Elliptic complexes over C*-algebras of compact operators

Svatopluk Krýsl

Faculty of Mathematics and Physics Charles University in Prague

November 18, 2014

Motivation

- ▶ Geometry: Hodge theory for de Rham complex □
- Physics: Quantum field theory (deals with 'big' objects and PDE's for them)
- ► Learn the theory of elliptic operators (on compact manifolds)
- Striking: Some analytical K-theory (K-Fredholm theory of Russian mathematicians A. Mishchenko and A. Fomenko) and symplectic Dirac operators of Katharina Habermann
- Symplectic manifolds as generalization of the phase space $\mathbb{R}^{2n}[q^1,\ldots,q^n,p_1,\ldots,p_n]$ (unconstrained) but also as manifolds with their geometry and topology (homology)

C^* -algebra

Definition (C*-algebra)

A associative algebra (over \mathbb{C})

 $*: A \rightarrow A$ is an involution and an anti-automorphism \square

 $|\cdot|:A\to\mathbb{R}_{>0}$ norm, such that $|a^*a|=|a|^2,\ a\in A$

A with respect to || is a Banach space

Basic examples:

- ▶ B(H) algebra of bounded operators on a separable Hilbert space with * the adjoint, and the operator norm
- ▶ $C_0(X)$ continuous functions on a locally compact space X which vanish in infinity with the supremum norm and $f^*(x) = \overline{f(x)}, x \in X$.
- ▶ G locally compact unimodular group, then $L^1(G)$ need not be a C^* -algebra

'Topological' modules over C^* -algebras

```
occur, like \mathbb{C}^{\infty}(K,\mathbb{R}) (K \subseteq \mathbb{R}^n \text{ compact}), W^{k,p}(\mathbb{R}^n), W^{k,2}(\mathbb{R}^n) or
W^{k,p}(\mathbb{R}^n,V) for V a vector space
On manifolds: \mathcal{V} \to M vector bundle, M compact, \Gamma(M, \mathcal{V})
pre-Hilbert space, W^{k,p}(M,\mathcal{V}) Banach, W^{k,2}(M,\mathcal{V}) Hilbert (used
in the so-called elliptic PDE's)
Aim: Do analysis of PDE's and Quantum Physics when \mathbb{C} or \mathbb{R} is
replaced by a C^*-algebra
Objects: not only vector spaces (= modules over \mathbb{C} or \mathbb{R}), but
modules over C^*-algebras having a convenient topological str.
For elliptic operators: The Hilbert product is appropriately modified
A. T. Fomenko, A. S. Mishchenko use the rule "Change the ground
field by the C^*-algebra A'', and do it consequently.
Thus (,): H \times H \to \mathbb{C} \Longrightarrow (,): H \times H \to A
```

Analysis of classical PDE's: Specific Banach and Hilbert spaces

Hilbert C*-modules

```
A trivial example ('tautological module'):
Right action: \cdot: A \times A \rightarrow A, a \cdot b = ab
Satisfies a \cdot (b \cdot c) = (a \cdot b) \cdot c (associativity)
a \cdot (b+c) = a \cdot b + a \cdot c
(a+b) \cdot c = a \cdot c + b \cdot c
a \cdot (kb) = k(a \cdot b), k \in \mathbb{C}
Thus A is a right module over itself
Product: (a, b) = a^*b
Properties of the product:
(a, b \cdot c) = a^*(b \cdot c) = a^*bc = (a, b)c
(a \cdot b, c) = (a \cdot b)^* \cdot c = (ab)^* \cdot c = b^*a^*c = b^*(a, c)
```

A further example:

H a separable Hilbert space with scalar product $(,)_H$ (complex conjugate in the first input)

$$C^*$$
-algebra $A = B(H)$ of bounded operators, A -module $V = H$

1)
$$v \cdot a = a^*(v)$$
 - evaluation, $a \in B(H)$ and $v \in H$

2)
$$(u, v) = u \otimes v^* \in B(H)$$
, where $(u \otimes v^*)(w) = (v, w)_H u$, $u, v, w \in H$ (Vectors are columns and co-vectors are rows, thus

$$u \otimes v^*$$
 is a matrix.)

