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. Segal-Shale-Weil representation

. Symplectic spinor valued forms E and their decomposition

. Howe duality for SSW acting on E

. Fedosov manifolds

. Structure of the curvature tensor acting on symplectic spinor valued forms
. Symplectic twistor complex

. Ellipticity of the symplectic twistor complex



Segal-Shale-Weil representation

(V,w) real symplectic vector space of dimension 2/
IL,IL” Lagrangian subspaces of (V,w) such that
V=L&L’

G = Sp(V,w) >~ Sp(2l,R) symplectic group

K := maximal compact subgroup of G, K ~ U(l)

m(G) ~m(K) ~7Z = 32 :1 covering of G

\:GE GG = Mp(V,w) >~ Mp(2l,R) metaplectic group

~

IS not simply connecte
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Segal-Shale-Weil representation

There exists a distinguished unitary representation of the metaplectic group,
the so called Segal-Shale-Weil representation.

~

Mp(V,w) = G
p(V,w) Sowy

AL T

Sp(V.w) = G~ U(LHL)

Thus, SSW : G — U(L?*(L)) ("true" representation of G = Mp(V,w)).
The horizontal arrow represents a projective ("non-true") representation of G =
Sp(V,w).

Call L*(IL) - the space of symplectic spinors.



Segal-Shale-Weil representation SSW

. SSW is unitary; other names: oscillator, metaplectic, symplectic spinor rep.

. SSW does not descend to a representation of the symplectic group

- L*(L) ~ L3 (L) ® L%(L) = direct sum decomposition into irreducibles;
L7 (L) - even/odd square Lebesgue integrable complex valued functions

- Inventors: Weil (number thy), Berezin (quantum mechanics of many particle
systems)

. Related topics: Schrodinger representation of the Heisenberg group, Stone-von
Neumann theorem.



Highest weight module properties of SSW

Set S := L*(L), Sy := L4 (L)

Harish-Chandra underlying (g, K')-module

2[,R) ~ sp(2l,R), K maximal compact in Mp(V,w), K =~
)

~ C[z1,..., 2!], where mp(2[,R) acts via Dixmier 'realization’

Supersymmetry: g’ = s0(V’', B), V' complex 2] dim. vector space, B a
C-bilinear form on V’. Then the space of (orthogonal) spinors
= @L:O A" U, U isotropic in (V, B).



Highest weight of Sy is (—
'standard’ basis).



Decomposition of symplectic spinor valued forms

1. Take .
p:G— Aut(/\V* ®S),

defined by
p(9)(a® s) = \g)™" () ® SSW (g)s,

where g e G,a®se N°V*®S.

2. Topology: Hilbert tensor product topology. Then p is admissible and of
finite length representation.

Aim: Decompose E := A\°*V* ® S into irreducibles.



Decomposition theorem

Fore =0,...,l,set m; =1. Fore =1+1,...,2l[, set m; := 2l — 1.

Set Z:={(4,5)]i=0,...,2l;7 =0,...,m;}.

Example: For [ = 2, the set = = {(0,0), (1,0),(1,1),(2,0), (2,1),
(2,2),(3,0),(3,1),(4,0)}.

Theorem: Fori=0,...,2l, the following decomposition

/\V*@Sif: D EY holds.

(4,)€E



Visualization of the decomposition theorem
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Highest weight description

The infinitesimal structure of the Harish-Chandra (g, K)-module EY of EY
satisfies

1 1(_1)7j—|—j—|—sgn(:t)),

1
ELf ~ L(=,... i 1
@] (7 Y 27 ) 27 —|_2

DO | =

sgn(£) := £1,(4,5) € =.
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Howe-type duality

1. Schur duality for G := GL(V)
o G — Aut(VEF)

PE(g) (V1 ® ... ®vg) = gu1 @ ... ® guy,
g € G,v; € V,e=1,...,k. Tensor representation.

o - S — Aut(VEF)
O‘k(T)(Ul Q... Uk) = Vr(1) @ ... & Vr(k),

TEGL v, €V, 1=1,..., k. Permutation representation.
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Easy:
o, (T)pr(9) = pr(g)ow(T)
g € G, 7 € G}. The representations commute.

Not so easy = Schur duality: Tpr(g) = pr(9)T = T € Clok(Sy)] (the
group algebra of the group o1 (S%)). Sy is called the Schur dual of GL(V) for
Ver,

Leads to Young diagrams. Combinatorial structure of &y translates into a
combinatorial structure of the representations of GL(V).
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2. Another type of duality: spinor valued forms

Group: G = Spin(V, B)
Space: A*V ® S, where S is the space of (orthogonal) spinors

Ends(A°V®S) ={T: N°V®S > A*V&S|forallg € G Tp(g) =
p(g )T} Commutant - old-fashioned

Result: Ends(A°V ®@S) = (0(sl(2,C))) for certain representation o of
s[(2,C). Thus 51(2,C) is a Howe type dual of Spin(V,B) on A°V®S.

Leads to a systematic treatment of some questions on Dirac operators and their
higher spin analogues.
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3. Further example of Howe duality in geometry
Duality between U(n) and sl(2,C) when acting on (p, ¢)-forms of a complex
vector space. Lefschetz decomposition on Kahler manifolds.
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Howe duality for symplectic spinor valued forms

Group G = Mp(V,w) actingon E := A*V*® S via p.

