each (s, t) ∈ R2, we have φ(s, t) = ψ for a
function ψ ∈ L2(R). The only symplectic Killing spinor number is zero in this
case.

Remark: More generally, one can treat the case of a standard symplectic
vector space (R2l[s1, . . . , sl, t1, . . . , tl], ω0) equipped with the standard flat Euclid-
ean connection ∇. One gets by similar lines of reasoning that any symplectic
Killing spinor for this Fedosov manifold is also constant, i.e.,

ψ(s1, . . . , sl, t1, . . . , tl) = ψ,

for (s1, . . . , sl), (t1, . . . , tl) ∈ Rl and ψ ∈ L2(Rl). But we shall see this result
more easily bellow when we will be studying the prolongated equation mentioned
in the Introduction.

Now, in order to make a connection of the symplectic Killing spinor equation
to some slightly more known equations, let us introduce the following operators.

The operator

D : Γ(M,S) → Γ(M,S), D := −F−∇S

is called symplectic Dirac operator and its eigenfunctions are called symplectic
Dirac spinors. Let us notice that the symplectic Dirac operator was introduced
by Katharina Habermann in 1992. See, e.g., Habermann [5].
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The operator

T : Γ(M,S) → Γ(M, E11), T := ∇S − p10∇S

is called (the first) symplectic twistor operator.
In the next theorem, the symplectic Killing spinor fields are related to the

symplectic Dirac spinors and to the kernel of the symplectic twistor operator.
Theorem 6: Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic

structure. A symplectic spinor field φ ∈ Γ(M,S) is a symplectic Killing spinor
field if and only if φ is a symplectic Dirac spinor lying in the kernel of the
symplectic twistor operator.

Proof. We prove this equivalence in two steps.

1) Suppose φ ∈ Γ(M,S) is a symplectic Killing spinor to a symplectic Killing
number λ ∈ C. Thus it satisfies the equation ∇Sφ = λF+φ. Applying the
operator −F− to the both sides of the preceding equation and using the
definition of the symplectic Dirac operator, we get Dφ = −λF−F+φ =
λ(−H + F+F−)φ = −λHφ = −λ(−ılφ) = ıλlφ due to the definition of H
and the Lemma 3 (part 2a and 3). Thus φ is a symplectic Dirac spinor.

Now, we compute Tφ. Using the definition of T, we get Tφ = (∇S −
p10∇S)φ = λ(F+φ− p10F+φ) = λp11F+φ = 0, because F+φ ∈ Γ(M, E10)
due to the Lemma 3 part 2a.

2) Conversely, let φ ∈ Γ(M, E00) be in the kernel of the symplectic twistor
operator and also a symplectic Dirac spinor. Thus, we have ∇Sφ −
p10∇Sφ = 0 and Dφ = −F−∇Sφ = µφ for a complex number µ ∈
C. From the first equation, we deduce that ψ := ∇Sφ ∈ Γ(M, E10).
Because F+

|Γ(M,E00) is surjective onto Γ(M, E10) (see Lemma 3 part 2b),
there exists a ψ′ ∈ Γ(M, E00) such that ψ = F+ψ′. Let us compute
F+F−ψ = F+F−F+ψ′ = F+(H−F+F−)ψ′ = F+(−ılψ′) = −ılψ, where
we have used the defining equation for H and the Lemma 3 part 2a and
the part 3. Thus we get

−F+F−ψ = ılψ. (1)

From the symplectic Dirac equation, we get µφ = −F−ψ. Thus−F+F−ψ =
µF+φ. Using the equation (1), we obtain ılψ = µF+φ, i.e., ∇Sφ =
−ıµl F

+φ. Thus, φ is a symplectic Killing spinor to the symplectic Killing
spinor number −ıµ/l.

�
In the next theorem, we derive the mentioned prolongation of the symplectic

Killing spinor equation. It is a zeroth order equation. More precisely, it is an
equation for the sections of the kernel of an endomorphism of the symplectic
spinor bundle S →M. A similar computation is well known from the Riemannian
spin geometry. See, e.g., Friedrich [2].
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Theorem 7: Let (M2l, ω,∇) be a Fedosov manifold admitting a metaplectic
structure and a symplectic Killing spinor field φ ∈ Γ(M,S) to the symplectic
Killing spinor number λ. Then

σijei.ej .φ = 2lλ2φ.