2.a)
$$(u, v \cdot a)(w) = (u \otimes (v \cdot a)^*)w = (v \cdot a, w)_H u =$$

$$(a^*(v), w)_H u = (v, a(w))_H u =$$

$$(u \otimes v^*)(a(w)) = (u, v)(a(w)) = [(u, v)a](w)$$

$$[[2.b) (u \cdot a, v)(w) = ((u \cdot a) \otimes v^*)(w) = (v, w)_H(u \cdot a) =$$

$$(v,w)_H a^*(u) = a^*((v,w)_H u) = [a^*(u \otimes v^*)](w)]]$$

Note:
$$(u, u)(u) = (u \otimes u^*)(u) = (u, u)_H u$$
, thus

$$B(H) \ni (u, u) = c1_{B(H)}, c = (u, u)_H \ge 0$$

Definition of Hilbert and pre-Hilbert A-modules

Definition (Pre-Hilbert module)

Let A be a C^* -algebra and V be a vector space over the complex numbers. We call (V, (,)) a pre-Hilbert A-module if

$$V$$
 is a right A -module - operation $\cdot: V \times A \rightarrow V$
 $(,): V \times V \rightarrow A$ is a C -sesquilinear map satisfying $(f,g+h\cdot T)=(f,h)T+(g,h)$
 $(f,g)=(g,f)^*$
 $(f,f)\geq 0$ and $(f,f)=0$ implies $f=0$

We say $T \in A$ is non-negative, $T \ge 0$ if $T = T^*$ and $Spec(T) \subseteq [0, \infty)$, where $Spec(T) = \{\lambda \in C; T - \lambda 1 \text{ is not invertible in } A\}$.

Definition of Hilbert A-modules

Definition (Hilbert A-module)

If (V, (,)) is a pre-Hilbert A-module we call it redHilbert A-module if it is complete with respect to the norm $|\cdot|: V \to [0, \infty)$ defined by $V \ni f \mapsto |f| = \sqrt{|(f, f)|_A}$, $(f, f) \in A$, where $|\cdot|_A$ is the norm in A.

Closed submodules need have neither orthogonal nor only a topological complement

Homomorphisms need not be adjointable

 $F: V_1 \to V_2$ is called adjointable if there is a map $F': V_2 \to V_1$ satisfying $(Ff,g)=(f,F'g), f\in V_1$ and $g\in V_2$. If it exists, it is unique: $F'=F^*$. It is called a homomorphism if it is continuous and $F(f\cdot T)=F(f)\cdot T$ for each $f\in V_1$ (equivariant, A-module homomorphism).

Miscellaneous

Important example: H a separable Hilbert space For A = K(H), the C^* -algebra of bounded operators on H, V = H is a Hilbert A-module with respect to $(,): H \times H \to K(H)$ given by $(f,g) = f \otimes g^*$, $(f \otimes g^*)(h) = (g,h)_H f$ and the right action given by the evaluation $f \cdot T = T^*(f)$, where $f,g \in V$. **Recall:**

An A-module V is projective if when it is embedded in any other module, it splits.

It is called finitely generated if there exist m_1, \ldots, m_k such that for all $m \in V$ there are a_1, \ldots, a_k such that $m = \sum_{i=1}^k m_i \cdot a_i$.

