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Symplectic spin geometry

Mathematical Institute of Charles University

Supervisor of the doctoral thesis: RNDr. Svatopluk Krýsl, Ph.D.
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Department: Mathematical Institute of Charles University
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Introduction

The subject of our thesis concerns various aspects of the theory of symplectic
Dirac and symplectic twistor operators - symplectic spinor analogues of classical
Dirac and twistor operators.

Many problems and questions in differential geometry of Riemannian spin
manifolds are based on analytic and spectral properties of the classical Dirac and
twistor operators acting on spinor valued fields. In particular, there is a quite
subtle relation between the geometry and the topology of a given manifold and
the spectra and solution spaces of Dirac and twistor operators. See e.g., [1], [18]
and references therein. In the Riemannian geometry, the twistor equation appears
as an integrability condition for the canonical almost complex structure on the
twistor space and it plays a prominent role in conformal differential geometry due
to its bigger symmetry group. In physics, its solution space defines infinitesimal
isometries on the riemannian super manifolds.

Symplectic geometry naturally originates in physics and provides a language
for Hamiltonian description of classical mechanics, similarly to the use of Rie-
mannian geometry in the Lagrangian description of classical mechanics.

The research in the symplectic spinor geometry was initiated by D. Shale [37]
and B. Konstant [28] in the context of quantization. Symplectic spinors were
introduced in [28] and their algebraic properties were studied in [5]. Geometric
aspects of the theory of symplectic Dirac operator Ds were studied by K. Haber-
mann, [21], who introduced the symplectic Dirac operator. The lecture notes [22]
contains a comprehensive introduction to the symplectic spinor geometry and
symplectic Dirac operators. A symplectic parallel to the twistor operator were
then introduced and considered from various perspectives in [24], [31], [32].

The content of this thesis is as follows. In the first five chapters, basic terms
are summarized as well as properties needed for understanding of the results
discussed in the next chapters.

The first chapter is preliminary and contains basic notions as the ones of
symplectic vector spaces, symplectic groups and symplectic Lie algebras. Their
relation with symplectic Clifford algebras are recalled here.

The second chapter gives a brief excursion into the function theory, namely the
Schwartz space together with its distinguished basis of Hermite functions. The
rest of the chapter offers a framework for Fréchet function spaces and nuclear
function spaces. We recall their topological tensor product as well.

The Segal-Shale-Weil representation of the metaplectic group is introduced in
Chapter 3. It is a faithful infinite-dimensional unitary representation which plays
the same role as the spinor representation of the spin group plays in Riemannian
spin geometry. In order to deal with symplectic spinors as elements of the repre-
sentation space, the symplectic Clifford multiplication is introduced. It allows us
to multiply symplectic spinors by vectors.

Chapter 4 contains a brief introduction of several geometrical aspects, name-
ly the notion of a symplectic manifold and basics on the theory of bundles and
connections on associated vector bundles. If there is a double covering of the
symplectic frame bundle of symplectic manifold (M,ω), the so called metaplectic
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bundle, one can induce the Segal-Shale-Weil representation to obtain the sym-
plectic spinor or Konstant bundle. This bundle is of infinite rank and its fibres
are modules isomorphic to the Segal-Shale-Weil representation.

In Chapter 5, we conclude the introductory part of the thesis with definitions
of the symplectic Dirac Ds and the symplectic twistor operator Ts. See the mono-
graph [18] for a comparison with the Dirac operator in Riemannian geometry.

Chapters 6 and 7 are based on two published articles [12], [13] with a few
minor changes. The aim of these chapters is to study the symplectic twistor op-
erator Ts in the context of the metaplectic Howe duality, see [9], and consequently
to determine its solution space on the canonical symplectic space (R2n, ω). From
the analytic point of view, Ts represents an overdetermined system of partial
differential equations and acts on the space of polynomials with values in the
Segal-Shale-Weil representation. From the point of view of representation theory,
Ts is mp(2n,R)-equivariant. The solution space was described using the interac-
tion of Ts with the Howe dual pair (mp(2n,R), sl(2)), where sl(2) is generated by
Ds, Xs. As we shall see, concerning Ts, there is a substantial difference between
the situation for n = 1 (Chapter 6) and n > 1 (Chapter 7).

The operators acting on the space of symplectic monogenics are studied in
Chapter 8. The symplectic monogenics are elements of the solution space of
the symplectic Dirac operator on the canonical symplectic manifold (R2n, ω).
Decomposing Pol(R2n,C)⊗S(Rn) into mp(2n,R)-submodules with the use of the
metaplectic Howe duality, we discuss the lift of the mp(2n,R)-symmetry of the
space of symplectic monogenics to a representation space of a bigger Lie algebra.

In the harmonic analysis on Rn, the classical Fourier transform can be encoded
by the exponential of the operator (∆ − ||x||2), i.e. a difference of the Laplace
operator ∆ and ||x||2, the square of the operator of the norm of x ∈ Rn. There are
analogous results in harmonic analysis for finite groups based on Dunkl operators
or Dirac operator, cf. [7], [8] and [10]. Chapter 9 discusses rudiments of symplectic
Clifford-Frourier transform by an investigation of an eigenfunction decomposition
of the difference of Ds and Xs.

A symplectic Fischer product on polynomial symplectic spinors Pol(R2,C)⊗
S(R) is defined in Chapter 10. This product is a symplectic analogue of the
Fischer product on complex polynomials valued in the classical Clifford algebra.

Symplectic monogenics, discussed many times throughout the thesis, are the
elements of mp(2,R)-submodules of the Fischer decomposition of polynomial
spinors contained in the kernel of the symplectic Dirac operator. Constructions
of two different basis of symplectic monogenics on (R2, ω) are given in the first
part of the Chapter 11. These bases are then used to determine the behaviour of
the symplectic Fischer product. Moreover, one of the basis is constructed in such
a way that the symmetries of the symplectic Dirac operator act by the scalar on
the set of basis elements.

In Chapter 12, we describe a recursive construction of symplectic monogenics
on (R2n, ω) from the symplectic monogenics on (R2, ω) and (R2(n−1), ω).

It is a classical result in Riemannian spin geometry that spectral properties
of Dirac operator depend on the choice of a spin-structure, cf. [18]. A nice ex-
ample of this phenomenon appears in [17], proving the dependence of its solution
space on the choice of spin structures in the case of the real tori of an arbitrary
dimension. The main theme of Chapter 13 is to study analogous phenomenon in
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the context of symplectic geometry and related symplectic Dirac operator. The
computations show that on even dimensional tori, the solution space for the sym-
plectic Dirac operator depends on the choice of the metaplectic structure used
to define it. The question of existence of a solution is in the symplectic case
more subtle than in the Riemannian geometry due to the restriction to a specific
function class.

Another aspect of symplectic Dirac operator on symplectic tori is related to a
construction of symplectic theta functions, regarded as a specific class of functions
in the solution space of the symplectic Dirac rather than classical Dolbeault
operator, cf. [34], [35]. In Chapter 14, we present several classes of symplectic
theta functions and their basic properties.
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1. Preliminaries

1.1 Symplectic vector space

In the first section we define a symplectic vector space and its various subspaces
and recall their basic properties.

Definition 1.1.1. The symplectic vector space is a pair (V,Ω), where V is a vector
space of finite dimension over the field of real numbers R and Ω : V × V → R is
a non-degenerate skew symmetric bilinear form.

Let Ω be a non-degenerate skew symmetric bilinear form on a 2n dimensional
vector space V , n ∈ N. Then there exists a basis e1, . . . , e2n of the vector space
V such that

Ω(ej, ek) = 0 = Ω(en+j, en+k) and Ω(ej, en+k) = δj,k. (1.1)

for every j, k = 1, . . . , n. The symbol δj,k denotes the Kronecker delta.

Definition 1.1.2. The symplectic basis of the symplectic vector space (V,Ω) is
a basis {e1 . . . , en, en+1, . . . , e2n} with the property (1.1).

Then the symplectic form Ω is in the symplectic basis of (V,Ω)

Ω(v, u) =
(
−v−

)( 0 I
−I 0

) |u
|

 ,

where u, v ∈ V and I stands for n× n identity matrix.

Example 1. Let us take the vector space R2n with the basis

e1 = (1, 0, . . . , 0), . . . , ej = (0, . . . , 0,

j︷︸︸︷
1 , 0, . . . , 0), . . . , e2n = (0, . . . , 0, 1)

and the form Ω such that it is represented by matrix
(

0
−I

I
0

)
in this basis. Then

(Rn,Ω) is called the canonical symplectic vector space and Ω on R2n is called the
canonical symplectic form.

It will cause no confusion if we use Ω to designate the canonical symplectic
form of the canonical symplectic vector space (R2n,Ω) and any symplectic form
on a general symplectic vector space (V,Ω), since it is always obvious from the
framework whether it is the former or latter case.

Not all subspaces of a symplectic space looks the same.

Definition 1.1.3. A subspace Y of a symplectic vector space (V,Ω) is called the
symplectic subspace, if Ω|Y is non-degenerate. If Ω|Y ≡ 0, then a subspace Y is
called the isotropic subspace.
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For instance the linear span of vectors e1, en+1 from Example 1 is a symplectic
subspace and the linear span of vectors e1, e2 is an isotropic subspace.

A subspace Y of a symplectic vector space (V,Ω) can be determined by its
symplectic orthogonal complement

Y Ω = {v ∈ V |Ω(v, u) = 0 for all u ∈ Y }.

A subspace Y of a symplectic vector space (V,Ω) is a symplectic subspace if
and only if Y ∩ Y Ω = {0}. Or equivalently if and only if Y ⊕ Y Ω = V . Whereas
a subspace Y is an isotropic subspace if and only if Y ⊆ Y Ω. If Y is an isotropic
subspace, then dimY ≤ 1

2
dimV .

Definition 1.1.4. The Lagrangian subspace Y of a symplectic vector space is a
subspace that satisfies Y = Y Ω.

The Lagrangian subspace is isotropic. In particular a subspace Y of a symplec-
tic vector space (V,Ω) is Lagrangian if and only if dimY = 1

2
dimV . Especially,

every basis e1, . . . , en of a Lagrangian subspace Y could be extended to the basis
e1, . . . , en,en+1, . . . , e2n of V .

Let us denote by Rn = 〈e1, . . . , en〉 and (Rn)′ = 〈en+1, . . . , e2n〉 linear spans of
the first n and the second n elements of basis of (R2n,Ω). Then Rn and (Rn)′ are
called canonical Lagrangian subspaces of (R2n,Ω).

1.2 Symplectic group

The term symplectic group can refer to two different, but related groups, some-
times denoted by Sp(2n,R) and Sp(n). The symplectic group Sp(n) consists of
linear mappings of the space of quaternions Hn, but it will not be used in this
thesis.

Definition 1.2.1. The symplectic group Sp(2n,R) is a group of all automor-
phisms of (R2n,Ω) preserving the canonical symplectic form Ω

Ω : (x, y) 7→
n∑
j=1

xjyn+j −
n∑
j=1

xn+jyj,

where x = (x1, . . . , x2n), y = (y1, . . . , y2n) ∈ R2n.

Thus the elements of the symplectic group Sp(2n,R) are automorphisms A ∈
GL(2n,R) such that for every v, w ∈ R2n satisfy

Ω(Av,Aw) = Ω(v, w).

Let us denote

J0 =

(
0 I
−I 0

)
the matrix of the canonical symplectic form with respect to some symplectic basis.

A maximal compact subgroup of the symplectic group Sp(2n,R) is

Sp(2n,R) ∩O(2n,R),
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where O(2n,R) = {A ∈ GL(2n,R) |AAT = ATA = I} is a group of all real
orthogonal matrices. See, e.g., [16, Prop. 4.5] If we identify R2n with Cn by the
mapping (x, y) 7→ x+ iy, x ∈ Rn, y ∈ (Rn)′, then it is easy to realise

Sp(2n,R) ∩O(2n,R) ∼= U(n),

where U(n) = {A ∈Mn(C) |ATA = I} is the unitary group of Cn with canonical
hermitian form. The symbol Mn(C) denotes the set of complex n × n matrices.
Therefore the maximal compact subgroup of Sp(2n,R) is the unitary group U(n).
Based on this, the following property is for instance proved in [16, Prop. 4.8].

Proposition 1.2.1. The symplectic group Sp(2n,R) is path connected and its
fundamental group is Z.

Let us define following sets, which are related to a structure of the symplectic
group.

D =

{(
D 0
0 (D−1)T

) ∣∣∣∣D ∈ GL(n,R)

}
N =

{(
I N
0 I

) ∣∣∣∣N ∈ GL(n,R), N = NT

}
N =

{(
I 0
N I

) ∣∣∣∣N ∈ GL(n,R), N = NT

}
A direct computation shows that the sets D,N andN are subgroups of Sp(2n,R).
Moreover it holds that

NDN =

{(
A B
C D

)
∈ Sp(2n,R) | detA 6= 0

}
.

In [16, Prop. 4.10] is proved following property of the symplectic group.

Proposition 1.2.2. The symplectic group Sp(2n,R) is generated by D∪N∪{J0}
or it is generated by D ∪N ∪ {J0}.

1.3 Symplectic Lie algebra

Definition 1.3.1. The symplectic Lie algebra of the symplectic group has the
matrix realization

sp(2n,R) = {A ∈M2n(R) |ATJ0 + J0A = 0}.

Elements of the symplectic Lie algebra are endomorphisms A of the canonical
symplectic vector space (R2n,Ω) satisfying

Ω(Av,w) + Ω(v,Aw) = 0,

for every v, w ∈ R2n.
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A matrix realization of the sp(2n,R) is

Xjk = Ej,k − En+k,n+j,

Yjj = Ej,n+j,

Yjk = Ej,n+k + Ek,n+j for j 6= k, (1.2)

Zjj = En+j,j,

Zjk = En+j,k + En+k,j for j 6= k,

where j, k = 1, . . . , n and Ej,k is the 2n× 2n matrix with 1 on the intersection of
the j-th row and the k-th column and zero otherwise. Thus sp(2n,R) is a linear
span of matrices Xjk, Yjk, Zjk where j, k = 1, . . . , n, see, e.g. [19].

There is another useful representation of the symplectic Lie algebra sp(2n,R)
on complex valued polynomials in 2n real variables Pol(R2n,C). Let x1, . . . , xn,
y1, . . . , yn be variables on R2n, we will denote by ∂xj and ∂yj partial differentia-
tions instead of ∂

∂xj
and ∂

∂yj
, j, k = 1, . . . , n. Then for j, k = 1, . . . , n following

endomorphisms of Pol(R2n,C)

Xjk = xj∂xk − yk∂yj ,
Yjj = xj∂yj ,

Yjk = xj∂yk + xk∂yj for j 6= k, (1.3)

Zjj = yj∂xj ,

Zjk = yj∂xk + yk∂xj for j 6= k.

form a faithful representation of the symplectic Lie algebra.

Definition 1.3.2. The symplectic Clifford algebra Cls(R2n,Ω) is an associative
unital algebra over C given by the quotient of the tensor algebra T (R2n) by a
two-sided ideal I ⊂ T (R2n) generated by

v · w − w · v = −iΩ(v, w)

for all v, w ∈ R2n, where Ω is the symplectic form and i ∈ C is the complex unit.

Let a(2n) denote a subspace of the symplectic Clifford algebra Cls(R2n,Ω)
spanned by v · w + w · v for v, w ∈ R2n. The following proposition, proved in
[22, Lem. 1.1.6], relates the symplectic Clifford algebra and the symplectic Lie
algebra.

Lemma 1.3.1. The space a(2n) is a Lie subalgebra of Cls(R2n,Ω). It is isomor-
phic to the symplectic Lie algebra sp(2n,R).

The symplectic Clifford algebra Cls(R2n,Ω) is isomorphic to the Weyl alge-
bra W2n of differential operators with polynomial coefficients on Rn. The Weyl
algebra is an associative algebra generated by {q1, . . . , qn, ∂q1 , . . . , ∂qn}, where qj
denotes multiplication operator by qj, and partial differentiation by qj is denoted
by ∂qj , for j = 1, . . . , n. See [5] for more details about the Weyl algebra, also
referred to as the common symplectic Clifford algebra.

The symplectic Lie algebra sp(2n,R) can be realized as a subalgebra of the
symplectic Clifford algebra, i.e. also as a subalgebra of W2n.
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Further, the symplectic Lie algebra sp(2n,R) is realized by operators on the
Schwartz space S(Rn), for definition see Section 2.1,

Xjk = qj∂qk +
1

2
δjk,

Yjj = − i
2
q2
j ,

Yjk = −iqjqk for j 6= k, (1.4)

Zjj = − i
2
∂2
qj
,

Zjk = −i∂qj∂qk for j 6= k,

where i is the imaginary unit and δjk denotes the Kronecker delta.
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2. Introduction to function
theory

In the present chapter, we review some basics of (Schwartz, Fréchet, nuclear) func-
tion theory and topological vector spaces needed in the definition of symplectic
spinors.

We start by introducing the Schwartz function space and its distinguished
orthonormal basis given by Hermite functions. We treat a wider framework of
Fréchet function space, whose distinguished example is the Schwartz function
space. Then we pass to the notion of topological tensor product and nuclear
function spaces.