Proof. Let φ ∈ Γ(M2l,S) be a symplectic spinor Killing field, i.e., ∇SXφ =
λX.φ for a complex number λ and any vector field X ∈ X(M). For vector fields
X,Y ∈ X(M), we may write

RS(X,Y )φ = (∇X∇Y −∇Y∇X −∇[X,Y ])φ
= λ∇X(Y.φ)− λ∇Y (X.φ)− λ[X,Y ].φ
= λ(∇XY ).φ+ λY.(∇Xφ)− λ(∇YX).φ− λX.∇Y .φ− λ[X,Y ].φ
= λT (X,Y ).φ+ λ2(Y.X.− Y.X.)φ
= λT (X,Y ).φ+ ıλ2ω(X,Y )φ = ıλ2ω(X,Y )φ,

where we have used the symplectic Killing spinor equation and the compati-
bility of the symplectic spinor covariant derivative and the symplectic Clifford
multiplication (Lemma 4).

Thus RSφ = ıλ2ω ⊗ φ. Because of the Lemma 3 part 2c, we know that the
right hand side is in Γ(M, E20). Thus also RSφ = p20RSφ. Using the Lemma 5,
we get ı

2lω ⊗ σijei.ej .φ = ıλ2ω ⊗ φ. Thus σijei.ej .φ = 2lλ2φ and the theorem
follows. �

Remark: Let us recall that in the Riemannian spin geometry (positive
definite case), the existence of a non-zero Killing spinor implies that the manifold
is Einstein. Further, let us notice that if the symplectic Ricci curvature tensor σ
is (globally) diagonalizable by a symplectomorphism, the prolongated equation
has the shape of the equation for eigenvalues of the Hamiltonian of an elliptic l
dimensional harmonic oscillator with possibly varying axes lengths. An example
of a diagonalizable symplectic Ricci curvature will be treated in the Example 3.
Although, in this case the axis will be constant and the harmonic oscillator will
be spherical.

Now, we derive a simple consequence of the preceding theorem in the case of
Fedosov manifolds of Weyl type, i.e., σ = 0.

Corollary 8: Let (M,ω,∇) be a Fedosov manifold of Weyl type. Let (M,ω)
admits a metaplectic structure and a symplectic Killing spinor φ field to the
symplectic Killing spinor number λ. Then the symplectic Killing spinor number
λ = 0 and φ is locally covariantly constant.

Proof. Follows immediately from the preceding theorem and the symplectic
Killing spinor equation. �

Example 2: Let us go back to the case of (R2l, ω0,∇) from the Remark
bellow the Example 1. The Corrollary 8 implies that any symplectic Killing
spinor field for this structure is covariantly constant, i.e., in fact constant in
this case, and any symplectic Killing number is zero. In this case, we see
that the prolongated equation from the Theorem 7 makes it able to compute
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the symplectic Killing spinor fields without any big effort, compared to the
calculations in the Example 1 where the 2-plane was treated.

In the next example, we compute the symplectic Killing spinor fields on S2

equipped with the standard symplectic structure and the Riemannian connection
of the round metric. This is an example of a Fedosov manifold (specified more
carefully bellow) for which one can not use the Corollary 8, because it is not of
Weyl type. But still, one can use the Theorem 7.

Example 3: Consider the round sphere (S2, r2(dθ2 + sin2 θdφ2)) of radius
r > 0, θ being the longitude a φ the latitude. Then ω := r2 sin θdθ ∧ dφ is
the volume form of the round sphere. Because ω is also a symplectic form,
(S2, ω) is a symplectic manifold. Let us consider the Riemannian connection
∇ of the round sphere. Then ∇ preserves the symplectic volume form ω being
a metric connection of the round sphere. Because ∇ is torsion-free, we see
that (S2, ω,∇) is a Fedosov manifold. Now, we will work in a coordinate patch
without mentioning it explicitly. Let us set e1 := 1

r
∂
∂θ and e2 := 1

r sin θ
∂
∂φ . Clearly,

{e1, e2} is a local adapted symplectic frame and it is a local orthogonal frame as
well. With respect to this basis, the Ricci form σ of ∇ takes the form

[σij ]i,j=1,2 =
(

1/r 0
0 1/r

)
.