Examples of Hilbert A-modules

- 1) If V is a Hilbert A-module, then $V^n = V \oplus \ldots \oplus V$ is a Hilbert A-module with respect to $(m_1, \ldots, m_n) \cdot a = (m_1 \cdot a, \ldots, m_n \cdot a)$ and the product given by $((m_1, \ldots, m_n), (m'_1, \ldots, m'_n)) = \sum_{i=1}^n (m_i, m'_i)$
- 2) Special case: V = A (the tautological module), $V^n = A^n = A \oplus \ldots \oplus A$ is a Hilbert A-module with respect to $(a_1, \ldots, a_n) \cdot a = (a_1 a, \ldots, a_n a)$ and the product given by $((a_1, \ldots, a_n), (b_1, \ldots, b_n)) = \sum_{i=1}^n (a_i, b_i) = \sum_{i=1}^n a_i^* b_i$
- 3) Ex. in item 1 generalizes to $\ell^2(V)$, where V is a Hilbert A-module.

$$\ell^2(V) = \{m = (m_1, m_2, \ldots) | \sum_{i=1}^{\infty} (m_i, m_i) \text{ converges in } A\}$$

Product $(m, n) = \sum_{i=1}^{\infty} (m_i, n_i)$ (finite because of (a kind of) Cauchy-Schwarz inequality)

How to do geometry with these structures?

 \mathbb{C} is replaced by a C^* -algebra, topological vector spaces by Hilbert A-modules

Notion of manifold - the same, i.e., locally compact Hausdorff topological space locally homeomorphic to \mathbb{R}^n

Vector bundles with fiber a vector space V are replaced by certain bundles with fiber a Hilbert A-module V

Section spaces and their completions (pre-Hilbert and Hilbert spaces) are then even pre-Hilbert and Hilbert modules

Differential operators of order r (same definition - formally), elliptic operators ((formally) same definition, i.e., via symbol)

Recall:

de Rham, Laplace

C*-Hilbert bundle

- An A-Hilbert bundle is a Banach bundle the fibers of which are Hilbert A-modules isomorphic to a fixed Hilbert A-module (V, (,)), the transition maps of the bundle chart are into Aut_A(V).
- ▶ If $V \to M$ is a Hilbert bundle over a compact M, then $\Gamma(M, V)$ is a pre-Hilbert A-module, $(s \cdot a)(m) = s(m) \cdot a$, $s \in \Gamma(M, V)$ and $a \in A$.
- ▶ Sobolev type completion of $\Gamma(M, V)$ exists (over compacts) (Fomenko, Mishchenko)
- ▶ These completions (denoted by $W^{k,2}(M, \mathcal{V})$) form Hilbert A-modules

Category of pre-Hilbert modules and its complexes

Definition

Let PH_A^* be the category of pre-Hilbert A-modules as objects and adjointable pre-Hilbert A-module homomorphisms as morphisms.

Definition

A complex
$$D^{\bullet} = (D_i, E^i)_{i \in \mathbb{N}_0} \in \operatorname{Kom}(PH_A^*)$$
 $(D_i : E^i \to E^{i+1}, D_{i+1}D_i = 0, E^i \in \operatorname{Ob}(PH_A^*), D_i \in \operatorname{Mor}_{PH_A^*}(E^i, E^{i+1}))$ is called self-adjoint parametrix possessing if the Laplacian operators $\triangle_i = D_{i-1}D_{i-1}^* + D_i^*D_i$ are self-adjoint parametrix possessing, i.e., if there exist maps $G_i, P_i : E^i \to E^i$ such that $1_{E_i} = \triangle_i G_i + P_i = \triangle_i G_i + P_i, \triangle_i P_i = 0$ and $P_i = P_i^*$.

Theorem (K): Let M be a compact manifold, A a C^* -algebra, $(\mathcal{V}^k)_{k\in\mathbb{N}_0}$ be a sequence of finitely generated projective A-Hilbert bundles over M and $D_k: \Gamma(M,\mathcal{V}^k) \to \Gamma(M,\mathcal{V}^{k+1}), \ k\in\mathbb{N}_0$, form a complex of differential operators. Suppose that the Laplace operators of D^{\bullet} have closed image in the norm topology of $\Gamma(M,\mathcal{V}^k)$. If D^{\bullet} is elliptic, then D^{\bullet} is a self-adjoint parametrix possessing complex in $\mathrm{Kom}(PH_A^*)$ and