For a complete introduction with more details, proofs and examples we rec-
ommend books [4], [39].

2.1 Schwartz space

The Schwartz space S(Rn) - the space of rapidly decreasing functions on Rn is
a subspace of square integrable function L2(Rn) considered with Hilbert scalar
product 〈f, g〉 =

∫
Rn
f(x)g(x) dx, for f, g ∈ L2(Rn).

Moreover S(Rn) ⊂ Lp(Rn) for 0 < p <∞.

Definition 2.1.1. The Schwartz space is the function space

S(Rn) = {f ∈ C∞(Rn) | ‖f‖α,β <∞ for all α, β ∈ Nn
0},

where C∞(Rn) denotes the space of all complex valued smooth functions on Rn

and the semi-norms are defined by

‖f‖α,β = sup
x∈Rn
|xαDβf(x)|

with xα = xα1
1 · . . . · xαnn , α = (α1, . . . , αn) ∈ Nn

0 . The symbol Dβ denotes dif-

ferentiation in relevant variables and of a given order, i.e., Dβ = ∂β1

∂x
β1
1

· · · ∂βn
∂xβnn

,

β = (β1, . . . , βn) ∈ Nn
0 , and α, β ∈ Nn

0 are multiindexes.

The Schwartz space decomposes into two parts, of odd and even functions.
Let us denote by S(Rn)− odd part and by S(Rn)+ even part of S(Rn).

Definition 2.1.2. The Fourier transformation Ff of a complex valued integrable
function f ∈ L1(Rn) is defined by

(Ff)(ξ) = f̂(ξ) =

∫
Rn

e−i2π〈x,ξ〉f(x) dx.

The inverse Fourier transformation F−1f of f is

(F−1f)(x) = f̌(x) =

∫
Rn

ei2π〈x,ξ〉f(ξ) dξ,

where x, ξ ∈ Rn and 〈·, ·〉 is the canonical inner product on Rn.
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Theorem 2.1.1. The Fourier transformation F and the inverse Fourier trans-
formation F−1 are mutually inverse continuous endomorphisms when restricted
to S(Rn).

2.2 Hermite functions and polynomials

The basic tool needed to work with vector spaces in an explicit way is its basis.
We shall briefly expose one specific choice of a complete orthogonal system for
S(R) given by Hermite functions and associated Hermite polynomials. Here, we
consider S(R) as a pre-Hilbert space with respect to the scalar product on L2(R).
This collection yields a complete orthogonal system of L2(R)-space weighted by
e−x

2
.

Definition 2.2.1. For n ∈ N0 we define the n-th Hermite polynomial by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

An explicit form is by [33]

Hn(x) =

bn/2c∑
k=0

(−1)kn!

k!(n− 2k)!
(2x)n−2k,

where b·c is the floor function. In particular, the first several Hermite polynomials
are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12.

Since the action of the operator −ex2 d
dx
e−x

2
and e

x2

2

(
x− d

dx

)
e−

x2

2 on an ar-
bitrary function f(x) provides the same result, i.e.

−ex2 d
dx

(e−x
2

f(x)) = 2xf(x)− d

dx
f(x) = e

x2

2

(
x− d

dx

)
e−

x2

2 f(x),

we infer an equivalent definition of Hermite polynomial

H1(x) = e
x2

2

(
x− d

dx

)
e−

x2

2

and by the induction principle we obtain

Hn(x) = e
x2

2

(
x− d

dx

)n
e−

x2

2 .

Definition 2.2.2. For n ∈ N0, the normalized n-th Hermite function is

ψn(x) =
1√

2nn!
√
π
e−

x2

2 Hn(x).

Equivalently,

ψn(x) =
1√

2nn!
√
π)

(
x− d

dx

)n
e−

x2

2 .
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2.3 Fréchet spaces

Let us now highlight the concept of topology on a vector space defined by a family
of semi-norms. As a topological vector space, we always suppose a Hausdorff
topological vector space.

Definition 2.3.1. Let X be a vector space and P = {pi | i ∈ I ⊂ N} be a family
of semi-norms on X. An open ball defined by the family of semi-norms P of
radius ε = {εi}i∈I and center x0 ∈ X is the set of all points x ∈ X such that
εi > pi(x − x0), εi > 0, i ∈ J for every finite subset J ⊂ I. The basis of the
topology defined by the family of semi-norms P is generated by all open balls
defined by the family of semi-norms P .

There exists a translation invariant metric ρP such that topology defined by
ρP on a vector space X is identical with the topology defined by countable family
of semi-norms P = {pi | i ∈ I ⊂ N}, with the property that for every 0 6= x ∈ X
there exists i ∈ I that pi(x) 6= 0.

Definition 2.3.2. A topological vector space (X, τ) is said to be locally convex
if there is a basis of neighborhoods in X consisting of convex sets. The topology
τ is then called the locally convex topology.

A topological vector space with topology defined by a countable family of
semi-norms is locally convex. Conversely, it can be proved that the topology of a
locally convex vector space can always be defined by a family of semi-norms. See
[4, p. 424].

Definition 2.3.3. A topological vector space X is the Fréchet space if X is
complete and its topology is induced by a countable family of semi-norms.

Equivalently, a topological vector space is a Fréchet space if it is complete,
locally convex and its topology can be defined by a translation invariant metric.

Example 2. The space Rn with classical Euclidean metric is a Fréchet space.
The Schwartz space S(Rn) of rapidly decreasing functions is a Fréchet space

with family of semi-norms from the Definition 2.1.1,

‖f‖α,β = sup
x∈Rn
|xαDβf(x)|

with multiindexes α, β ∈ N0.
Another class of Fréchet spaces are the function spaces with suitable family

of semi-norms. For example, C∞(R) with the family of semi-norms ‖f‖k,n =
sup{|D(k)f(x)| |x ∈ [−n, n]} for all n, k ∈ N0, is a Fréchet space.

Definition 2.3.4. Let V and W be two Fréchet spaces and {pi}i∈N0 be a family
of semi-norms defining a structure of the Fréchet space on W . A mapping F :
V → W is said to be smooth if pi ◦ F : V → C is smooth for each i ∈ N0.

13



2.4 Topological tensor products

In this section, X and Y are two locally convex topological vector spaces and
X ⊗ Y their tensor product. Let us remind that for us, topological vector spaces
X, Y are Hausdorff.

Definition 2.4.1. We call π-topology or projective topology onX⊗Y the strongest
locally convex topology on this vector space for which the mapping (x, y) 7→ x⊗y
of X × Y into X ⊗ Y is continuous. Let X ⊗π Y denote the space X ⊗ Y with
projective topology. The completion of X ⊗π Y is called the projective tensor
product of X and Y and it will be denoted by X⊗̂πY .

A subset of X ⊗ Y is a neighbourhood of zero in π-topology if and only if its
preimage under (x, y) 7→ x⊗ y contains a neighbourhood of zero in X × Y , i.e. if
it contains a set of the form U ⊗ V = {x ⊗ y ∈ X ⊗ Y |x ∈ X, y ∈ Y } where U
and V are a neighbourhoods of zero in X and Y respectively.

Let us denote by X ′σ, Y ′σ the weak duals to X and Y . A subset H ⊆ L(E,F )
of linear mappings between two locally convex space E,F is called equicontinuous
if for each neighborhood V of the zero vector in F there exists a neighborhood U
of the zero vector in E such that g(U) ⊆ V for each g ∈ H.

A bilinear mapping f : X × Y → G with partial mappings fx : y 7→ f(x, y)
and fy : x 7→ f(x, y) is said to be separately continuous if both fx and fy are
continuous. We denote by B(X, Y ) the space of continuous bilinear mappings of
X × Y into scalar field C (or R) and B(X, Y ) the space of separately continuous
bilinear mappings of X × Y into scalar field. Let us notice that B(X ′σ, Y

′
σ) is

isomorphic to X ⊗ Y .

Definition 2.4.2. Let us call ε-topology or injective topology on X ⊗ Y the
topology induced by B(X ′σ, Y

′
σ) considered as a vector subspace of B(X ′σ, Y

′
σ),

the space of separately continuous bilinear forms on X ′σ × Y ′σ equipped with the
topology of uniform convergence on the product of equicontinuous subsets of X ′

and equicontinuous subsets of Y ′. Let X ⊗ε Y denote the space X ⊗ Y with
injective topology. The injective tensor product of X and Y is the completion of
X ⊗ε Y and we will denote it by X⊗̂εY .

Nuclear space is a space with a lot of of good properties of finite-dimensional
vector space.

Definition 2.4.3. A locally convex topological vector space X is nuclear if and
only if for every locally convex topological vector space Y , the topological vector
spaces X⊗̂πY and X⊗̂εY are isomorphic.

Consequently, for a nuclear space X we write just X⊗̂Y instead of X⊗̂πY or
X⊗̂εY .

Example 3. The space Pol(Cn) of polynomials in n variables is nuclear space. Its
topology is the inductive limit of inner product topologies on a finite dimensional
spaces of polynomials of a fixed maximal order. For details, see [39, p. 526].

The Schwartz space S(Rn) and the space of smooth functions C∞(U) on any
open subset U ⊂ Rn are nuclear.
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Let us take fm ∈ S(Rm), fn ∈ S(Rn). From algebraic point of view, we can
insight the following structure by pullbacks of projections. Denote

πm : Rm+n → Rm, πn : Rm+n → Rn

two canonical projections. Then the product of pullbacks

(π∗mfm)(π∗nfn) ∈ S(Rm+n).

The tensor product S(Rm) ⊗ S(Rn) is dense in S(Rm × Rn). Moreover we have
the following for completion of the tensor product.

Theorem 2.4.1. There is a canonical isomorphism

S(Rm)⊗̂S(Rn) ∼= S(Rm+n).

The reason for the existence of the isomorphism is that the Schwartz space is
both Fréchet and nuclear space. See [39] for more details of the isomorphism.
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3. Segal-Shale-Weil
representation

In this section, we want to present some facts from representation theory needed
to introduce the Segal-Shale-Weil representation. This representation plays the
same role as the spin representation of the spin group - the double cover of
the orthogonal group, used in the Riemannian geometry. The symplectic group
Sp(2n,R) has a double covering called metaplectic group Mp(2n,R).

The Segal-Shale-Weil representation is an infinite dimensional uniraty rep-
resentation of the metaplectic group Mp(2n,R) on the space of all complex
valued square integrable function L2(Rn). We use mostly the Schwartz space
S(Rn) ⊂ L2(Rn), the space of smooth vectors of the Segal-Shale-Weil represen-
tation, as the symplectic spinor space in this thesis.

Let us recall Rn and (Rn)′ two canonical Lagrangian subspaces of the canonical
symplectic space (R2n,Ω), such that Rn ⊕ (Rn)′ = R2n.

3.1 Heisenberg group and its Schrödinger rep-

resentation

Sometimes by the term Heisenberg group is meant the group of upper triangular
3 × 3 matrices with ones on a diagonal. But there will be presented a more
abstract definition of the Heisenberg group and its Schrödinger representation,
which will be used to construct the Segal-Shale-Weil representation. For more
details about the Schrödinger representation we refer to [16].

Definition 3.1.1. Let (V, ω) be a symplectic vector space. The Heisenberg group
H(V ) is a group with a support set V × R and group operation

(v, x) · (w, y) =
(
v + w, x+ y +

1

2
ω(v, w)

)
,

where (v, x), (w, y) ∈ V × R. Let us denote H(n) the Heisenberg group H(R2n)
for the canonical symplectic vector space (R2n,Ω).

Remark 1. The Heisenberg group H(n) can be represented by the following
realization. Let be v ∈ Rn, w ∈ (Rn)′, i.e. (v, w) ∈ R2n, and t ∈ R, then element
(v, w, t) ∈ H(n) can be represented by a matrix1 v t

0 I w
0 0 1

 .

Here I denote unit n× n matrix, v is row and w is column n-vector. The set of
such matrices is a group with respect to the classic matrix multiplication and an
identity matrix as the unit element. The isomorphism with a group defined in
the Definition 3.1.1 is1 v t

0 I w
0 0 1

 7→ (
(v, w), t− 1

2
〈v, w〉

)
.
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The center of the Heisenberg group is

Z(H(n)) = {(v, x) | v = 0} ∼= R.

Definition 3.1.2. Let G be a Lie group, W be a topological vector space and
Aut(W ) denote all continuous linear mappings from W onto W with continuous
inverse. A homomorphism of groups r : G→ Aut(W ) is called representation of
a group G, if r̃ : G×W → W defined by r̃(g, v) = r(g)v is continuous. The space
W is called G-module or representation space.

The representation is called unitary if W is a Hilbert space and Im(r) ⊆
U(W ), where U(W ) denotes a group of unitary operators on W , i.e. the group
of operators A satisfying ATA = Id, where Id is an identity operator.

Let us notice, that G ×W is considered with the product topology. The set
Aut(W ) is a group, because a composition of two mapping with a continuous
inversion, is continuous with continuous inversion and an unit element of the
group is the identity mapping.

Let us remind that a mapping ψ : M → N between two manifolds of dimen-
sions m,n with atlases {UM

α , ϕ
M
α }α∈A, {UN

β , ϕ
N
β }β∈B is called smooth (C∞) if the

mapping ϕNβ ◦ ψ ◦ (ϕMα )−1 : Rm → Rn is smooth for all α, β from index sets A, B
of atlases of M and N .

A mapping ψ : G→ W , whereG is a Lie group andW is a complex topological
vector space, is smooth if for every v∗ ∈ W ∗ is g 7→ v∗

(
ψ(g)

)
∈ C a smooth

mapping as a mapping from a manifold to the complex numbers. (A symbol W ∗

denotes the continuous dual of a space W .)

Definition 3.1.3. Let r be a representation of a group G on a topological vector
space W .

1) A space W ′ ⊂ W is called G-invariant if r(a)W ′ ⊂ W ′ for every a ∈ G.

2) A representation r is called irreducible if the only G-invariant closed sub-
spaces of W are {0} and W .

Let {x1, . . . , xn} be a coordinate chart on Rn. Let us denote by X =
∑n

j=1X
j

a sum of operators of multiplication by xj, i.e. Xjf = xjf . By D =
∑n

j=1Dj

is denoted a sum of operators Djf = 1
2πi

∂f
∂xj

where f ∈ L2(Rn). The operator

D is obviously unbounded on L2(Rn). Finely, Id means an appropriate identity
operator.

Let us notice that for a suitable operator T , the exponential of T is

eT =
∞∑
j=0

T j

j!
.

Definition 3.1.4. The Schrödinger representation of H(Rn⊕(Rn)′) on the Hilbert
space L2(Rn) is a homomorphism rS : H(Rn ⊕ (Rn)′)→ Aut

(
L2(Rn)

)
defined by

rS(p, q, t) = e2πi(t Id +pD+qX),

where (p, q, t) ∈ H(Rn ⊕ (Rn)′).
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It holds that et Idf(x) = etf(x) and e2πi(pD+qX)f(x) = e2πiqx+πipqf(x + p),
x ∈ Rn, f ∈ L2(Rn). The Schrödinger representation is thus given by(

rS(p, q, t)f
)
(x) = e2πi(t+qx+ 1

2
pq)f(x+ p),

where (p, q, t) ∈ H(Rn⊕ (Rn)′), f : Rn → C, x ∈ Rn. It is continuous in the sense
of Definition 3.1.2 as may be seen from the formula.

Let us notice that on elements of the center of the Heisenberg group the
representation acts by

rS(0, 0, t)f = e2πitf,

for every t ∈ R and f ∈ L2(Rn). Hence an action of the central element is only
multiplication by scalar. The following property is shown in [16, p. 22].

Proposition 3.1.1. The Schrödinger representation is unitary.

In the following, we show that the Schrödinger representation is an irreducible
representation. To this aim we need several knowledge from representation theory
of infinite dimension. For more details and proves, see [25].

Let us introduce a mapping V : L2(Rn)×L2(Rn)→ L2(Rn), sometimes called
the Fourier-Wigner transform, given by

[V (f, g)](p, q) = 〈rS(p, q, 0)f, g〉,

where f, g ∈ L2(Rn), (p, q) ∈ R2n and 〈·, ·〉 is the Hilbert scalar product on
L2(Rn). For more details about transform V , see [16].

The Fourier-Wigner transform satisfies

〈V (f1, g1), V (f2, g2)〉 = 〈f1, f2〉〈g1, g2〉 (3.1)

for every f1, f2, g1 and g2 ∈ L2(Rn).

Definition 3.1.5. Two representations r1 : G→ Aut(W1) and r2 : G→ Aut(W2)
are called equivalent if there exists a continuous linear isomorphism T : W1 → W2,
with continuous inverse satisfying

T ◦ r1(a) = r2(a) ◦ T

for every a ∈ G. The mapping T is called intertwining (sometimes equivariant)
operator. If in additional, W1 and W2 are Hilbert spaces, r1, r2 are unitary
representations and the operator T can be chosen unitary, then representations
r1, r2 are called unitary equivalent.

The following theorem is a version of Schur Lemma for infinite dimension-
al representations and will be used in the construction of the Segal-Shale-Weil
representation.