Result:
Ends(E) ~ o(0sp(1]2)),

where 0sp(1]2) is the ortho-symplectic Lie super-algebra and o is a super Lie
algebra representation.
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Defining relations of osp(1]2)

Ortho-symplectic super Lie algebra osp(1]2) = (f*, f~,h,et,e7).

Relations
h,et] = +e*
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The representation o of osp(1]2)

Consider the following mapping.

o:osp(l)2) — End(/.\V* ® S)

1 -

c(fN)a®s):= 567’ ANa® e;.s
1 .

o(f ) a®s):= iwmaeia ® €e;.s,

where a ® s € A\°V* ® S.

For other elements use the relations of 0sp(1]2), e.g.,

H = oh) = oc2{f",f7}) = 2{FT,F~} = 2(F*F* + F*F*) an

endomorphism of E.
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The image o(osp(1]2)) = Ends(E).
1. F7 rising in a horizontal way

2. F'~ lowering in a horizontal way.

Back to the picture.

19



Geometric part

(M, w) symplectic manifold of dimension 2I. R bundle of symplectic bases in
TM.

1. R:={(e1,...,eq) is a symplectic basis of (T}, wm)|m € M}.

2. p1: R — M, the foot-point projection, is a principal Sp(2l, R)-bundle.

3. po : P — M be a principal Mp(2l,R)-bundle.

4. A :P — R be a surjective bundle morphism over the identity on M.
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Definition: We say that (P, A) is a metaplectic structure if
Mp2l,R) x Q — Q

AXA A M

Sp(2l,R) x P — P

commutes. The horizontal arrows are the actions of the respective groups.
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Symplectic spinors

8 = 73 Xmeta S

Elements of I'(M, S) - symplectic spinor fields (Kostant)

Symplectic connection = torsion-free affine connection V satisfying Vw = 0.
It gives rise to a principal bundle connection Z on p; : R — M. Take a lift Z of
Z to the metaplectic structure po : P — M. Consider the associated covariant

derivative on S == symplectic spinor derivative V.

Remark. With help of V°, one can define the symplectic Dirac operator
and do, e.g., harmonic analysis for symplectic spinors (Katharina Habermann in

'90).
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Manifolds admitting a metaplectic structure:

1.) phase spaces (T*N,df), N orientable,
2.) complex projective spaces P2*T1C, k € Ny,
3.) Grassmannian Gr(2,4) et.c.

4.) Calabi-Yau manifolds
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Fedosov manifolds

1. (M,w) symplectic manifold
2.V symplectic connection (no uniqueness)

— (M, w, V) Fedosov manifold
Classical definition
R(X,Y)Z :=VxVyZ—-VyVxZ —Vixy|Z

X,Y,Z € X(M).
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Symplectic curvature

L. o4 = Rkikj - symplectic Ricci tensor
2. 2(l + 1)5:7Zkl = W;10 jk — Wik0O 41 + W30k — Wjik05l + 2Uijwkzl
3. WY = RY — &V - symplectic Weyl tensor

Let us call a Fedosov manifold (M, w, V) of Ricci type, if WY = 0.
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Symmetries of W and & - via harmonic tensors (symplectic analogue of Weyl

formulas, Zholebenko)

Symplectic curvature R

Riji = — Rjiki
Rzgkl — Rzglk
Rijki + Rjkii + Riiij + Riiji = 0 (do not get all Bianchi)

Symplectic Ricci tensor: ¢;; = 0; = no symplectic scalar curvature

Symplectic Weyl tensor W

The same symmetries as R
+ completely trace-free
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Theorem: (M,w,V) symplectic manifold admitting a metaplectic
structure. Then

dv" . D(M,EY) - T(M,EFY T el @eftth,

where Sftj is the associated bundle to the principal Mp(R, 21)-bundle via p.
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Complex of symplectic twistor operators

Definition: Fori =0,...,2l, set T; := p*T1™Mi+1 o d|vgm Symplectic

twistor operator.

Theorem:(SK,09) Let (M?,w,V) be a Fedosov manifold admitting a
metaplectic structure. If { > 2 and the symplectic Weyl tensor field WV = 0,
then

Tll

0 — T(M,E%) 2% T(M, 1) -5 (M, E") — 0 and

0 — (M, W) 1L (M, gty Tt Ty

are complexes.

(M ng 2l) 0
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Core: Computing the action of W and ¢ on E. Not only a Howe duality -
because o is not "living" in the ""infinitesimal world"" (explain).
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Ellipticity of the symplectic twistor complex

Theorem: Let (M,w,V) be a Fedosov manifold of Ricci type admitting a
metaplectic structure. Then the truncated symplectic twistor complexes

0 — (M, EY > T(M,EY s N (M, 1) and

To_1

r(M, ) 2L (v, gy T B oy g2l

are elliptic.

Proof. Only commutation Howe type relations + Cartan lemma (on exterior
systems). [

Folge: (Reduced) cohomologies of symplectic twistor complexes are finite
dimensional. One has Hodge for this complex.
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Ellipticity in other instances

Stein, Weiss: ellipticity for generalized gradients (Casmir computations + Weyl
character formulas)

Baston: inverse question - similar methods
Schmid: Casimir + ""combinatorics"" (ell. for symmetric spaces of inner type)

deRham: easy representation theory of O(n) or GL(n,R), direct Cartan
lemma

Dolbeault: easy representation theory of U(n) (compact real form of

GL(n,R))
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Hotta: generalizes Schmid (Bott-Borel-Weil + homology algbera)
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