- $\blacktriangleright \ \mathsf{\Gamma}(M,\mathcal{V}^i) = \mathsf{Ker} \, \triangle_i \oplus \mathsf{Im} \, D_i^* \oplus \mathsf{Im} \, D_{i-1}$
- ▶ $H^i(D^{\bullet}, A) \simeq \operatorname{Ker} \triangle_i$ as pre-Hilbert A-modules
- $\blacktriangleright \operatorname{\mathsf{Ker}} D_i = \operatorname{\mathsf{Ker}} \triangle_i \oplus \operatorname{\mathsf{Im}} D_{i-1}$
- $\blacktriangleright \operatorname{\mathsf{Ker}} D_i^* = \operatorname{\mathsf{Ker}} \triangle_{i+1} \oplus \operatorname{\mathsf{Im}} D_{i+1}^*$
- $\blacktriangleright \operatorname{Im} \triangle_i = \operatorname{Im} D_{i-1} \oplus \operatorname{Im} D_i^*$
- ▶ Moreover, the cohomology groups of D^{\bullet} are finitely generated and projective Hilbert A-modules.

Hodge theory for finitely generated projective bundles

Theorem (K): If A is a C^* -subalgebra of the algebra of compact operators K(H), one may drop the closed image assumption on the Laplacian.

Remarks:

- 1)The thm generalizes the classical Hodge theory for finite rank vector bundles, compact manifolds and elliptic complexes to the finitely generated projective bundles over C^* -algebras.
- 2) Moreover, one may say that the finiteness and projectiveness of the cohomology is connected to the finiteness and projectiveness of the fibers.
- 3) This interpretation is usually not mentioned in the Hodge theory for finite rank bundles (bundles with finite dimensional vector spaces as fibers).

Symplectic manifolds, symplectic and metaplectic group

```
(M_{...}^{2n},\omega) symplectic manifold (S^2, even dimensional tori, T^*M, Kahler manifolds, KT-manifold...) Sp(2n,\mathbb{R}) symplectic group (automorphisms of (T_mM,\omega_m)) Mp(2n,\mathbb{R}) connected two-fold cover of Sp(2n,\mathbb{R}), \lambda:Mp(2n,\mathbb{R})\to Sp(2n,\mathbb{R}), the covering \pi_1(Sp(2n,\mathbb{R}))=\mathbb{Z}, the universal covering is '\mathbb{Z}-folded'
```

Symplectic spinor structures

Bundle of symplectic frames:

 $\mathcal{P} = \{e = (e_1, \dots, e_{2n}) | e \text{ is a symplectic basis of } (T_m^* M, \omega_m), m \in \mathbb{R} \}$ M}. It is a principal $Sp(2n, \mathbb{R})$ -bundle.

We call an $Mp(2n,\mathbb{R})$ -bundle \mathcal{Q} and a surjective bundle map $\Lambda: \mathcal{Q} \to \mathcal{P}$ a metaplectic structure if the following diagram commutes

$$Q \times Mp(2n, \mathbb{R}) \longrightarrow Q$$

$$\uparrow^{\Lambda \times \lambda} \qquad \uparrow^{\eta} \qquad \uparrow^{\eta}$$

$$\mathcal{P} \times Sp(2n, \mathbb{R}) \longrightarrow \mathcal{P}$$

Oscillator representation of Shale and Weil

$$\rho: \mathit{Mp}(2n,\mathbb{R}) \to \mathcal{U}(L^2(\mathbb{R}^n))$$
 a unitary representation a faithful representation of $\mathit{Mp}(2n,\mathbb{R})$
$$H = L^2(\mathbb{R}^n) \text{ splits into } L^2(\mathbb{R}^n)_+ \oplus L^2(\mathbb{R}^n)_-, \text{ odd and even functions, irreducible summands}$$
 similar to the spinor representation of $\mathit{Spin}(2n,\mathbb{R})$ a completion of complex valued polynomials
$$\mathbb{C}[x^1,\ldots,x^n] = \bigoplus_{i=0}^\infty S^i(\mathbb{R}^n).$$

Oscillator representation - continuation

but different meaning (in Physics)

constructed through certain intertwiners of the Schrödinger representation of the Heisenberg group

Inventors: David Shale (doctoral student by Irving Segal, KG-fields) and André Weil (number thy), further Berezin at infinitesimal level.