Theorem 3.1.2. (Schur) Let r1, r2 be two unitary irreducible representations
of a Lie group G on a complex Hilbert spaces W1 and W2, respectively. If r1 is
not equivalent to r2 then HomG(W1,W2) = 0. If r1 and r2 are equivalent then
HomG(W1,W2) ' C. In addition, if r1 and r2 are equivalent then every element
of HomG(W1,W2) is possible to normalise by a multiplication by a scalar into an
isometry.
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Definition 3.1.6. Let G be a Lie group and r be a representation of G on
a Fréchet space W . A vector w ∈ W is smooth vector for representation r if
g 7→ r(g)w ∈ W , g ∈ G, is a smooth mapping G→ W .

The set of smooth vectors is a vector space due to the linearity of differentia-
tion. Let us denote by W 0 a vector space of all smooth vectors in W .

Proposition 3.1.3. (G̊arding) Let W 0 ⊆ W be a vector subspace of smooth
vectors of a representation space W of a unitary representation r. Then W 0 is a
dense subspace of W .

Definition 3.1.7. Let g and h be two Lie algebras. A Linear mapping ϕ : g→ h
is called homomorphism of Lie algebras if

ϕ
(
[X, Y ]

)
= [ϕ(X), ϕ(Y )],

for every X, Y ∈ g. The homomorphism of the Lie algebra g to gl(V ) = End(V )
is called representation of g.

For a proof of the following Proposition, see [25, Prop. 3.9].

Proposition 3.1.4. Let g be a Lie algebra of a Lie group G. Let W 0 be a space of
smooth vectors of a representation r of a group G. A mapping dr : g→ End(W 0)
given by

dr(X)w =
d

dt

∣∣∣
t=0

[r(etX)w],

where X ∈ g and w ∈ W 0, is a representation of a Lie algebra g.

In general W0 ( W , as it is possible to show on examples. However, it is
possible to define a representation only on a smooth vectors of that representation.

Proposition 3.1.5. A vector space W 0 ⊆ W of smooth vectors of a representa-
tion r is closed on the action of the representation.

A space W 0 is closed not only on the action of the Lie algebra g, but also on
the action of the group G.

Back to the Schrödinger representation. We recall the proof of the well known
fact.

Proposition 3.1.6. The Schrödinger representation rS is irreducible.

Proof. Let 0 6= M ⊆ L2(Rn) be a closed invariant space for rS on L2(Rn). Let
0 6= f ∈ M0, where M0 ⊆ M is subspace of smooth vectors. Let be g ⊥ M.
Due to choice of f is g ⊥ f . Hence M0 is closed not only on an action of
drS (see Proposition 3.1.4), but also on rS (see Proposition 3.1.5), it holds that
g ⊥ e2πi(pD+qX)f for every (p, q) ∈ R2n. (A scalar multiplication by e2πit in the
formula of representation does not cased anything on perpendicularity.) Therefore
V (f, g) = 0. By equation (3.1) is 0 = ‖V (f, g)‖2 = ‖f‖2‖g‖2. The assumption
f 6= 0 gives g = 0, therefore is M = L2(Rn) hence M is closed.
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3.2 Stone-von Neumann Theorem

The Stone-von Neumann Theorem will be used to construct a projective repre-
sentation of the symplectic group Sp(2n,R).

Theorem 3.2.1. (Stone-von Neumann) Let r be an irreducible unitary rep-
resentation of the Heisenberg group H(n) on a separable complex Hilbert space
W such that

r(0, t)w = e−2πitw

for every t ∈ R and w ∈ W . Then r is unitary equivalent to the Schrödinger
representation rS.

For proof of the Stone-von Neumann Theorem, see [16, Th. 1.50].
For every g ∈ Sp(2n,R), let us define a representation of the Heisenberg group

rgS
rgS : H(n)→ Aut

(
L2(Rn)

)
, rgS = rS ◦ ag,

where rS is the Schrödinger representation and a mapping ag : H(n) → H(n) is
defined by

ag(v, t) =
(
g(v), t

)
,

where v ∈ R2n and t ∈ R. The mapping ag is a group homomorphism since

ag
[
(v, t) · (w, s)

]
= ag

(
v + w, t+ s+

1

2
ω(v, w)

)
=
(
g(v + w), t+ s+

1

2
ω(v, w)

)
=
(
gv + gw, t+ s+

1

2
ω(gv, gw)

)
= (gv, t) · (gw, s) = ag(v, t) · ag(w, s).

for every (v, t),(w, s) ∈ H(n).
The mapping rgS is a representation since it is a composition of two homomor-

phisms. Obviously,
rgS(0, s)f = rS(0, s)f = e−2πisf

for every s ∈ R and f ∈ L2(Rn). Hence ag is an automorphism of the group H(n)
and the Schrödinger representation is unitary and irreducible, the representation
rgS is unitary and irreducible. Continuity in the sense of Definition 3.1.2 is obvious.

All irreducible unitary representations of the Heisenberg group with the same
action (up to scalar factor) of the center element of H(n) are unitary equiva-
lent due to Stone-von Neumann Theorem 3.2.1 . It means that there exists an
intertwining operator U(g) such that

U(g) ◦ rS(v, s) = rgS(v, s) ◦ U(g) (3.2)

for every (v, s) ∈ H(n) and g ∈ Sp(2n,R).

Proposition 3.2.2. A mapping g 7→ U(g), g ∈ Sp(2n,R), induces a projective
unitary representation U : Sp(2n,R) → U

(
L2(Rn)

)
, i.e. there exists a map

γ : Sp(2n,R) × Sp(2n,R) → S1 = U(1) such that for every a, b ∈ Sp(2n,R) it
holds that

U(ab) = γ(a, b)U(a)U(b).
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Proof. Take a, b ∈ Sp(2n,R) and (v, s) ∈ H(n) then by (3.2) are

U(a)
(
U(b)rS(v, s)U(b)−1

)
U(a)−1 = U(a)rbS(v, s)U(a)−1 = rabS (v, s),

U(ab)rS(v, s)U(ab)−1 = rabS (v, s).

Operators U(a)U(b) and U(ab) intertwine the same representation. By Schur
Lemma 3.1.2 it is possible to normalise both operators to be isometry therefore
U(ab) = γ(a, b)U(a)U(b) where γ(a, b) is a complex unit.

The group Sp(2n,R) is generated by a matrix J0 and matrices of the form(
D
0

0
(D−1)T

)
and

(
I
0
N
I

)
, where D ∈ GL(n,R) and N is symmetric square n×n ma-

trix see Proposition 1.2.2. Therefore it is sufficient to determine a representation
U on this generators. A mapping(

0 I
−I 0

)
7→ F : L2(Rn)→ L2(Rn) (3.3)(

D 0
0 (D−1)T

)
7→

(
f(x) 7→ (detD)

1
2f(DTx)

)
(3.4)(

I N
0 I

)
7→

(
f(x) 7→ e−i

1
2
〈Nx,x〉f(x)

)
(3.5)

defines one of possible projective representation of the group Sp(2n,R). Where
F denotes a Fourier transform and 〈·, ·〉 denotes a canonical scalar product on
Rn. See [22] for more details.

3.3 Metaplectic group and Segal-Shale-Weil

representation

The metaplectic group is a double covering of the symplectic group, hence we
start with reminder of a term covering and its relation to fundamental group of
a space. We refer an interested reared to a classical book [23]. Then we pass
to Segal-Shale-Weil representation of the metaplectic group. As a sources of this
topic we recommend [16], [22] and [40].

Definition 3.3.1. Let X be a topological space. The covering space of a space X
is a space C with continuous surjective mapping p : C → X, such that for every
x ∈ X there exists an open neighbourhood V of x such that p−1(V ) is disjoint
union of open sets in C, each of which is mapped homeomorphically onto V by
the mapping p.

Let X be a connected space. The covering p : C → X of a space X is called
n-fold covering of a space X, if for every x ∈ V is p−1(V ) disjoint union of n ∈ N
open sets homeomorphic with V .

Lemma 3.3.1. Let X and C be path connected spaces and let p : C → X
be a covering of X. Then an induced mapping π1p : π1(C) → π1(X) between
fundamental groups π1(C) and π1(X) of spaces C and X is injective. In addition,
the number of folds of p : C → X is equal to an index of the group (π1p)

(
π1(C)

)
in the group π1(X).
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The symplectic group Sp(2n,R) is path connected and its fundamental group
is π1

(
Sp(2n,R)

)
= Z, see Section 1.2. Since the group Z has only one subgroup

of index 2, there exists by Lemma 3.3.1 only one connected twofold covering of
the group Sp(2n,R) up to a homomorphism. Let us denote this double covering

λ : Mp(2n,R)→ Sp(2n,R). (3.6)

Definition 3.3.2. The covering space (3.6) of the symplectic group Sp(2n,R) is
called the metaplectic group Mp(2n,R).

The metaplectic group is a Lie group, which does not have any faithful finite
dimensional representation, therefore there does not exist any matrix realization
of the group Mp(2n,R).

It was proved by a ”cocycle computing” in [40] that the projective unitary
representation U of the group Sp(2n,R), which is described in the end of the
Chapter 3.2, lifts to a unitary representation of the metaplectic group Mp(2n,R).
For following representation, see [40] and [22, Prop. 1.3.5].

Proposition 3.3.2. There exists a unique unitary representation

m : Mp(2n,R)→ U(L2(Rn))

which satisfies
m(g) ◦ rS(v, s) = rS

(
λ(g)v, s

)
◦m(g)

for every g ∈ Mp(2n,R) and (v, s) ∈ H(n).

The unitary representation m is called Segal-Shale-Weil representation. For
proof of following two Propositions, see [16], [36] and references therein.

Proposition 3.3.3. The Segal-Shale-Weil representation m of the metaplectic
group is faithful, i.e. m : Mp(2n,R)→ U(L2(Rn)) is injective. The representation
m decomposes into the sum of two inequivalent irreducible unitary representa-
tions, which are restrictions of m to the subspaces of even and odd functions in
L2(Rn).

Proposition 3.3.4. The space of smooth vectors of the Segal-Shale-Weil rep-
resentation m is precisely the Schwartz space S(Rn). In particular S(Rn) is
m-invariant.

The elements of the representation space L2(Rn) are called symplectic spinors,
since they play the same role as elements of a spinor representation of the or-
thogonal group in the Riemannian case.

Let us define the symplectic Clifford multiplication, which allows us to mul-
tiply symplectic spinors by vectors as in the Riemannian case.

Definition 3.3.3. The symplectic Clifford multiplication

· : R2n × S(Rn)→ S(Rn)

is defined on the elements of base {e1, . . . , e2n} of the symplectic vector space
(R2n,Ω) for f ∈ S(Rn), q = (q1, . . . , qn) ∈ Rn and j = 1, . . . , n by

(ej · f)(q) = iqjf(q),
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(en+j · f)(q) = ∂qjf(q),

where ∂qj denotes partial derivative with respect to qj. We expand the symplectic
Clifford multiplication on the other elements of R2n linearly.

We will usually write v ·w ·f instead of v ·(w ·f) for v, w ∈ R2n and f ∈ S(Rn).
Next we will mention two properties of the symplectic Clifford multiplication,

for more details and proofs we refer to [22]. The symplectic Clifford multiplication
is an unbounded operator on L2(Rn).

Lemma 3.3.5. For every v, w ∈ (R2n,Ω) and f ∈ S(Rn), we have

v · w · f − w · v · f = −iΩ(v, w)f. (3.7)

Lemma 3.3.6. The symplectic Clifford multiplication is Mp(2n,R)-equivariant,
i.e. for every g ∈ Mp(2n,R), v ∈ R2n and f ∈ S(Rn), we have(

λ(g)v
)
·m(g)f = m(g)(v · f).

In the end of this section, let us mention a metaplectic Lie algebra.

Definition 3.3.4. The metaplectic Lie algebra mp(2n,R) is a Lie algebra of the
metaplectic Lie group Mp(2n,R).

On the Lie algebra level is mp(2n,R) isomorphic to sp(2n,R) because they are
tangent spaces at the unit element of the symplectic group and its double cover,
the metaplectic group. The metaplectic Lie algebra mp(2n,R) can be realized by
homogeneity two elements in the symplectic Clifford algebra Cls(R2n,Ω) similarly
to the symplectic Lie algebra, see Proposition 1.3.1.
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4. Fibre bundle, connection and
symplectic spinor bundle

The aim of this chapter is the introduction of geometric structures needed for the
definition of symplectic spinor bundle. We will recall symplectic manifolds, fibre
bundles, principal and associated bundles, connections and covariant derivation
on relevant structures. For a comprehensive survey of these structures, we refer
for example to monographs [4] or [27].

More informations and details about symplectic spinor bundle described in
the fourth section are in the book [22].

4.1 Symplectic manifolds

Definition 4.1.1. The symplectic manifold (M,ω) is a smooth manifold of even
dimension 2n with a skew-symmetric differential 2-form ω, which is closed, i.e.
dω = 0, and non degenerate, i.e. for every m ∈ M there does not exist any non
zero element v ∈ TmM such that ωm(u, v) = 0 for every u ∈ TmM .

Example 4. Examples of symplectic manifolds:

• The real vector space R2n with standard coordinates x1, . . . , xn, y1, . . . , yn
and the symplectic form ω =

∑n
j=1 dxj ∧ dyj. In this case we denote real

symplectic manifold simply by (R2n, ω) when no confusion can arise.

• The sphere S2 with any volume form.

• The cotangent bundle T ∗M of an n-dimensional manifold M with the sym-
plectic form ωM =

∑n
j=1 dxj ∧dξj where x1, . . . , xn are local coordinates on

M and x1, . . . , xn, ξ1, . . . , ξn are appropriate coordinates on T ∗M .

Definition 4.1.2. The symplectomorphism between two symplectic manifolds
(M1, ω1), (M2, ω2) is a diffeomorphism F : M1 → M2 satisfying F ∗ω2 = ω1,
where F ∗ is the cotangent mapping to the mapping F . Then manifolds (M1, ω1)
and (M2, ω2) are called symplectomorphic.

Theorem 4.1.1. (Darboux) Every symplectic manifold is locally symplecto-
morphic to (R2n, ω).

For details and proof we refer to [3, Th. 8.1].

4.2 Fibre bundles

We will work with fibre bundles with Fréchet manifolds as total spaces. Therefore
the following definitions will be stated in this generality.

A Fréchet manifolds are infinity dimensional generalizations of classical n-
dimensional differentiable manifolds.
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Definition 4.2.1. Let M be a Hausdorff topological space with a countable
basis of open sets. The map on M is a pair (U,ϕ), where U ⊂ M is open
and ϕ : U → V is a homeomorphism onto an open subset V of some fixed
Fréchet space F . The Fréchet atlas on M is a set of maps {(Uα, ϕα)}α∈A such
that M = ∪α∈AUα and every two maps are compatible, i.e. transition functions
ϕα ◦ ϕ−1

β are diffeomorphisms of open subsets of Fréchet space F . The set A is
an appropriate index set.

Definition 4.2.2. The Fréchet manifold M is a Hausdorff topological space with
countable basis of open sets and Fréchet atlas {(Uα, ϕα)}α∈A. A differentiable
structure on a Fréchet manifold is a maximal Fréchet atlas.

In the following we use the term manifold without Fréchet for a finite dimen-
sional manifold.

Definition 4.2.3. Let E and F be Fréchet manifolds and M be a manifold
with an atlas {(Uα, ϕα)}α∈A. The fibre bundle with fibre F is E with a smooth
surjective mapping π : E → M such that for every m ∈ M , there exists an open
neighbourhood m ∈ Uα ⊂ M and a diffeomorphism ψα : π−1(Uα) → Uα × F
which preserves fibres, i.e. the following diagram is commutative

E ⊃ π−1(Uα)
π

''OO
OOO

OOO
OOO

O

ψα // Uα × F
p

��
Uα,

where p is a projection on the first component in the Cartesian product.
The space M is called the base space of fibre bundle, E is called the total space

and F is the fibre. A couple (Uα, ψα) is called the map of fibre bundle or the local
trivialisation of E.

Two local trivialisations (Uα, ψα) and (Uβ, ψβ) are compatible if ψα ◦ ψ−1
β is

a diffeomorphism. It means that (ψα ◦ ψ−1
β )(x, s) =

(
x, ψ̄αβ(x, s)

)
, x ∈ Uαβ =

Uα∩Uβ, where ψ̄αβ : (Uα∩Uβ)×F → F , is smooth and ψ̄αβ(x, ·) is a diffeomorhism
of F for every x ∈ Uαβ. A mapping ψαβ : Uαβ → Diff(F ) with values in the group
Diff(F ) of all diffeomorphisms of F is called the transition function of the fibre
bundle.

Transition functions satisfy ψαβ(x)ψβγ(x) = ψαγ(x) for every x ∈ Uαβγ =
Uα ∩ Uβ ∩ Uγ and ψαα = Id |M .

A set of local trivialisations {(Uα, ψα)}α∈A is called the atlas of fibre bundle
if {Uα}α∈A is an open covering of M and every two local trivialisations are com-
patible. Two atlases of a fibre bundle are equivalent if their union is an atlas of
the fibre bundle.

Definition 4.2.4. A fibre bundle π : E →M with fibre V , where V is a Fréchet
space, is called the vector bundle, if π−1(m) is isomorphic to V (as a topological
vector space) for every m ∈M and ψα (from Definition 4.2.3) is a linear map for
every open Uα ⊂M .