Let us consider S2 as the complex projective space CP1. It is easy to see
that the (unique) complex structure on CP1 is compatible with the volume
form. The first Chern class of the tangent bundle to CP1 is known to be even.
Thus, the symplectic manifold (S2, ω) admits a metaplectic structure. Thus we
may consider a symplectic Killing spinor field φ ∈ Γ(S2,S) corresponding to a
symplectic Killing spinor number λ. Because the first homology group of the
sphere S2 is zero, the metaplectic structure is unique and thus the trivial one.
Because of the triviality of the associated symplectic spinor bundle S → S2, we
may write φ(m) = (m, f(m)) where f(m) ∈ L2(R) for each m ∈ S2. Using the
Theorem 7 and the prescription for the Ricci form, we get that σijei.ej .[f(m)] =
1
rH[f(m)] = 2λ2f(m), where H = ∂2

∂x2 − x2 is the quantum Hamiltonian of the
one dimensional harmonic oscillator. The solutions of the Sturm-Liouville type
equation H[f(m)] = 2rλ2f(m), m ∈ S2, are well known. The eigenfunctions
of H are the Hermite functions fl(m)(x) = hl(x) := ex

2/2 dl

dxl (e−x
2
) for m ∈ S2

and x ∈ R and the corresponding eigenvalues are −(2l + 1), l ∈ N0. Thus
2rλ2 = −(2l + 1) and consequently

λ = ±ı
√

2l + 1
2r

.

Using the fact that {e1, e2} is a local orthonormal frame and ∇ is metric and
torsion-free, we easily get

∇e1e1 = 0 ∇e1e2 = 0
∇e2e1 = cot θ

r e2 ∇e2e2 = − cot θ
r e1.
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From the definition of differentiability of functions with values in a Hilbert
space, we see easily as a consequence of the preceding computations that any
symplectic Killing spinor field is necessarily of the form φ(m) = (m, c(m)fl(m))
for a smooth function c ∈ C∞(S2,C). Substituting this Ansatz into the symplectic
Killing spinor equation, we get for each vector field X ∈ X(S2) the equation

∇X(cfl) = (Xc)fl + c∇Xfl = λc(X.fl).

Due to the Lemma 4, we have for a local adapted symplectic frame s : U ⊆
S2 → P = Sp(2,R)× S2,

∇Xfl = [s,X(fl)s]−
ı

2
[e2.(∇Xe1).− e1.(∇Xe2).]fl

(See the paragraph above the Lemma 4 for an explanation of the notation used
in this formula.)

Because m 7→ (m, fl(m)) is constant as a section of the trivial bundle S → S2,
the first summand of the preceding expression vanishes. Thus for X = e1, we get

(e1c)fl +
ıc

2
[e2.(∇e1e1).− e1.(∇e1e2).]fl = λc(e1.fl).

Using the knowledge of the values of ∇e1ej , for j = 1, 2, computed above, the
second summand at the left hand side of the last written equation vanishes and
thus, we get

1
r

∂c

∂θ
fl = λcıxfl.

This equation implies c(θ, φ) = ψ(x, φ)eırxλθ for x such that hl(x) 6= 0 and a
suitable function ψ. (The set of such x ∈ R, such that hl(x) 6= 0 is the complement
in R of a finite set.) Because r > 0 is given and λ is certainly non-zero (see
the prescription for λ above), the only possibility for c to be independent of x
is ψ = 0. Therefore c = 0 and consequently φ = 0. On the other hand, φ = 0
(the zero section) is clearly a solution, but according to the definition not a
symplectic Killing spinor. Thus, there is no symplectic Killing spinor field on
the round sphere.

Remark: In the future, one can study holonomy restrictions implied by
the existence of a symplectic Killing spinor. One can also try to extend the
results to general symplectic connections, i.e., to drop the condition on the
torsion-freeness or study also the symplectic Killing fields on Ricci type Fedosov
manifolds admitting a metaplectic structure in more detail.
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[10] S. Krýsl, Relation of the spectra of symplectic Rarita-Schwinger and Dirac
operators on flat symplectic manifolds, Arch. Math. (Brno), Vol. 43, 2007,
pp. 467-484.
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