Other names:

Segal-Shale-Weil representation, Shale-Weil, Weil representation, metaplectic representation, symplectic spinor representation (Kostant, Habermann)

Oscillator representation (R. Howe)

Exterior algebra with values in the oscillator rep.

$$E = \bigoplus_{k=0}^{2n} E^k = \bigoplus_{k=0}^{2n} (\bigwedge^k (\mathbb{R}^{2n})^* \otimes H)$$

$$\rho_k : Mp(2n, \mathbb{R}) \to \operatorname{Aut}(E^k)$$

$$\rho_k(g)(\alpha \otimes f) = \lambda^{* \wedge k}(g)\alpha \otimes \rho(g)f, \ g \in Mp(2n, \mathbb{R}) \text{ and }$$

$$\alpha \in \bigwedge^k (\mathbb{R}^{2n})^*, \ f \in H$$

$$\mathcal{E}^k = \mathcal{Q} \times_{\rho_k} E^k$$

$$\mathcal{E}^0 = \mathcal{H} = \mathcal{Q} \times_{\rho} H \text{ (oscillator bundle)}$$

$$\sigma : Mp(2n, \mathbb{R}) \to \operatorname{Aut}(K(H))$$

$$\sigma(g)T = \rho(g)T\rho(g)^*$$

$$\mathcal{K} = \mathcal{Q} \times_{\sigma} K(H)$$
Azumaya bundle - bundle of Azumaya algebras (A. Grothendieck)
Bundle of measuring devices ("Filtern"), matrix densities

K(H)-structure - a Recall

Hilbert K(H)-module structure on the $Mp(2n, \mathbb{R})$ -module E is a K(H)-module with respect to the action $E \times K(H) \to E$ by $(\alpha \otimes f) \cdot T = \alpha \otimes f \cdot T = \alpha \otimes T^*(f)$ $(,): E \times E \to K(H)$ $(\alpha \otimes f, \alpha' \otimes f') = g(\alpha, \alpha')f \otimes (f')^* \in K(H)$

Bundle lifts

 $\mathcal{E} = \mathcal{Q} \times_{\rho} E$ is the $Mp(2n, \mathbb{R})$ -associated vector bundle Bundle lifts of the Hilbert K(H)-module structures We need: $\mathcal{E} \times A \to \mathcal{A}$, (,): $\mathcal{E} \times \mathcal{E} \to A$ Theorem (N. Kuiper): Any infinite rank Hilbert bundle is trivial (a product) bundle. **Consequence** (K): $\mathcal{K} \to M$ is also trivial. *Idea of the proof:* $\mathcal{H} \to M$ is trivial: \exists a trivialization $\phi: M \times H \to \mathcal{H}$ It induces (\exists) a trivialization $\psi: M \times A \to \mathcal{K}$ $\psi = \overline{\phi^* \widehat{\otimes} \phi} \square$ $\psi: M \times A \to \mathcal{K}$

Final step of construction of bundle lifts

The *A*-bundle structure:

$$\cdot: \mathcal{E} \times A \to \mathcal{E}, [(q, v)] \cdot a = [(q, v \cdot a)], \text{ where } q \in \mathcal{Q}, v \in E \text{ and } a \in A.$$

The A-product:

1) First reduce the $Mp(2n,\mathbb{R})$ -bundle $\mathcal Q$ to the structure group

U(n)

(in order the next maps are well defined)

2) (,) :
$$\mathcal{E} \times \mathcal{E} \rightarrow A$$
 by setting

3)

$$([(q, v)], [(q, w)]) = \operatorname{pr}_2(\psi^{-1}([(q, (v, w))])),$$

where $q \in \mathcal{Q}$ and $v, w \in E$.