A typical example of a vector bundle is the tangent bundle TM of an n
dimensional manifold M

TM =
⋃
m∈M

TmM
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together with a projection π : TM →M which maps every vector v ∈ TmM to a
point m ∈M .

Definition 4.2.5. The section of a fibre bundle π : E →M is a smooth mapping
σ : M → E such that π ◦ σ = Id |M . The local section is a smooth mapping
σ : U ⊂ M → E such that π ◦ σ = Id |U , where U is an open subset of M . We
will denote by Γ(M,E) a set of all smooth sections of fibre bundle π : E →M .

Definition 4.2.6. Let G be a Lie group and F be a Fréchet manifold, then the
G-bundle structure consists of

1) a fibre bundle π : E →M with a fibre F ,

2) a left action l : G× F → F of the Lie group on a fibre F ,

3) an atlas of the fibre bundle {(Uα, ψα)}α∈A with transition functions {ψαβ}
that acts on F by the action of the group G, i.e. {ψαβ} is a family of
transition functions ψαβ : Uαβ → G, such that ψαβ(x)ψβγ(x) = ψαγ(x) for
every x ∈ Uαβγ, ψαα(x) is an unit of the group G for every x ∈ Uα, and
l(ψαβ(x), s) = ψαβ(x)s for any s ∈ F and x ∈ Uαβ.

The group G is called the structure group.

Definition 4.2.7. The principal G-bundle is a G-bundle structure with a fibre
F = G. The left action of the group G on the group G is given by a left
translations.

Every principal G-bundle π : E →M has an uniquely determined right action
(right translation) r : E×G→ E given by ϕα

(
r(ϕ−1

α (x, a), g)
)

= (x, ag), x ∈M ,
(x, a) ∈ E, g ∈ G, such that it preserves fibres, i.e. π

(
r(m, g)

)
= π(m) for all

m ∈ E and g ∈ G. Left and right translations commute. This right action is free,
it means that whenever there exists u ∈ E such that g ∈ G satisfies r(u, g) = u,
then g is an unit of the group G.

Example 5. The bundle of symplectic frames of a 2n dimensional symplectic
vector space over a symplectic manifold (M,ω) is a principal Sp(2n,R)-bundle
πP : P → M . A fibre of this bundle at a point m ∈ M is a set of all symplectic
bases of a 2n dimensional vector space Pm = π−1(m) situated at the pointm. This
set is isomorphic to Sp(2n,R) and therefore it is possible to define differentiable
structure on P . A structure group of this frame bundle is Sp(2n,R) which acts,
as usual, on symplectic bases of the given symplectic vector space.

Definition 4.2.8. Let π1 : E1 →M1 be a principal G1-bundle and π2 : E2 →M2

be a principal G2-bundle. Let f : M1 →M2 be a smooth mapping of manifolds. A
mapping φ : E1 → E2 is called the bundle homomorphism over f if the following
diagram commutes

E1 ×G1

φ×Λ
��

r1 // E1

φ
��

π1 //M1

f
��

E2 ×G2
r2 // E2

π2 //M2

where r1 and r2 are the relevant actions of the groups on the total spaces and
Λ : G1 → G2 is a homomorphism of groups.

26



Definition 4.2.9. Let π : E → M be a principal G-bundle, V be a Fréchet
space and ρ : G → Aut(V ) be a representation of a group G. Let us define an
equivalence on E × V by

(u, s) ∼
(
u · g, ρ(g−1)(s)

)
, g ∈ G, (u, s) ∈ E × V.

Then the associated bundle E ×ρ V to E by a representation ρ, or associated
bundle E ×ρ V for short, is a space of equivalence classes of ∼.

There is a bundle structure over M with a standard fibre V on an associated
bundle E ×ρ V . This structure can be determined by local sections σ : M → E
since for every v ∈ V a mapping σ : M → E determines a section σ̃ : M → E×ρV
given by x 7→ [(σ(x), v)], x ∈M . We shall write [σ(x), v] briefly.

We will denote by Γ(M,V) the set of all smooth sections of an associated
bundle V = E ×ρ V over a manifold M .

For the proof of the following Proposition see [27, p. 94].

Proposition 4.2.1. A set of smooth sections Γ(M,V) of associated bundle V =
E×ρV is isomorphic (as a vector space) to the set C∞(E, V )G of all G-equivariant
mappings with values in V , where

C∞(E, V )G = {f : E → V | f(pg) = ρ(g)f(p) for all g ∈ G and all p ∈ E}.

4.3 Principal connection, associated connection

and covariant derivative

We start with an affine connection and a definition of a symplectic connection on
a symplectic manifold. Then we pass to the connection on a principal bundle.

Definition 4.3.1. The affine connection on a smooth manifold M is a mapping
∇ which maps an ordered couple of vector fields X, Y ∈ X(M) to a smooth vector
field ∇XY , such that

1) ∇ is R-bilinear,

2) ∇fXY = f∇XY for every smooth function f on M ,

3) ∇X(fY ) = (Xf)Y + f(∇XY ) for every smooth functions f on M (Leibniz
rule).

Definition 4.3.2. The symplectic connection ∇ is an affine connection ∇ on a
symplectic manifold (M,ω) such that ∇ω = 0, by which we mean

X(ω(Y, Z)) = ω(∇XY, Z) + ω(Y,∇XZ),

and its torsion is zero, i.e.

T (X, Y ) = ∇XY −∇YX − [X, Y ] = 0

for all vector fields X, Y, Z ∈ X(M).
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Unfortunately, there is no canonical unique choice of a symplectic connection
as the Levi-Civita connection in Riemannian geometry, see [20] and [38].

Let π : E → M be a G-principal bundle and V be a Fréchet space. We will
denote by ρ a representation ρ : G→ Aut(V ) of the Lie group G. Let g be a Lie
algebra of the structure group G of the principal bundle π : E →M .

Vertical vectors on a principal bundle π : E → M are such vectors from
tangent space TpE, at a point p ∈ E, that the tangent mapping π∗ : TpE →
Tπ(p)M is zero on them. We will denote by T vpE the space of all vertical vectors
at the point p ∈ E. Any smooth distribution E 3 p→ T hp E ⊆ TpE that satisfies
TpE = T vpE ⊕ T hp E is called horizontal distribution.

The fundamental vector field of an action of a Lie group G on a principal
bundle π : E →M is the field

X̃(p) =
d

dt

(
p exp(tX)

)∣∣
t=0
,

where X ∈ g, p ∈ E. There is a linear isomorphism

Φ : T vpE 3 X̃(p) 7→ X ∈ g,

and a vector X is called the generator of a vector field X̃.
We denote by Zp the composition of the isomorphism Φ with a projection on

the vertical part. Then Zp is a differential 1-form on E with values in g.

Zp : TpE = T vpE ⊕ T hp E → g,

Zp : X̃(p)⊕ Y 7→ X.

Definition 4.3.3. The connection on a principal G-bundle π : E → M with an
action r(g) : E → E, g ∈ G of group G, is a 1-form Z on E with values in the
vector space g, such that:

1. Z(X̃) = X, where X̃ is the fundamental vector field of an action of the Lie
group G on E.

2. The form Zp depends smoothly on p.

3. Zr(g)(p)
(
r(g)∗v

)
= Ad(g−1)Zp(v), where Ad is an adjoint representation Ad :

G→ Aut(g), r(g)∗ is the tangent mapping to r(g), g ∈ G and v ∈ TpE.

Recall that the Lie algebra g is the tangent space to manifold G at the unit e
of the group G and End(V ) is a tangent space to Aut(V ) at ρ(e) = Id. Therefore
a differential ρ∗ is a linear transformation ρ∗ : g → End(V ). The structures of
the Lie bracket are induced by left (or right) translations on G and Aut(V ).

Notice Z : TE → g and ρ∗ : g → End(V ). Thus we state the following
definition.

Definition 4.3.4. Let E ×ρ V be an associated bundle to a principal G-bundle
π : E → M by a representation ρ : G → Aut(V ) and Z be a connection on the
principal G-bundle π : E →M . Then the associated connection on the associated
bundle E ×ρ V is ρ∗ ◦ Z.
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Let us denoted by V = E ×ρ V an associated bundle to a principal bundle
π : E → M by representation ρ : G → Aut(V ). We will write a section of an
associated bundle ϕ ∈ Γ(M,V) by

ϕ = [p, w], for m ∈M by ϕ(m) = [p(m), w(m)], (4.1)

where p : U ⊂ M → E and w = ν ◦ p : U ⊂ M → V , where ν is G-ekvivariantńı
V -valued function corresponding to the section ϕ by the Proposition 4.2.1.

Definition 4.3.5. We will denoted by V ∞ the set of all smooth vectors in V .
Let Z : TE → g be a principal connection and ρ∗ : g → End(V ∞) be a tangent
mapping to representation ρ. The covariant derivation associated to principal
connection Z is

∇Xϕ = ∇X [p, w] =
[
p,X(v) + ρ∗

(
p∗Z(X)

)
w
]
,

where X ∈ X(M) and ϕ = [p, w] ∈ Γ(M,V) as in (4.1).

4.4 Symplectic spinor bundle

Let us denote by P a bundle of symplectic frames πP : P →M over a symplectic
manifold (M,ω) (see Example 5). Then P is a principal Sp(2n,R)-bundle over
the manifold M . The local symplectic frame is a local section of πP : P →M .

Let us recall that λ : Mp(2n,R) → Sp(2n,R) is a double covering of the
symplectic group, see 3.3.

Definition 4.4.1. Let πQ : Q→M be a principal Mp(2n,R)-bundle over a sym-
plectic manifold. The metaplectic structure on a symplectic manifold (M,ω) is a
principal Mp(2n,R)-bundle πQ : Q→M with a surjective bundle homomorphism
Λ : Q→ P over the identity on M , i.e the following diagram is commutative

Q×Mp(2n,R)

Λ×λ

��

// Q

Λ

��

πQ

��@
@@

@@
@@

M

P × Sp(2n,R) // P

πP

??~~~~~~~~

The horizontal arrows in the diagram are respective actions of groups on the
relevant principal bundles.

Remark 2. The existence of a metaplectic structure of a given symplectic mani-
fold is not automatic. The topological obstruction to the existence of a metaplec-
tic structure is the same as in Riemannian Spin geometry, as is said in [22, Prop.
3.1.2]. A symplectic manifold (M,ω) admits a metaplectic structure if and only
if the second Stiefel-Withney class w2(M) ∈ H2(M,Z2) of M vanishes. If this is
the case, the isomorphy classes of metaplectic stuctures on (M,ω) are classified
by the first cohomology group H1(M,Z2). (For explanation and definitions of
used topological terms we refer to [41].)
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Let us recall that the space of smooth vectors of the Segal-Shale-Weil repre-
sentation m of Mp(2n,R) is precisely S(Rn) ⊂ L2(Rn). We call the elements of
Schwartz space S(Rn) symplectic spinors as was mentioned in Section 3.3.

Definition 4.4.2. The symplectic spinor bundle is a vector bundle associated to
a principal Mp(2n,R)-bundle Q over a manifold M by the representation

m : Mp(2n,R)→ Aut(S(Rn))

and we denote it by S = Q ×m S(Rn). Smooth sections of symplectic spinor
bundle ϕ ∈ Γ(M,S) are called symplectic spinor fields.

Remark 3. For simplicity, we refer to symplectic spinor fields often as symplectic
spinors when it does not cause any confusion.

Instead of Γ(M,S) we use C∞(M,S) for symplectic spinor fields when we
emphasise the smoothness of them. In the case when the symplectic spinor bundle
is trivial, sections ϕ ∈ C∞(M,S) reduces to mappings ϕ : M → S(Rn) that we
denote them by C∞(M,S(Rn)), for relevant n.

Let us recall, that the symplectic Clifford multiplication is Mp(2n,R)-equi-
variant, see Lemma 3.3.6. Let ϕ be a symplectic spinor field, i.e. a section of
Q ×m S(Rn), and X be a vector field on M , i.e. it is a section of the associated
bundle TM = Q×λR2n. Let us write sections of associated bundle S as ϕ = [p, f ]
and X = [p, v] as in (4.1), i.e. for m ∈M

ϕ(m) = [p(m), f(m)], X(m) = [p(m), v(m)],

where p : U ⊂M → P , v(m) ∈ R2n and f(m) ∈ S(Rn).
The symplectic Clifford multiplication is already defined for elements v(m) ∈

R2n and f(m) ∈ S(Rn) therefore it is possible to define its ”lift” onto a symplectic
spinor bundle.

Definition 4.4.3. The symplectic Clifford multiplication on a symplectic spinor
bundle is · : X(M)× Γ(M,S)→ Γ(M,S),

[p, v] · [p, f ] = [p, v · f ], (4.2)

where [p, v] ∈ X(M) and [p, f ] ∈ Γ(M,S).

Definition 4.4.4. Let Z be a connection on a principal Sp(2n,R)-bundle πP :
P → M corresponding to a symplectic connection ∇ on a manifold M . Let Z̄
be a ”lift” of Z onto a principal Mp(2n,R)-bundle πQ : Q→M . The symplectic
spinor covariant derivative is a covariant derivative ∇S associated to Z̄, i.e.

∇S : Γ(M,S)→ Γ(M,T ∗M ⊗ S).

By Proposition 4.2.1, a section ϕ of the associated vector bundle S = Q ×m

S(Rn) can be understood as an Mp(2n,R)-equivariant S(Rn)-valued function on
Q. Let us denote by ϕ̂ this function, i.e. ϕ̂ : Q→ S(Rn). For a local symplectic
frame s : U → P we denote by s̄ : U → Q one of a ”lifts” of s to Q. Let us set
ϕs = ϕ̂ ◦ s̄.

Let [q, ψ] denote a relevant element in S for q ∈ Q and ψ ∈ S(Rn).
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Theorem 4.4.1. Let ∇S be a symplectic spinor covariant derivative on M . Then

∇S
Xϕ =

[
s̄, X(ϕs)

]
− i

2

n∑
j=1

ej · (∇Xej) · ϕ− ej · (∇Xej+n) · ϕ, (4.3)

where X ∈ X(M), ϕ ∈ Γ(M,S), {e1, . . . , e2n} is a local symplectic frame of M
and ∇ is a symplectic connection on M .

See [22, Prop. 3.2.6] for a proof, let us only notice that the proof is based on
Definition 4.3.5.

Remark 4. A symplectic spinor covariant derivative on (R2n, ω) is, by (4.3),
equal to the partial derivative because the covariant derivatives ∇ejek vanish for
the coordinate fields ej, ek ∈ { ∂

∂xa
, ∂
∂yb
}na,b=1.

Theorem 4.4.2. For every X, Y ∈ Γ(M,TM) and ϕ ∈ Γ(M,S), the symplectic
spinor covariant derivative ∇S satisfies

∇S
X(Y · ϕ) = (∇XY ) · ϕ+ Y · ∇S

Xϕ.

We refer an interested reader to the book [22, Ch. 3.2] where relevant prop-
erties of symplectic spinor covariant derivative on the symplectic spinor bundle
are treated.
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5. Symplectic operators

Let (M,ω) be a 2n-dimensional symplectic manifold with a metaplectic structure
and a symplectic connection ∇. The symplectic spinor covariant derivative ∇S

on the symplectic spinor fields is defined to be the covariant derivative associated
to Z̄. See Section 4.4.

Let us denote by {e1, . . . , en, en+1, . . . , e2n} a local symplectic frame with re-
spect to ω on (M,ω) and the dual frame by {ε1, . . . , ε2n}. We will be using the
symbol ωjk, j, k = 1, . . . , 2n, for elements of the inverse matrix to ωjk = ω(ej, ek)
of the symplectic form ω, i.e.

ωjk = 1 for k = n+ j, ωjk = −1 for k = j − n, ωjk = 0 otherwise.

5.1 Symplectic Dirac operator

The symplectic Dirac operator acting on symplectic spinor fields is defined in a
similar way as the Dirac operator on Riemannian manifolds. The definition of
the symplectic Dirac operator is given in the book [22].

For purpose of the following definition we will denote by cs instead by · the
symplectic Clifford multiplication on a symplectic spinor bundle defined in (4.2).

Definition 5.1.1. The symplectic Dirac operator Ds on a symplectic manifold
(M,ω) is a first order differential operator acting on smooth symplectic spinor
fields

Ds : Γ(M,S) −→ Γ(M,S).

The symplectic Dirac operator is defined as the composition

Ds = cs ◦ ω−1 ◦ ∇S, (5.1)

Ds : Γ(M,S)→ Γ(M,T ∗M ⊗ S)→ Γ(M,TM ⊗ S)→ Γ(M,S),

where we identify the bundles T ∗M and TM by putting a tangent vector field
into the first argument of ω. The resulting map is denoted by ω−1.

The symplectic Dirac operator is a symplectically invariant endomorphism of
smooth symplectic spinors. Two symplectic Dirac operators are defined in [22],
namely the symplectic Dirac operator Ds as in Definition 5.1.1 and the symplectic
Dirac operator D̃s, defined with use of the Riemannian metric g on M instead of
symplectic form ω for identifying Γ(M,T ∗M ⊗ S) with Γ(M,TM ⊗ S), i.e.

D̃s = cs ◦ g−1 ◦ ∇S.

Unfortunately, the operator D̃s is not symplectically invariant. We do not use it
in the thesis.

Proposition 5.1.1. Let {ej}2n
j=1 be a local symplectic frame with respect to ω

on a 2n-dimensional symplectic manifold (M,ω). Then the symplectic Dirac
operator Ds is locally equal to

Dsϕ =
2n∑

j,k=1

ωjkej · ∇S
ek
ϕ, (5.2)

where ϕ ∈ Γ(M,S).
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Let us consider the real symplectic manifold (R2, ω). Since the first cohomolo-
gy group H1(R2,Z2) = {0}, its only metaplectic structure is the trivial Mp(2,R)-
bundle Q = R2 × Mp(2,R), see [22, Ex 4.1.4]. Consequently, the symplectic
spinor bundle S = Q×m S(R) is trivial and their sections are mappings

ϕ : R2 → S(R).

The mapping ϕ can be considered as a mapping ϕ : R3 → C such that, for any
fixed (x, y) ∈ R2 the mapping ϕ̃(x, y) : q 7→ ϕ(x, y, q) is a Schwartz function,
q ∈ R, i.e. ϕ̃(x, y) ∈ S(R).

A symplectic spinor covariant derivative on a real symplectic manifold is just
the partial derivative, see Remark 4 at the end of Section 4.4. Then according to
(5.2), the symplectic Dirac operator takes the form

Dsϕ(x, y, q) = iq
∂ϕ

∂y
(x, y, q)− ∂2ϕ

∂x∂q
(x, y, q). (5.3)

For simplicity, we often write ∂x, ∂y and ∂q instead of ∂
∂x

, ∂
∂y

and ∂
∂q

. Then the
symplectic Dirac operator is

Ds = iq∂y − ∂x∂q. (5.4)

5.2 Symplectic spinor valued forms

We are interested in this section in symplectic spinor valued exterior forms with
values in the vector space

•∧
(R2n)∗ ⊗ S(Rn),

where (R2n)∗ is the dual vector space to R2n.
The representation of the metaplectic group Mp(2n,R) on symplectic spinor

valued forms

% : Mp(2n,R)→ Aut
( •∧

(R2n)∗ ⊗ S(Rn)
)
, (5.5)

is defined by
%(g)(α⊗ φ) =

(
λ(g)∗

)∧r
α⊗m(g)φ, (5.6)

where λ : Mp(2n,R) → Sp(2n,R) is the twofold covering of a symplectic group,
the symbol ∧r denotes the r-th exterior power, r = 0, . . . , 2n, m is the Segal-Shale-
Weil representation and α ∈

∧r(R2n)∗, φ ∈ S(Rn). We extend the representation
% by linearity to any element.

Definition 5.2.1. The space of exterior differential forms with values in sym-
plectic spinors is

Ωr(M,S) = Γ

(
M,Q×%

( r∧
(R2n)∗ ⊗ S(Rn)

))
. (5.7)

Proposition 5.2.1. The following decomposition into irreducible mp(2n,R)-
modules holds. For all j = 0, . . . , 2n, n ≥ 1

j∧
(R2n)∗ ⊗ S(Rn)± =

⊕
{k|(j,k)∈In}

Ejk±, (5.8)

33



where In = {(j, k)|j = 0, . . . , n, k = 0, . . . , j} ∪ {(j, k)|j = n + 1, . . . , 2n, k =
0, . . . , 2n− j}.

See [30] for a proof and a description of highest weight mp(2n,R)-modules

Eik± in the terms of representation theory.
Modules Ejk± are Fréchet spaces. In addition, for any (j, k), (j, l) ∈ In, k 6= l

we have Ejk± 6= Ejl± (as mp(2n,R)-modules) for all combinations of ± on both
sides. Thus for j = 0, . . . , 2n, the decomposition of the tensor product

j∧
(R2n)∗ ⊗ (S(Rn)+ ⊕ S(Rn)−) =

⊕
k

(Ejk+ ⊕ Ejk−)

is multiplicity-free. It means that
∧j(R2n)∗⊗ (S(Rn)+⊕S(Rn)−) splits into non-

isomorphic irreducible submodules Ejk±. Let us set Ejk = Ejk+ ⊕ Ejk− and
consider the associated vector bundle

E jk = Q×% Ejk (5.9)

for (j, k) ∈ In. Let us recall that the symplectic spinor bundle for 2n dimensional
symplectic manifold was defined as the associated bundle S = Q×m S(Rn).

There exist uniquely defined invariant projections

pj,k : Ωj(M,S)→ Γ(M, E jk) for (j, k) ∈ In, (5.10)

because the decomposition of
∧j(R2n)∗⊗ (S(Rn)+⊕S(Rn)−) is multiplicity-free.

Let us introduce two Mp(2n,R)-equivariant endomorphisms of
∧•(R2n)∗ ⊗

S(Rn) acting on the decomposition.

Definition 5.2.2. Let α⊗ ϕ ∈
∧r(R2n)∗ ⊗ S(Rn). We set for r = 0, . . . , 2n

X :
r∧

(R2n)∗ ⊗ S(Rn)→
r+1∧

(R2n)∗ ⊗ S(Rn),

Y :
r∧

(R2n)∗ ⊗ S(Rn)→
r−1∧

(R2n)∗ ⊗ S(Rn) (5.11)

by formulas

X(α⊗ ϕ) = −
2n∑
j=1

εj ∧ α⊗ ej · ϕ,

Y (α⊗ ϕ) =
2n∑

j,k=1

ωjkιejα⊗ ek · ϕ, (5.12)

where ιvα denotes the contraction of an exterior form α by a vector v ∈ R2n.

The operators X and Y are well defined in the sense that they are independent
of a choice of a symplectic basis {ej}2n

j=1. The operators are related to Howe
duality on the symplectic spinor valued exterior forms. See [30], for more details
about this operators.

Since the operators X, Y are Mp(2n,R)-equivariant with respect to repre-
sentation %, it is possible to define their lifts to sections of the corresponding
associated bundles. Let us denote this lifts by the same symbols. Then we can
write an explicit formulas for projections (5.10), see [14, Prop. 5.1.3].
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Proposition 5.2.2. Let (M,ω) be a 2n-dimensional symplectic manifold with a
metaplectic structure. Projections p1j : Ω1(M,S) → Γ(M, E1j) for j = 0, 1 are
given by

p10 =
i

n
XY

p11 = Id |Ω1(M,S) −
i

n
XY.

Definition 5.2.3. Let us choose a local symplectic frame {ej}2n
j=1 and let us

denote its dual coframe by {εj}2n
j=1. The symplectic spinor exterior covariant

derivative d∇
S

induced by the symplectic spinor covariant derivative∇S is defined
by

d∇
S

(α⊗ ϕ) = dα⊗ ϕ+ (−1)r
2n∑
j=1

εj ∧ α⊗∇S
ej
ϕ, (5.13)

where α ⊗ ϕ ∈ Ωr(M,S), α ∈ Ωr(M) and ϕ ∈ Γ(M,S). For the other elements
of Ωr(M,S), d∇

S
is extended by linearity.

5.3 Symplectic twistor operators

We shall define symplectic twistor operators acting on symplectic spinor valued
exterior forms. The definition is taken from [29]. Its contact projective analogue
was introduced in [24].

Definition 5.3.1. The j-th symplectic twistor operators (Ts)j

(Ts)j : Γ(M, E jj)→ Γ(M, E j+1,j+1),

(Ts)j = pj+1,j+1d∇
S |Γ(M,Ejj)

for j = 0, . . . , n.

We are interested only in the zeroth symplectic twistor operator (Ts)0 in this
thesis. From this reason and for simplicity of notation, we write Ts instead of
(Ts)0 and refer to it as to the symplectic twistor operator.

Let us present an equivalent definition of the (zeroth) symplectic twistor op-
erator. We will denote the symplectic Clifford multiplication on a symplectic
spinor bundle by cs again. See (4.2).

Definition 5.3.2. The symplectic twistor operator Ts on a symplectic manifold
(M,ω) is the first order differential operator

Ts : Γ(M,S)→ Γ(M, T )

acting on smooth symplectic spinor fields

Ts = PKer(cs) ◦ ω−1 ◦ ∇S, (5.14)

Ts : Γ(M,S)→ Γ(M,T ∗M ⊗ S)→ Γ(M,TM ⊗ S)→ Γ(M, T ),

where T is the space of symplectic twistors, T ∗M ⊗ S ' S ⊕ T , given by the
projection

PKer(cs) : Γ(M,T ∗M ⊗ S) −→ Γ(M, T )

on the kernel of the symplectic Clifford multiplication cs.
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The symplectic twistor operator is Mp(2n,R)-invariant. See Lemma 6.4.1.
Let ϕ ∈ Γ(M,S) be a symplectic spinor field, i.e. a section of the symplectic

spinor bundle over the manifold M . The symplectic covariant derivative ∇S =
d∇

S |Γ(M,S) can be locally written in the form

∇Sϕ =
2n∑
k=1

εk ⊗∇S
ek
ϕ. (5.15)

Proposition 5.3.1. In the local symplectic coframe {ε1}2n
j=1 dual to the symplec-

tic frame {ej}2n
j=1, we have on a 2n-dimensional symplectic manifold, the following

formulas for Ts

Ts(ϕ) =
2n∑
k=1

εk ⊗∇S
ek
ϕ+

i

n

2n∑
j,k,l=1

εl ⊗ ωkjel · ej · ∇S
ek
ϕ (5.16)

=
(

1 +
1

n

) 2n∑
k=1

εk ⊗∇S
ek
ϕ+

i

n

2n∑
j,k,l=1

εl ⊗ ωkjej · el · ∇S
ek
ϕ, (5.17)

where ϕ ∈ Γ(M,S).

Proof. Using the expression for the covariant derivation (5.15) and expressions
(5.12) and (3.7), we obtain

T (ϕ) = p11(∇Sϕ) =
2n∑
k=1

εk ⊗∇S
ek
ϕ− i

n
XY

( 2n∑
m=1

εm ⊗∇S
emϕ

)
=

2n∑
k=1

εk ⊗∇S
ek
ϕ− i

n
X
( 2n∑
j,k=1

ωkjej · ∇S
ek
ϕ
)

=
2n∑
k=1

εk ⊗∇S
ek
ϕ+

i

n

( 2n∑
j,k,l=1

εl ⊗ ωkjel · ej · ∇S
ek
ϕ
)

=
2n∑
k=1

εk ⊗∇S
ek
ϕ+

i

n

( 2n∑
j,k,l=1

εl ⊗ ωkj(ej · el · ∇S
ek
ϕ− iω(el, ej)∇S

ek
ϕ)
)

=
(

1 +
1

n

) 2n∑
k=1

εk ⊗∇S
ek
ϕ+

i

n

2n∑
j,k,l=1

εl ⊗ ωkjej · el · ∇S
ek
ϕ,

which proves the formula.

From the local expression for the symplectic Dirac (5.2) and the symplectic
twistor operator (5.16) we get the following.

Lemma 5.3.2.

Ts =
2n∑
l=1

εl ⊗
(
∇S
el
− i

n
el ·Ds

)
, (5.18)

where {ε1}2n
j=1 is local symplectic coframe dual to the symplectic frame {ej}2n

j=1.
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6. Symplectic twistor operator
on (R2, ω)

Text of this chapter is based on an article
Symplectic twistor operator and its solution space on R2,
published in Archivum Math. Volume 49 (2013), No. 3, 161-185.
Marie Dostálová, Petr Somberg.
Abstract We introduce the symplectic twistor operator Ts in the symplectic

spin geometry of real dimension two, as a symplectic analogue of the Dolbeault
operator in the complex spin geometry of complex dimension 1. Based on the
techniques of the metaplectic Howe duality and the algebraic Weyl algebra, we
compute the space of its solutions on the real symplectic manifold (R2, ω).

Key words: Symplectic spin geometry, Metaplectic Howe duality, Symplectic
twistor operator, Symplectic Dirac operator.

MSC classification: 53C27, 53D05, 81R25.

6.1 Introduction and motivation

Central problems and questions in differential geometry of Riemannian spin man-
ifolds are usually reflected in analytic and spectral properties of the pair of first
order differential operators acting on spinors, the Dirac operator and the twistor
operator. In particular, there is a rather subtle relation between geometry and
topology of a given manifold and the spectra resp. the solution spaces of these
operators. See, e.g., [1], [18] and references therein.

Based on the Segal-Shale-Weil representation, the symplectic version of the
Dirac operator Ds was introduced in [28], and some of its basic analytic and spec-
tral properties were studied in [5], [22], [24]. Introducing the metaplectic Howe
duality, [9], a representation theoretical characterization of the solution space
of symplectic Dirac operator was determined on the real symplectic manifold
(R2n, ω). However, an explicit analytic description of this space is still missing
and this fact has also substantial consequences for the present chapter.

A variant of the first order symplectic twistor operator Ts was introduced in
[24] in the framework of contact parabolic geometry, descending to the symplectic
twistor operator on symplectic leaves of foliation. Basic properties, including the
solution space, of the symplectic twistor operator on R2n are discussed in Chapter
7. In particular, the case n = 1 fits into the framework of Chapter 7 as well, but
all the results for n = 1 and n > 1 follow from intrinsically different reasons.
Consequently, there is a substantial difference between the cases n = 1 and
n > 1, and the approach in Chapter 7 based on the procedure of the geometrical
prolongation of the symplectic twistor differential equation did not enlighten the
reason for this difference. Roughly speaking, the problem behind this is that many
first order operators (e.g., the Dirac and twistor operators on spinors) coincide
in the case of one complex dimension with the Cauchy-Riemann (Dolbeault) and
its conjugate operators.

The aim of the present chapter is to fill this gap and discuss the case of n = 1
by different methods, namely, by analytical and combinatorial techniques. A
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part of the problem of finding the solution space of Ts is the discovery of certain
canonical representative solutions of the symplectic Dirac operator Ds and the
discovery of certain non-trivial identities in the algebraic Weyl algebra.

The system of partial differential equations representing Ts is overdetermined,
acting on the space of functions valued in an infinite dimensional vector space of
the Segal-Shale-Weil representation, and the solution space of Ts is (even locally)
infinite dimensional. Notice that the techniques of the metaplectic Howe duality
are not restricted to (R2, ω), but it is not straightforward for (R2n, ω), n > 1, to
write more explicit formulas for solutions with values in the higher dimensional
non-commutative algebraic Weyl algebra.

The structure of the present chapter goes as follows. In the first Section, we
review basic properties of the symplectic spin geometry in the real dimension 2,
with emphasis on the metaplectic Howe duality. In Section 6.3, we give a general
definition of the symplectic twistor operator Ts. The space of polynomial solutions
of Ts on (R2, ω) is analysed in Section 6.5, relying on two basic principles. The first
one is representation theoretical, coming from the action of the metaplectic Lie
algebra on the function space of interest. The second one is then the construction
of representative solutions in the particular irreducible subspaces of the function
space. As a byproduct of our approach, we construct specific polynomial solutions
of the symplectic Dirac operator Ds, which is also new according to our best
knowledge.

6.2 Metaplectic Lie algebra mp(2,R), symplectic

Clifford algebra and class of simple weight

modules for mp(2,R)

In the present section, we collect some basic algebraic and representation theo-
retical information needed in the analysis of the solution space of the symplectic
twistor operator Ts. See, e.g., [5], [9], [19], [22], [24].

Let us consider a 2-dimensional symplectic vector space (R2, ω = dx ∧ dy),
and a symplectic basis {e1, e2} with respect to the non-degenerate two form ω ∈
∧2(R2)?. The linear action of sp(2,R) ' sl(2,R) on R2 induces the action on
its tensor representations, and we have g?ω = ω for all g ∈ Sp(2,R). The set of
three matrices

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
is a basis of sp(2,R).

The metaplectic Lie algebra mp(2,R) is the Lie algebra of the two-fold group
covering λ : Mp(2,R) → Sp(2,R) of the symplectic Lie group Sp(2,R). It
can be realized by homogeneity two elements in the symplectic Clifford algebra
Cls(R2, ω), where the isomorphism λ? : mp(2,R)→ sp(2,R) is given by

λ?(e · e) = −2X,

λ?(f · f) = 2Y,

λ?(e · f + f · e) = 2H. (6.1)
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Definition 6.2.1. The symplectic Clifford algebra Cls(R2, ω) is an associative
unital algebra over C, realized as a quotient of the tensor algebra T (e, f) by a
two-sided ideal I ⊂ T (e, f), generated by

v · w − w · v = −iω(v, w)

for all v, w ∈ R2.

The symplectic Clifford algebra Cls(R2, ω) is isomorphic to the Weyl algebra
W2 of complex valued algebraic differential operators on R, and the symplectic
Lie algebra sp(2,R) can be realized as a subalgebra of W2. In particular, the
Weyl algebra is an associative algebra generated by {q, ∂q}, the multiplication
operator by q and the differentiation ∂q. The symplectic Lie algebra sp(2,R) has

a basis {− i
2
q2,− i

2
∂2

∂q2
, q ∂

∂q
+ 1

2
}.