Oscillator bundle twisted de Rham complex

Let (M, ω) be a symplectic manifold admitting a metaplectic section and let $\phi: M \to \mathcal{H}$ be a global trivializing section Choice of the section $\phi \in \Gamma(M, \mathcal{H})$ defines a flat connection

$$\nabla: \mathfrak{X} \times \Gamma(M, \mathcal{H}) \to \Gamma(M, \mathcal{H})$$

on ${\cal H}$

Choose a local frame $(e_i)_{i=1}^{2n}$ and the dual co-frame $(\epsilon^i)_{i=1}^{2n}$ $(epsilon^i(e_j) = \delta^i_i)$.

$$d_k^{\nabla}(\alpha \otimes s) = d\alpha \otimes s + (-1)^{\deg(\alpha)} \epsilon^i \wedge \alpha \otimes \nabla_{e_i} s$$

abla is flat $\Longrightarrow D^{\bullet} = (d_k^{\nabla}, \Gamma(M, \mathcal{E}^k))_{k \in \mathbb{N}_0}$ is a complex of pseudodifferential operators in finitely generated projective K(H)-Hilbert bundles

'Final' theorem

Theorem (K): Let (M, ω) be a compact symplectic manifold admitting a metaplectic structure \mathcal{Q} and ϕ be a trivializing section of the oscillator bundle \mathcal{H} , then

$$D^{\bullet} = (d_k^{\nabla}, \Gamma(M, \mathcal{E}^k))_{k \in \mathbb{N}_0}$$

is a complex, the cohomology groups of which are **finitely generated projective** Hilbert K(H)-modules and the Hodge theory holds for it. In particular,

$$\Gamma(M, \mathcal{E}^k) = \operatorname{\mathsf{Ker}} \triangle_k \oplus \operatorname{\mathsf{Im}} d_k^{\nabla^*} \oplus \operatorname{\mathsf{Ker}} d_k^{\nabla}$$

 $H^k(D^{\bullet}, K(H)) \simeq \operatorname{\mathsf{Ker}} \triangle_k.$

Remarks

Remarks:

First specific use of the C^* -bundles in the case not of Dirac (or from Dirac derived) operators

First specific construction of a Dirac-type operator which is not constructable of the previously known Dirac operators in Riemannian (spin) geometry...

Future:

Treat the symplectic Dirac of Habermann and derived operators as symplectic twistor operators

Homological aspects: sheaf homology, Künneth type theorem

- Fomenko, A., Mishchenko, A., The index of elliptic operators over *C**-algebras, Izv. Akad. Nauk SSSR, Ser. Mat. 43, No. 4, 1979, pp. 831–859, 967.
- Habermann, K., Habermann, L., Introduction in symplectic Dirac operators, Lecture Notes in Math.
- Jordan, P., von Neumann, J., Wigner, E., On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. (2) 35 (1934), No. 1, 29–64.
- Krýsl, S., Cohomology of the de Rham complex twisted by the oscillatory representation, Diff. Geom. Appl., Vol. 33 (Supplement), 2014, pp. 290–297.
- Krýsl, S., Hodge theory for elliptic complexes over unital C^* -algebras, Annals Glob. Anal. Geom., Vol. 45(3), 2014, 197–210. DOI 10.1007/s10455-013-9394-9.

- Krýsl, S., Analysis over *C**-Algebras, Journ. of Geometry and Symmetry in Physics, Vol. 33, 2014.
- Lance, C., Hilbert C*-modules. A toolkit for operator algebraists. London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995.
- Murray, Neumann, J.,
- Schick, T., L^2 -index theorems, KK-theory, and connections, New York J. Math. 11 (2005), pp. 387–443.
- Shale, D., Quantization of Klein-Gordon fields,
- Shubin, M., L² Riemann-Roch theorem for elliptic operators. Geom. Funct. Anal. 5 (1995), No. 2, pp. 482–527.
- Solovyov, Y., Troitsky, E., *C**-algebras and elliptic operators in differential topology. Transl. of Mathem. Monographs, 192, AMS, Providence, Rhode-Island, 2001.

Weil, A., Sur certains groupes des operateurs unitaires,