The symplectic spinor representation is the irreducible Segal-Shale-Weil repre-

sentation of Cls(R2, ω) on L2(R, e−
q2

2 dqR), the space of square integrable functions

on (R, dµ = e−
q2

2 dqR), where dqR is the Lebesgue measure. Its action, the sym-
plectic Clifford multiplication cs, acts on the subspace of C∞(smooth)-vectors
given by the Schwartz space S(R) of rapidly decreasing complex valued func-
tions on R as its dense subspace. The space S(R) can be regarded as a smooth
Fréchet globalization of the space of K̃-finite vectors in the representation, where
K̃ ⊂ Mp(2,R) is the maximal compact subgroup which is the double cover of
K = U(1) ⊂ Sp(2,R). Though we shall work in the smooth globalization S(R),
our representative vectors constructed in Section 6.5 belong to the underlying
Harish-Chandra module of K̃-finite vectors preserved by cs.

The function spaces associated to Segal-Shale-Weil representation are sup-
ported on R ⊂ R2, a maximal isotropic subspace of (R2, ω). The restriction of
Segal-Shale-Weil representation to mp(2,R) decomposes into two representations
realized on the subspace of even resp. odd functions

% : mp(2,R)→ End(S(R)), (6.2)

where the basis vectors act by

%(e · e) = iq2,

%(f · f) = −i∂2
q ,

%(e · f + f · e) = q∂q + ∂qq. (6.3)

Because it is a complex representation of mp(2,R) we may consider complex
algebra mp(2,C) and isomorphic complex algebra sp(2,C).

In this representation Cls(R2, ω) acts on L2(R, e−
q2

2 dqR) by unbounded op-
erators with the subdomain S(R). The space of K̃-finite vectors has a basis

{qje− q
2

2 }∞j=0. Its even mp(2,C)-submodule is generated by {q2je−
q2

2 }∞j=0 and the

odd by {q2j+1e−
q2

2 }∞j=0. It is an irreducible representation of mp(2,C) n h(2),
the semidirect product of mp(2,C) and the 3-dimensional Heisenberg Lie algebra
spanned by {e1, e2, Id}. Cf., [16]. In this chapter, we denote the Segal-Shale-Weil
representation by S. We have S ' S+ ⊕ S− as mp(2,C)-module.

Let us denote by Pol(R2,C) the vector space of complex valued polynomi-
als on R2, and by Poll(R2,C) the subspace of homogeneity l polynomials. The
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complex vector space Poll(R2,C) is as an irreducible mp(2,C)-module isomorphic
to Sl(C2), the l-th symmetric power of the complexification of the fundamental
vector representation R2, l ∈ N0.

6.3 Segal-Shale-Weil representation and meta-

plectic Howe duality

Let us review a representation-theoretical result of [2]. We consider the Borel
subalgebra of sp(2,C) generated by X ′ = 1

2

(−i
1

1
i

)
and H ′ =

(
0
i
−i
0

)
and Borel

subalgebra of mp(2,C) generated by elements λ−1
? (X ′) and λ−1

? (H ′).
Let $1 be the fundamental weight of the Lie algebra sp(2,C), and let L($) de-

note the simple module over universal enveloping algebra U(mp(2,C)) of mp(2,C)
generated by the highest weight vector of the weight $. Then the Segal-Shale-
Weil representation for mp(2,C) on Pol(R2,C)⊗ S(R) is the highest weight rep-
resentation L(−1

2
$1)⊕ L(−3

2
$1).

The decomposition of the space of polynomial functions on R2 valued in the
Segal-Shale-Weil representation corresponds to the tensor product of L(−1

2
$1)⊕

L(−3
2
$1) with symmetric powers Sl(C2n), l ∈ N0, of the fundamental vector

representation C2 of sp(2,C). Note that all summands in the decomposition are
again irreducible representations of mp(2,C).

Lemma 6.3.1. ([2]) Let l ∈ N0.

1. We have for L(−1
2
$1) and any l

L(−1

2
$1)⊗ Sl(C2) ' L(−1

2
$1)⊕ L($1 −

1

2
$1)⊕ . . .

⊕L((l − 1)$1 −
1

2
$1)⊕ L(l$1 −

1

2
$1),

2. We have for L(−3
2
$1) and any l

L(−3

2
$1)⊗ Sl(C2) ' L(−3

2
$1)⊕ L($1 −

3

2
$1)⊕ . . .

⊕L((l − 1)$1 −
3

2
$1)⊕ L(l$1 −

3

2
$1).

Another way of realizing this decomposition is based on the metaplectic Howe
duality, [9]. The metaplectic analogue of the classical theorem on the separation of
variables allows to decompose the space Pol(R2,C)⊗S(R) of complex polynomials
valued in the Segal-Shale-Weil representation under the action of mp(2,R) into a
direct sum of simple weight mp(2,R)-modules

Pol(R2,C)⊗ S(R) '
∞⊕
l=0

∞⊕
j=0

Xj
sMl, (6.4)

where we use the notation Ml = M+
l ⊕M

−
l . This decomposition takes the form
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of an infinite triangle

P0 ⊗ S P1 ⊗ S P2 ⊗ S P3 ⊗ S P4 ⊗ S P5 ⊗ S

M0
// XsM0

⊕

// X2
sM0

⊕

// X3
sM0

⊕

// X4
sM0

⊕

// X5
sM0

⊕

M1
// XsM1

⊕

// X2
sM1

⊕

// X3
sM1

⊕

// X4
sM1

⊕

M2
// XsM2

⊕

// X2
sM2

⊕

// X3
sM2

⊕

M3
// XsM3

⊕

// X2
sM3

⊕

M4
// XsM4

⊕

M5

(6.5)

Now, let us explain the notation used in the previous scheme. First of all,
we use the shorthand notation Pl = Poll(R2,C), l ∈ N0, S = S(R), and all
spaces and arrows in the picture have the following meaning. We denote Ml =
Poll(R2,C) ∩ Ker(Ds), where we set the three operators (i ∈ C is the complex
unit)

Xs = y∂q + ixq,

Ds = iq∂y − ∂x∂q,
E = x∂x + y∂y, (6.6)

The operator Ds acts horizontally as Xs but in the opposite direction. They fulfil
the sl(2,C)-commutation relations

[E,Ds] = −Ds,

[E,Xs] = Xs, (6.7)

[Ds, Xs] = −i(E + 1).

Let ϕ ∈ Pol(R2,C) ⊗ S(R), h ∈ Mp(2,R) and λ(h) = g ∈ Sp(2,R). We define
the action of Mp(2,R) to be

%̃(h)ϕ(x, y, q) = %(h)ϕ

(
λ(g−1)

(
x
y

)
, q

)
= %(h)ϕ(dx− by,−cx+ ay, q),

g =

(
a b
c d

)
∈ SL(2,R). (6.8)

where % acts on the Segal-Shale-Weil representation via (6.2). Passing to the
infinitesimal action, we get the following operators representing the basis elements
of mp(2,R)

d

dt

∣∣∣
t=0
%̃(exp(tX))ϕ(x, y, q) =

d

dt

∣∣∣
t=0
%

(
1 t
0 1

)
ϕ(x− yt, y, q)

= − i

2
q2e−

i
2
tq2ϕ(x− yt, y, q)

∣∣∣
t=0

+e−
i
2
tq2 d

dt
ϕ(x− yt, y, q)

∣∣∣
t=0

=
(
− i

2
q2 − y ∂

∂x

)
ϕ(x, y, q),
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d

dt

∣∣∣
t=0
%̃(exp(tH))ϕ(x, y, q) =

d

dt

∣∣∣
t=0
%

(
et t
0 e−1

)
ϕ(xe−t, yet, q)

=
1

2
e

1
2
tϕ(xe−t, yet, qet) + e

1
2
t d

dt
ϕ(xe−t, yet, qet)

∣∣∣
t=0

=
(1

2
− x ∂

∂x
+ y

∂

∂y
+ q

∂

∂q

)
ϕ(x, y, q),

%̃(X) = −y ∂
∂x
− i

2
q2, %̃(Y ) = −x ∂

∂y
− i

2

∂2

∂q2
,

%̃(H) = −x ∂
∂x

+ y
∂

∂y
+ q

∂

∂q
+

1

2
. (6.9)

They satisfy commutation rules of mp(2,R)

[%̃(X), %̃(Y )] = %̃(H),

[%̃(H), %̃(X)] = 2%̃(X),

[%̃(H), %̃(Y )] = −2%̃(Y ).

Notice that we have not derived the explicit formula for %̃(Y ), because it easily
follows from the Lie algebra structure. The action of the Casimir operator Cas ∈
U(mp(2,R))⊗ Cls(R2, ω)

Cas = %̃(H)2 + 1 + 2%̃(X)%̃(Y ) + 2%̃(Y )%̃(X),

is given by the differential operator

Cas =x2∂2
x + y2∂2

y + 2x∂x + 4y∂y + 2xy∂x∂y +
1

4
− 2xq∂x∂q + 2yq∂y∂q + 2iy∂x∂

2
q + 2ixq2∂y

=Ex(Ex − 1) + Ey(Ey − 1) + 2Ex + 4Ey + 2ExEy +
1

4
− 2ExEq + 2EyEq + 2iy∂x∂

2
q + 2ixq2∂y. (6.10)

Here we use the notation ∂x = ∂
∂x
, ∂x = ∂

∂x
and Ex = x∂x, Ey = y∂y, Eq = q∂q

for the Euler homogeneity operators.

Lemma 6.3.2. The operators Xs and Ds commute with the operators %̃(X), %̃(Y )
and %̃(H). In other words, they are mp(2,R)-invariant differential operators on
complex polynomials with values in the Segal-Shale-Weil representation.

Proof. We have

[Ds, %̃(H)] = iq∂y[∂y, y] + iq∂q[q, ∂q] + ∂x∂q[∂x, x]− ∂x∂q[∂q, q] = 0. (6.11)

Remaining commutators are computed analogously.
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The action of mp(2,R) × sl(2,C) generates the multiplicity free decomposi-
tion of the representation and the pair of Lie algebras in the product is called the
metaplectic Howe dual pair. The operators Xs, Ds act on the previous picture
horizontally and isomorphically identify the neighbouring mp(2,R)-modules. The
modules Ml, l ∈ N, on the left-most diagonal are termed symplectic monogenics,
and are characterized as l-homogeneous solutions of the symplectic Dirac oper-
ator Ds. Thus the decomposition is given as a tensor product of the symplectic
monogenics multiplied by algebra of polynomial invariants C[Xs]. The operator
Xs maps polynomial symplectic spinors valued in the odd part of S into sym-
plectic spinors valued in the even part of S. This means that M−

m is valued in
S−, XsM

−
m is valued in S+, etc.

6.4 Symplectic twistor operator Ts

We start with an abstract definition of the symplectic twistor operator Ts and
then we specialize to the real symplectic manifold (R2, ω).

Definition 6.4.1. Let (M,ω) be a symplectic manifold of dimension 2n, with
symplectic connection ∇. Let ∇s be the associated symplectic spin covariant
derivative and ω ∈ C∞(M,∧2T ?M) a non-degenerate 2-form such that ∇ω = 0.
We denote by

{e1, . . . , e2n} ≡ {e1, . . . , en, f1, . . . , fn}

a local symplectic frame. The symplectic twistor operator Ts on M is the first
order differential operator Ts acting on smooth symplectic spinors S

∇s : C∞(M,S) −→ T ?M ⊗ C∞(M,S),

Ts = PKer(cs) ◦ ω−1 ◦ ∇s : C∞(M,S) −→ C∞(M, T ), (6.12)

where T is the space of symplectic twistors, T ?M⊗S ' S⊕T , given by algebraic
projection

PKer(cs) : T ?M ⊗ C∞(M,S) −→ C∞(M, T )

on the kernel of the symplectic Clifford multiplication cs. In the local symplectic
coframe {ε1}2n

j=1 dual to the symplectic frame {ej}2n
j=1, we have the local formula

for Ts

Ts =
(

1 +
1

n

) 2n∑
k=1

εk ⊗∇s
ek

+
i

n

2n∑
j,k,l=1

εl ⊗ ωkjej · el · ∇s
ek
, (6.13)

where · is the shorthand notation for the symplectic Clifford multiplication and
i ∈ C is the imaginary unit. We use the convention ωkj = 1 for j = k + n and
k = 1, . . . , n, ωkj = −1 for k = n+1, . . . , 2n and j = k−n, and ωkj = 0 otherwise.

The symplectic Dirac operator Ds, defined as the image of the symplectic
Clifford multiplication cs, has the explicit form (6.6).

Lemma 6.4.1. The symplectic twistor operator Ts is Mp(2n,R)-invariant.
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Proof. The property of invariance is a direct consequence of the equivariance of
symplectic covariant derivative and the invariance of algebraic projection PKer(cs),
and amounts to show that

Ts(%̃(g)ϕ) = λ(g)⊗ %̃(g)(Tsϕ) (6.14)

for any g ∈ Mp(2n,R) and ϕ ∈ C∞(M,S). Using the local formula (6.13) for Ts
in a local chart (x1, . . . , x2n), both sides of (6.14) are equal(

1 +
1

n

) 2n∑
k=1

εk ⊗ %(g)
∂

∂xk

[
ϕ
(
λ(g)−1x

)]
+
i

n

2n∑
j,k,l=1

εl ⊗ ωkjej · el ·
[
%(g)

∂

∂xk

[
ϕ
(
λ(g)−1x

)]]
and the proof follows.

In the case M = (R2n, ω), the symplectic twistor operator is

Ts =
(

1 +
1

n

) 2n∑
k=1

εk ⊗ ∂

∂xk
+
i

n

2n∑
j,k,l=1

εl ⊗ ωkjej · el ·
∂

∂xk
. (6.15)

Lemma 6.4.2. In the case of the real symplectic manifold (R2, ω) with coor-
dinates x, y and ω = dx ∧ dy, a symplectic frame {e1, e2} and its dual coframe
{ε1, ε2}, the symplectic twistor operator Ts : C∞(R2,S) → C∞(R2, T ) acts on a
smooth symplectic spinor ϕ(x, y, q) ∈ C∞(R2,S) by

Ts(ϕ) = ε1 ⊗
(∂ϕ
∂x
− q ∂

2ϕ

∂q∂x
+ iq2∂ϕ

∂y

)
+ ε2 ⊗

(
2
∂ϕ

∂y
+ i

∂3ϕ

∂q2∂x
+ q

∂2ϕ

∂q∂y

)
. (6.16)

The last display follows from (6.15) by direct substitution for the symplectic
Clifford multiplication. The next Lemma simplifies the condition on a symplectic
spinor to be in the kernel of Ts.

Lemma 6.4.3. A smooth symplectic spinor ϕ(x, y, q) ∈ C∞(R2,S) is in the
kernel of Ts if and only if it fulfils the partial differential equation( ∂

∂x
− q ∂2

∂q∂x
+ iq2 ∂

∂y

)
ϕ = 0. (6.17)

Proof. The claim is a consequence of Lemma 6.4.2, because the covectors ε1, ε2 are
linearly independent and the differential operators in (6.16) (the two components
of Ts by ε1 and ε2) have the same solution space (i.e., ϕ solving the first one
implies that ϕ solves the second one). This implies the equivalence statement in
the Lemma.

Notice that %̃(X), %̃(Y ) and %̃(H) preserve the solution space of the symplec-
tic twistor equation (6.17), i.e., if the symplectic spinor ϕ solves (6.17) then
%̃(X)ϕ, %̃(Y )ϕ and %̃(H)ϕ solve (6.17) . This is a consequence of Mp(2,R)-
invariance of the symplectic twistor operator Ts on R2 (in fact, the same ob-
servation is true in any dimension.) By abuse of notation, we use Ts in Section
6.5 to denote the operator (6.17) and call it the symplectic twistor operator - this
terminology is justified by the reduction in Lemma 6.4.3. In the chapter, we work
with polynomial (in x, y or z, z̄) smooth symplectic spinors, i.e. with elements of
Pol(R2,C)⊗ S(R).
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6.5 Polynomial solution space of symplectic

twistor operator Ts on (R2, ω)

Let us consider the complex vector space of symplectic spinor valued polynomials
Pol(R2,C)⊗ S(R), S(R) ' S(R)− ⊕ S(R)+, together with its decomposition on
irreducible subspaces with respect to the natural action of mp(2,R). It follows
from the mp(2,R)-invariance of the symplectic twistor operator that it is sufficient
to characterize its behaviour on any non-zero vector in an irreducible mp(2,R)-
submodule. Further, the action of the symplectic twistor operator preserves the
subspace of homogeneous symplectic spinors. This is what we are going to ac-
complish in the present section. Note that the meaning of the natural number
n ∈ N used in previous sections to denote the dimension of the underlying real
symplectic manifold is different from its use in the present section.

The main technical difficulty consists of finding suitable representative smooth
vectors in each irreducible mp(2,R)-subspace. We shall find a general character-
izing condition for a polynomial (in the real variables x, y) valued in the Schwartz
space S(R) (in the variable q) as a formal power series, and the representative
vectors are always conveniently chosen as polynomials in q weighted by the ex-

ponential e−
q2

2 . In other words, the constructed vectors are K̃-finite vectors in
S(R). These representative vectors are then evaluated on the symplectic twistor
operator Ts.

First of all, the constant symplectic spinors belong to the solution space of
Ts. We have

Lemma 6.5.1.

Ts(Xse
− q

2

2 ) =Ts(ie
− q

2

2 q(x+ iy)) = 0, (6.18)

Ts(Xsqe
− q

2

2 ) =Ts(e
− q

2

2 (iq2(x+ iy) + y)) = 0. (6.19)

The next Lemma is preparatory for further considerations.

Lemma 6.5.2. We have for any n ∈ N0, (Xs)
n ∈ End(Pol(R2,C) ⊗ S(R)), the

following identity

(Xs)
n =

bn2 c∑
j=0

n−2j∑
k=0

Anjky
n−j−k(ix)j+kqk∂n−2j−k

q . (6.20)

Here
⌊
n
2

⌋
is the floor function applied to n

2
, and the coefficients Anjk ∈ C fulfil the

4-term recurrent relation

Anjk = A
(n−1)
jk + A

(n−1)
j(k−1) + (k + 1)A

(n−1)
(j−1)(k+1). (6.21)

We use the normalization A0
00 = 1, and Anjk 6= 0 only for n ∈ N0, j = 0, . . . ,

⌊
n
2

⌋
,

and k = 0, . . . , n− 2j.

Proof. The proof is by induction on n ∈ N0. The claim is trivial for n = 0, and
for n = 1 we have

(Xs)
1 = A1

00y∂q + A1
01ixq,
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where A1
00 = A0

00 = 1 and A1
01 = A0

00 = 1.
We assume that the formula holds for n− 1 and aim to prove it for n

(ixq + y∂q)
( bn−1

2 c∑
j=0

n−1−2j∑
k=0

A
(n−1)
jk yn−1−j−k(ix)j+kqk∂n−1−2j−k

q

)

=

bn−1
2 c∑
j=0

n−1−2j∑
k=0

A
(n−1)
jk

(
yn−1−j−k(ix)j+k+1qk+1∂n−1−2j−k

q

+ yn−j−k(ix)j+kqk∂n−2j−k
q + kyn−j−k(ix)j+kqk−1∂n−1−2j−k

q

)
=

bn−1
2 c∑
j=0

n−2j∑
k=0

A
(n−1)
j(k−1)y

n−j−k(ix)j+kqk∂n−2j−k
q

+

bn−1
2 c∑
j=0

n−2j∑
k=0

A
(n−1)
jk yn−j−k(ix)j+kqk∂n−2j−k

q

+

bn−1
2 c+1∑
j=0

n−2j∑
k=0

(k + 1)A
(n−1)
(j−1)(k+1)y

n−j−k(ix)j+kqk∂n−2j−k
q ,

where we shifted the indexes in the first sum k 7→ k − 1, in the third sum by
k 7→ k+1 and j 7→ j−1 and added zero elements in the summations. Altogether
we get

bn−1
2 c∑
j=0

n−2j∑
k=0

(
A

(n−1)
jk + A

(n−1)
j(k−1) + (k + 1)A

(n−1)
(j−1)(k+1)

)
yn−j−k(ix)j+kqk∂n−2j−k

q

+

n−2bn−1
2 c−2∑

k=0

(k + 1)A
(n−1)

bn−1
2 c(k+1)

yn−b
n−1
2 c−1−k(ix)b

n−1
2 c+1+kqk∂

n−2bn−1
2 c−2−k

q .

Now we apply the induction argument to the first term. The second term is non
zero only for even n, when the previous expression equals to

bn2 c∑
j=0

n−2j∑
k=0

Anjky
n−j−k(ix)j+kqk∂n−2j−k

q ,

which completes the required statement.

Remark 5. Notice that for j = 0, the solution of recurrent relation in (6.21)

corresponds to the binomial coefficients. It follows from A
(n−1)
(−1)(k+1) = 0,

An0k = A
(n−1)
0k + A

(n−1)
0(k−1),

and therefore, An0k =
(
n
k

)
.

Lemma 6.5.3. We have An1(n−2) = n(n−1)
2

=
(
n
n−2

)
.
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Proof. We use the relation An1(n−2) = A
(n−1)
1(n−2) + A

(n−1)
1(n−3) + (n − 1)A

(n−1)
0(n−1), where

An−1
1(n−2) = 0 (because it is out of the range for the index k in the equation (6.21).)

The proof goes by induction in n: we start with A2
10 = A1

01 = 1, and claim

An1(n−2) = n(n−1)
2

. The induction step gives A
(n+1)
1(n−1) = An1(n−2) +nAn0n = n2−n

2
+n =

n2+n
2
.

A direct consequence of the Baker-Campbell-Hausdorff formula or its dual,
Zassenhaus formula, for three operators A,B,C fulfilling the commutation rela-
tions [A,B] = C and [A,C] = [B,C] = 0 gives

(A+B)n =
∑
l≤n

l≡n mod 2

(
l∑

r=0

(
l

r

)
ArBl−r

)(
−C

2

)n−l
2 n!

l!
(
n−l

2

)
!
. (6.22)

Thus we get the solution of the recursion relation (6.21).

Lemma 6.5.4. For Xs = ixq + y∂q with [ixq, y∂q] = −ixy, we have

(ixq + y∂q)
n =

∑
l≤n

l≡n mod 2

(
k∑
r=0

n!

r!(l − r)!
(
n−l

2

)
!2

n−l
2

(ix)r+
n−l
2 yl−r+

n−l
2 qr∂l−rq

)
(6.23)

for any n ∈ N0, and the comparison with Lemma 6.5.2 yields the solution of the
recursion relation (6.21):

Anjk =
n!

k!(n− 2j − k)!j!2j
, (6.24)

where the index l in (6.23) corresponds to n − 2j in (6.20), and the index r in
(6.23) corresponds to k in (6.20).

Let us remark that the composition Ts ◦(Xs)
n for n = 2, 3, acting on e−

q2

2 and

qe−
q2

2 , is non-vanishing. This means that some irreducible mp(2,R)-components
in the decomposition (6.5) are not in the kernel of Ts

Ts(X
2
s e
− q

2

2 ) = e−
q2

2 (q2x+ iy + iq2y) 6= 0,

Ts(X
2
s qe
− q

2

2 ) = e−
q2

2 (q3x+ iq3y) 6= 0,

Ts(X
3
s e
− q

2

2 ) = e−
q2

2 (3iq3x2 − 6q3xy − 3iq3y2) 6= 0,

Ts(X
3
s qe
− q

2

2 ) = e−
q2

2 (3iq4x2 + 6q2xy − 6q4xy + 3iy2 + 6iq2y2

− 3iq4y2) 6= 0, (6.25)

Lemma 6.5.5. Let n ∈ N0. Then

Ts ◦ (Xs)
n =

bn2 c∑
j=0

n−2j∑
k=0

Anjk

(
i(j + k)yn−j−k(ix)j+k−1qk∂n−2j−k

q

+ yn−j−k(ix)j+kqk∂x∂
n−2j−k
q − i(j + k)yn−j−k(ix)j+k−1qk+1∂n−2j−k+1

q

− yn−j−k(ix)j+kqk+1∂x∂
n−2j−k+1
q − ik(j + k)yn−j−k(ix)j+k−1qk∂n−2j−k

q

− kyn−j−k(ix)j+kqk∂x∂
n−2j−k
q + i(n− j − k)yn−j−k−1(ix)j+kqk+2∂n−2j−k

q

+ iyn−j−k(ix)j+kqk+2∂y∂
n−2j−k
q

)
. (6.26)
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In particular, Ts((Xs)
ne−

q2

2 ) 6= 0 and Ts((Xs)
nqe−

q2

2 ) 6= 0 for all n > 1.

Proof. The proof is based on the identity in Lemma 6.5.2. The non-triviality

of the composition is detected by the coefficient in the monomial xn−1qne−
q2

2

in an expansion of Ts((Xs)
ne−

q2

2 ). It follows from the identity (6.26) that this
coefficient is

in(An0nn− An0nn2 + An1(n−2))x
n−1qne−

q2

2 =

= in
((

n

n

)
(n− n2) +

(
n

n− 2

))
xn−1qne−

q2

2

= − inn(n− 1)

2
xn−1qne−

q2

2 , (6.27)

which is non-zero for all n > 1.

As for the action on the vector qe−
q2

2 , the situation is analogous. The co-

efficient of the monomial xn−1qn+1e−
q2

2 in Ts((Xs)
nqe−

q2

2 ) is −in n(n−1)
2

, which is
again non-zero for all n > 1. The proof is complete.

In the next part we focus for a while on symplectic spinors given by iterative
action of Xs on S+, and complete the task of finding all subspaces of polynomial
solutions of Ts (expressed in the real variables x, y).

Lemma 6.5.6. The vectors e−
q2

2 (x+ iy)m ∈ Polm(R2,C)⊗ S(R)+, m ∈ N0, are
in the kernel of Ds, but not in the kernel of the symplectic twistor operator Ts.

Proof. We get by direct computation,

Ds

(
e−

q2

2 (x+ iy)m
)

=iq∂ye
− q

2

2 (x+ iy)m − ∂x∂qe−
q2

2 (x+ iy)m

=e−
q2

2 (−mq(x+ iy)m−1 +mq(x+ iy)m−1) = 0,

Ts
(
e−

q2

2 (x+ iy)m
)

=∂xe
− q

2

2 (x+ iy)m − q∂x∂qe−
q2

2 (x+ iy)m

+ iq2∂ye
− q

2

2 (x+ iy)m = e−
q2

2 m(x+ iy)m−1 6= 0

for any natural number m > 0.

Lemma 6.5.7. Letm ∈ N0. Then the vectorsXse
− q

2

2 (x+iy)m in Polm+1(R2,C)⊗
S(R)+ are in the kernel of the symplectic twistor operator Ts.

Proof. We have

Ts(Xse
− q

2

2 (x+ iy)m) = Ts(iqe
− q

2

2 (x+ iy)m+1)

= i(m+ 1)e−
q2

2 (q − q + q2 − q2)(x+ iy)m = 0.

Remark 6. The non-trivial elements in Ker(Ts) are

qe−
q2

2 (x+ iy)k, k ∈ N0. (6.28)
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The next Lemma completes the information on the behaviour of Ts for re-
maining mp(2,R)-modules coming from the action of Xs on S+.

Lemma 6.5.8. For all natural numbers n > 1 and all m ∈ N0, we have

Ts((Xs)
ne−

q2

2 (x+ iy)m) 6= 0. (6.29)

Proof. We focus on the coefficient of the monomial xn−1+mqne−
q2

2 in the expanded

form of Ts((Xs)
ne−

q2

2 (x + iy)m). It follows from (6.26) that the contribution to
this coefficient is

in(An0nn−An0nn2 + An1(n−2) + An0nm− An0nmn)xn−1+mqne−
q2

2

=in
((

n

n

)
(n− n2 +m−mn) +

(
n

n− 2

))
xn−1+mqne−

q2

2

=− in (n+ 2m)(n− 1)

2
xn−1+mqne−

q2

2 , (6.30)

which is non-zero for all natural numbers n > 1 and all m ∈ N0.

Let us summarize the previous lemmas in the final Theorem.

Theorem 6.5.9. The solution space of the symplectic twistor operator Ts act-
ing on Pol(R2,C) ⊗ S(R)+ consists of the set of mp(2,R)-modules in the boxes,
realized in the decomposition of Pol(R2,C)⊗S(R)+ on mp(2,R) irreducible sub-
spaces

M+
0

e−
q2

2

// XsM
+
0

⊕

// X2
sM

+
0

⊕

// X3
sM

+
0

⊕

// X4
sM

+
0

⊕

// X5
sM

+
0

⊕

. . .

M+
1

e−
q2

2 (x+iy)

// XsM
+
1

⊕

// X2
sM

+
1

⊕

// X3
sM

+
1

⊕

// X4
sM

+
1

⊕

. . .

M+
2

e−
q2

2 (x+iy)2

// XsM
+
2

⊕

// X2
sM

+
2

⊕

// X3
sM

+
2

⊕

. . .

M+
3

e−
q2

2 (x+iy)3

// XsM
+
3

⊕

// X2
sM

+
3

⊕

. . .

M+
4

e−
q2

2 (x+iy)4

// XsM
+
4

⊕

. . .

M+
5 . . .

(6.31)

Notice that non-zero representative vectors in the solution space of Ds are pic-
tured under the spaces of symplectic monogenics.

This completes the picture in the case of S+. As we shall see, the represen-
tative solutions of Ds for arbitrary homogeneity are far more complicated for S−
than for S+, which were chosen to be the powers of z = x + iy. A rather con-
venient way to simplify the presentation is to pass from the real coordinates x, y
to the complex coordinates z, z for the standard complex structure on R2, where
∂x = (∂z + ∂z̄) and ∂y = i(∂z − ∂z̄).
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Lemma 6.5.10. The operators Xs, Ds and Ts are in the complex coordinates
z, z̄ given by

Xs =
i

2

(
(q − ∂q)z + (q + ∂q)z̄

)
,

Ds = −
(
(q + ∂q)∂z + (−q + ∂q)∂z̄

)
,

Ts =
(
(1− q∂q − q2)∂z + (1− q∂q + q2)∂z̄

)
. (6.32)

In the rest of the chapter we suppress the overall constants in Xs, Ds, Ts.
The reason is that both the metaplectic Howe duality and the solution space of
Ds, Ts are independent of the normalization of Xs, Ds, Ts. In other words, the
representative solutions differ by a non-zero multiple, a property which has no
effect on our results. An element of the solution space of Ds is called symplectic
monogenic.

We start with the characterization of elements in the solution space of Ds,
both for S+ and S−.

Theorem 6.5.11. 1. The symplectic spinor of the homogeneity m ∈ N0 in
the variables z, z̄,

ϕ = e−
q2

2 q
(
Am(q)zm+Am−1(q)zm−1z̄+. . .+A1(q)zz̄m−1+A0(q)z̄m

)
, (6.33)

with coefficients in the formal power series in q,

Ar(q) = ar0 + ar2q
2 + ar4q

4 + . . . , ark ∈ C, r = 0, . . . ,m, k ∈ 2N0

is in the kernel of Ds provided the coefficients ark satisfy the system of
recurrence relations

0 = m(k + 1)amk + (k + 1)am−1
k − 2am−1

k−2 ,

0 = (m− 1)(k + 1)am−1
k + 2(k + 1)am−2

k − 4am−2
k−2 ,

. . .

0 = 2(k + 1)a2
k + (m− 1)(k + 1)a1

k − 2(m− 1)a1
k−2,

0 = (k + 1)a1
k +m(k + 1)a0

k − 2ma0
k−2, (6.34)

equivalent to

(m− p)(k + 1)am−pk + (p+ 1)(k + 1)am−1−p
k − 2(p+ 1)am−1−p

k−2 = 0, (6.35)

for all p = 0, 1, . . . ,m− 1.

2. The symplectic spinor of the homogeneity m ∈ N0 in the variables z, z̄,

ϕ = e−
q2

2

(
Am(q)zm+Am−1(q)zm−1z̄+ . . .+A1(q)zz̄m−1 +A0(q)z̄m

)
, (6.36)

with coefficients in the formal power series in q,

Ar(q) = ar0 + ar2q
2 + ar4q

4 + . . . , ark ∈ C, r = 0, . . . ,m, k ∈ 2N0
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is in the kernel of Ds provided the coefficients ark satisfy the system of
recurrence relations

0 = mkamk + kam−1
k − 2am−1

k−2 ,

0 = (m− 1)kam−1
k + 2kam−2

k − 4am−2
k−2 ,

. . .

0 = 2ka2
k + (m− 1)ka1

k − 2(m− 1)a1
k−2, (6.37)

0 = ka1
k +mka0

k − 2ma0
k−2,

equivalent to

(m− p)kam−pk + (p+ 1)kam−1−p
k − 2(p+ 1)am−1−p

k−2 = 0, (6.38)

for all p = 0, 1, . . . ,m− 1.

Proof. Because

(q + ∂q)e
− q

2

2 qAr(q) = e−
q2

2 [q2 + 1− q2 + q∂q]A
r(q),

(−q + ∂q)e
− q

2

2 qAr(q) = e−
q2

2 [−q2 + 1− q2 + q∂q]A
r(q),

the action of Ds on the vector e−
q2

2 qAr(q) is

Ds

(
e−

q2

2 q
(
Am(q)zm + Am−1(q)zm−1z̄ + . . .+ A1(q)zz̄m−1 + A0(q)z̄m

))
= e−

q2

2

(
zm−1

(
m[1 + q∂q]A

m(q) + [1 + q∂q − 2q2]Am−1(q)
)

zm−2z̄
(
(m− 1)[1 + q∂q]A

m−1(q) + 2[1 + q∂q − 2q2]Am−2(q)
)

...

zz̄m−1
(
2[1 + q∂q]A

2(q) + (m− 1)[1 + q∂q − 2q2]A1(q)
)

z̄m
(
[1 + q∂q]A

1(q) +m[1 + q∂q − 2q2]A0(q)
))
. (6.39)

The action of [1 + q∂q] on Ar(q) yields
∑

k∈2N(k + 1)arkq
k, and the action of

[1 + q∂q − 2q2] on Ar(q) gives
∑

k∈2N((k + 1)ark − 2ark−2)qk, for all r = 0, . . . ,m.
As for the second part, we have

(q + ∂q)e
− q

2

2 Ar(q) = e−
q2

2 [∂q]A
r(q),

(−q + ∂q)e
− q

2

2 Ar(q) = e−
q2

2 [−2q + ∂q]A
r(q),

and the rest of the proof is analogous to the first part. The proof is complete.

Remark 7. We observe that the choice of the constant A0(q) = a0
0 6= 0, i.e.

a0
k 6= 0 only for k = 0, leads to the solution (polynomial in q) of the recurrence
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relation for all coefficients in the symplectic spinor (6.33)

A0(q) =a0
0,

A1(q) =

(
−1 +

2

3
q2

)(
m

1

)
a0

0,

. . .

Ar(q) =

(
(−1)r + . . .+

2r

(2r + 1)!!
q2r

)(
m

r

)
a0

0,

. . .

Am(q) =

(
(−1)m + . . .+

2m

(2m+ 1)!!
q2m

)(
m

m

)
a0

0,

where (2m + 1)!! = (2m + 1) · (2m − 1) · · · 3 · 1. In this way, we get simple
representative vectors in the kernel of Ds, valued in S− for each homogeneity m.
We have for m = 1, 2, 3

e−
q2

2 q

((
− 1 +

2

3
q2
)
z + z̄

)
a0

0,

e−
q2

2

(
q
(

1− 4

3
q2 +

4

15
q4
)
z2 +

(
− 2 +

4

3
q2
)
zz̄ + z̄2

)
a0

0,

e−
q2

2

(
q
(
− 1 + 2q2 − 12

15
q4 +

8

105
q6
)
z3 +

(
3− 4q2 +

4

5
q4
)
z2z̄

+(−3 + 2q2)zz̄2 + z̄3

)
a0

0. (6.40)

The same formulas expressed in the real variables x, y

2

3
e−

q2

2

(
q3(x+ iy)− 3iqy

)
a0

0,

4

15
e−

q2

2

(
q5(x+ iy)2 + 10q3y(−ix+ y)− 15qy2

)
a0

0,

8

105
e−

q2

2

(
q7(x+ iy)3 − 21iq5(x+ iy)2y − 105q3(x+ iy)y2 + 105iqy3

)
a0

0. (6.41)

Another observation is that for a chosen homogeneity m in z, z̄, the highest
exponent of q is at least 2m + 1 and our solution realizes this minimum. The
representative symplectic monogenics valued in S+ were already given for each
homogeneity in Lemma 6.5.6.

In the following Theorem, we characterize the solution space for Ts separately
in the even case (including both even powers of Xs acting on S+ and odd powers
of Xs acting on S−) and the odd case (including both odd powers of Xs acting
on S+ and even powers of Xs acting on S−.)

Theorem 6.5.12. 1. The symplectic spinor of the homogeneity m ∈ N0 in
the variables z, z̄,

ϕ = e−
q2

2 q
(
Am(q)zm+Am−1(q)zm−1z̄+. . .+A1(q)zz̄m−1 +A0(q)z̄m

)
(6.42)
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with coefficients in the formal power series in q,

Ar = ar0 + ar2q
2 + ar4q

4 + . . . , ark ∈ C, r = 0, . . . ,m, k ∈ 2N0,

is in the kernel of the symplectic twistor operator Ts provided the coefficients
ark satisfy the recurrence relations

0 = mkamk + kam−1
k − 2am−1

k−2 ,

0 = (m− 1)kam−1
k + 2kam−2

k − 4am−2
k−2 ,

. . .

0 = 2ka2
k + (m− 1)ka1

k − 2(m− 1)a1
k−2, (6.43)

0 = ka1
k +mka0

k − 2ma0
k−2,

equivalent to

(m− p)kam−pk + (p+ 1)kam−1−p
k − 2(p+ 1)am−1−p

k−2 = 0, (6.44)

for all p = 0, 1, . . . ,m− 1.

2. The symplectic spinor of the homogeneity m ∈ N0 in the variables z, z̄,

ϕ = e−
q2

2

(
Am(q)zm+Am−1(q)zm−1z̄+ . . .+A1(q)zz̄m−1 +A0(q)z̄m

)
(6.45)

with coefficients in the formal power series in q,

Ar = ar0 + ar2q
2 + ar4q

4 + . . . , ark ∈ C, r = 0, . . . ,m, k ∈ 2N0,

is in the kernel of the symplectic twistor operator Ts provided the coefficients
ark satisfy the recurrence relations

0 = m(k − 1)amk + (k − 1)am−1
k − 2am−1

k−2 ,

0 = (m− 1)(k − 1)am−1
k + 2(k − 1)am−2

k − 4am−2
k−2 ,

. . .

0 = 2(k − 1)a2
k + (m− 1)(k − 1)a1

k − 2(m− 1)a1
k−2, (6.46)

0 = (k − 1)a1
k +m(k − 1)a0

k − 2ma0
k−2,

equivalent to

(m− p)(k − 1)am−pk + (p+ 1)(k − 1)am−1−p
k − 2(p+ 1)am−1−p

k−2 = 0, (6.47)

for all p = 0, 1, . . . ,m− 1.

Proof. Concerning the first part, we have

Ts

(
e−

q2

2 q
(
Am(q)zm + Am−1(q)zm−1z̄ + . . .+ A1(q)zz̄m−1 + A0(q)z̄m

))
= e−

q2

2 q2
(
zm−1

(
m[−∂q]Am(q) + [2q − ∂q]Am−1(q)

)
+zm−2z̄

(
(m− 1)[−∂q]Am−1(q) + 2[2q − ∂q]Am−2(q)

)
. . .

+z̄m
(
[−∂q]A1(q) +m[2q − ∂q]A0(q)

) )
= 0,
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where

[−∂q]Ar(q) = − 2ar2q − 4ar4q
3 − 6ar6q

5 − . . . ,
[2q − ∂q]Ar(q) = (2ar0 − 2ar2)q + (2ar2 − 4ar4)q3 + . . . ,

etc. Then the coefficients of Ar(q) = ar0 + ar2q
2 + ar4q

4 + . . ., r = 0, . . . ,m satisfy
the recurrence relations

(m− p)kam−pk + (p+ 1)kam−1−p
k − 2(p+ 1)am−1−p

k−2 = 0, p = 0, . . . ,m− 1.

As for the second part, we get

(1− q∂q − q2)e−
q2

2 Ar(q) = e−
q2

2 [1− q∂q]Ar(q),

(1− q∂q + q2)e−
q2

2 Ar(q) = e−
q2

2 [1 + 2q2 − q∂q]Ar(q). (6.48)

The annihilation condition for the symplectic twistor operator Ts acting on (6.45)
is equivalent to

Ts

(
e−

q2

2

(
Am(q)zm + Am−1(q)zm−1z̄ + . . .+ A1(q)zz̄m−1 + A0(q)z̄m

))
= e−

q2

2

(
zm−1

(
m[1− q∂q]Am(q) + [1 + 2q2 − q∂q]Am−1(q)

)
zm−2z̄

(
(m− 1)[1− q∂q]Am−1(q) + 2[1 + 2q2 − q∂q]Am−2(q)

)
...

zz̄m−1
(
2[1− q∂q]A2(q) + (m− 1)[1 + 2q2 − q∂q]A1(q)

)
z̄m
(
[1− q∂q]A1(q) +m[1 + 2q2 − q∂q]A0(q)

))
, (6.49)

and this completes the proof of the Theorem.

Remark 8. The explicit solution vectors for the symplectic twistor operator Ts
are, for the choice of A0(q) = a0

0 6= 0, given in homogeneities m = 1, 2, 3 by

e−
q2

2

( (
−1 + 2q2

)
z + z̄

)
a0

0,

e−
q2

2

((
1− 4q2 +

4

3
q4
)
z2 +

(
−2 + 4q2

)
zz̄ + z̄2

)
a0

0,

e−
q2

2

((
− 1 + 6q2 − 4q4 +

8

15
q6
)
z3 +

(
3− 12q2 + 4q4

)
z2z̄

+
(
−3 + 6q2

)
zz̄2 + z̄3

)
a0

0.

The same solutions expressed in the variables x, y are

2e−
q2

2

(
q2(x+ iy)− iy

)
a0

0,

4

3
e−

q2

2

(
q4(x+ iy)2 + 6q2y(−ix+ y)− 3y2

)
a0

0,

8

15
e−

q2

2

(
q6(x+ iy)3 − 15iq4(x+ iy)2y − 45q2(x+ iy)y2 + 15iy3

)
a0

0. (6.50)
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Theorem 6.5.13. Let ϕ = ϕ(z, z̄, q) ∈ Pol(R2,C) ⊗ S(R)− be a polynomial
symplectic spinor in the solution space of the symplectic Dirac operator Ds, i.e.
the symplectic spinor ϕ satisfying the recurrence relations in the first part of
Theorem (6.5.11). Then Xs(ϕ) is in kernel of the symplectic twistor operator,
Ts
(
Xs(ϕ)

)
= 0.

Proof. Let us consider the polynomial symplectic spinor of homogeneity m,

ϕ = e−
q2

2 q
(
Am(q)zm + Am−1(q)zm−1z̄ + . . .+ A1(q)zz̄m−1 + A0(q)z̄m

)
,

where Ar(q) = ar0 +ar2q
2 +ar4q

4 + . . ., r = 0, . . . ,m satisfies the recursive relations

(6.35). The functions Al(q)qe−
q2

2 , l = 0, . . . ,m are Schwartz functions. We use

the notational simplification ϕ(z, z̄, q) = e−
q2

2 qW , W = W (z, z̄, q). Then

Xs(e
− q

2

2 qW ) = e−
q2

2

(
[2q2 − 1− q∂q]zW + [1 + q∂q]z̄W

)
,

which can be rewritten as

Xs(e
− q

2

2 qW ) = e−
q2

2

(
Bm+1(q)zm+1 +Bm(q)zmz̄ + . . .+B0(q)z̄m+1

)
,

where Br(q) = br0 + br2q
2 + br4q

4 + . . ., r = 0, . . . ,m+ 1, and the coefficients of this
formal power series satisfy

bmk = 2am−1
k−2 + (k + 1)(amk − am−1

k ). (6.51)

We show that Br(q) satisfy the recurrence relations (6.47) for p = 0, 1, . . . ,m in
Theorem (6.5.12). It follows from (6.51) that

(m+ 1− p)(k − 1)
(
2am−pk−2 + (k + 1)(am−p+1

k − am−pk )
)

+ (p+ 1)(k − 1)
(
2am−p−1

k−2 + (k + 1)(am−pk − am−p−1
k )

)
− 2(p+ 1)

(
2am−p−1

k−4 + (k − 1)(am−pk−2 − a
m−p−1
k−2 )

)
= 2
(
(m− p)(k − 1)am−pk−2 + (p+ 1)(k − 1)am−p−1

k−2 − 2(p+ 1)am−p−1
k−4

)
+ (k − 1)

(
(m− p+ 1)(k + 1)am−p+1

k + p(k + 1)am−pk − 2pam−pk−2

)
− (k − 1)

(
(m− p)(k − 1)am−pk + (p+ 1)(k − 1)am−p−1

k − 2(p+ 1)am−p−1
k−2

)
+ 2(k − 1)am−pk−2 − (k − 1)(k + 1)am−pk + (k − 1)(k + 1)am−pk − 2(k − 1)am−pk−2

= 0, (6.52)

where we used for the last equality the relation (6.35) to verify that each of the
three rows in the last but one expression equals to zero. The proof is complete.

Theorem 6.5.14. Let ϕ = ϕ(z, z̄, q) ∈ Polm(R2,C)⊗S(R)−, m ∈ N0, be a sym-
plectic spinor polynomial in the solution space of the symplectic Dirac operator
Ds. Then ϕ is not in the kernel of the symplectic twistor operator Ts if and only
if m > 0.

Proof. By our assumption, the symplectic spinor ϕ satisfies the recurrence re-
lation in Theorem 6.5.11. Recall the recurrence relations for symplectic spinors
valued in S−, which are in the solution space of Ker(Ts), (6.44)

(m− p)kam−pk + (p+ 1)kam−1−p
k − 2(p+ 1)am−1−p

k−2 = 0, p = 0, . . . ,m− 1.
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By Theorem 6.5.11, the coefficients ark satisfy the relations (6.35)

(m− p)(k + 1)am−pk + (p+ 1)(k + 1)am−1−p
k + 2(p+ 1)am−1−p

k−2 = 0.

The comparison of the last two relations leads to

(m− p)am−pk + (p+ 1)am−1−p
k = 0 (6.53)

for all k, p, and these are just the coefficients by qk+1zm−1−pz̄p in Ts(ϕ). We choose
the symplectic monogenic ϕ as in Remark 7. For k = 2, p = 0, the coefficient in
Ts(ϕ) by q3z̄m−1 is (a1

2 +ma0
2). Our choice for ϕ to be a solution for Ds gives

a1
2 = 2m

3
a0

0 and a0
2 = 0, therefore the coefficient in (6.53) will not be equal to

zero and consequently will not be in Ker(Ts) for m > 0, m ∈ N. By mp(2,R)-
invariance, the whole metaplectic module does not belong to the kernel of Ts,
which finishes the proof.

Theorem 6.5.15. Let m ∈ N0, k ∈ 2N0.

1. The recurrence relations for the coefficients ark of an even (even homogeneity
in q) symplectic spinor ϕ,

ϕ = e−
q2

2

(
Am(q)zm + Am−1(q)zm−1z̄ + . . .+ A1(q)zz̄m−1 + A0(q)z̄m

)
,

Ar(q) = ar0 + ar2q
2 + ar4q

4 + . . ., r = 0, . . . ,m, which is in the kernel of the
square of the symplectic Dirac operator D2

s , are

(m− p)(m− p− 1)(k + 2)(k + 1)am−pk+2 +

(m− 1− p)(p+ 1)
(
2(k + 2)(k + 1)am−1−p

k+2 − 2(2k + 1)am−1−p
k

)
+

(p+ 1)(p+ 2)
(
(k + 2)(k + 1)am−2−p

k+2 − 2(2k + 1)am−2−p
k + 4am−2−p

k−2

)
= 0 (6.54)

for p = 0, . . . ,m− 2.

2. The recurrence relations for the coefficients ark of an odd (odd homogeneity
in q) symplectic spinor ϕ,

ϕ = e−
q2

2 q
(
Am(q)zm + Am−1(q)zm−1z̄ + . . .+ A1(q)zz̄m−1 + A0(q)z̄m

)
,

Ar(q) = ar0 + ar2q
2 + ar4q

4 + . . ., r = 0, . . . ,m, which is in the kernel of the
square of the symplectic Dirac operator D2

s , are

(m− p)(m− p− 1)(k + 2)(k + 3)am−pk+2 +

(m− 1− p)(p+ 1)
(
2(k + 2)(k + 3)am−1−p

k+2 − 2(2k + 3)am−1−p
k

)
+

(p+ 1)(p+ 2)
(
(k + 2)(k + 3)am−2−p

k+2 − 2(2k + 3)am−2−p
k + 4am−2−p

k−2

)
= 0. (6.55)

for p = 0, . . . ,m− 2.
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Proof. The second power of the symplectic Dirac operator Ds is equal to

D2
s = (q2 + 2q∂q + 1 + ∂2

q )∂
2
z + 2(−q2 + ∂2

q )∂z∂z̄ + (q2 − 2q∂q − 1 + ∂2
q )∂

2
z̄ . (6.56)

In the even case, the action of D2
s results in

D2
s

(
e−

q2

2

(
Am(q)zm + Am−1(q)zm−1z̄ + . . .+ A0(q)z̄m

))
= e−

q2

2

(
zm−2

(
m(m− 1)[∂2

q ]A
m(q) + (m− 1)[2∂2

q − 4q∂q − 2]Am−1(q)

+ 2[∂2
q − 4q∂q − 2 + 4q2]Am−2(q)

)
+ . . .+

z̄m−2
(
2[∂2

q ]A
2(q) + (m− 1)[2∂2

q − 4q∂q − 2]A1(q)+

+m(m− 1)[∂2
q − 4q∂q − 2 + 4q2]A0(q)

))
, (6.57)

where

[∂2
q ]A

r(q) = 2ar2 + 12ar4q
2 + . . .

[2∂2
q − 4q∂q − 2]Ar(q) = 4ar2 − 2ar0 + (24ar4 − 8ar2 − 2ar2)q2 + . . .

[∂2
q − 4q∂q − 2 + 4q2]Ar(q) = 2ar2 − 2ar0 + (12ar4 − 8ar2 − 2ar2 + 4ar0)q2 + . . .

The odd homogeneity case is analogous. Denoting ϕ = e−
q2

2 qW , where W =
Am(q)zm + . . .+ A0(q)z̄m, we get

∂2
z (q

2 + 2q∂q + 1 + ∂2
q )e
− q

2

2 qW = ∂2
ze
− q

2

2 [2∂q + q∂2
q ]W,

2∂z∂z̄(−q2 + ∂2
q )e
− q

2

2 qW = 2∂z∂z̄e
− q

2

2 [q∂2
q − 2q2∂q + 2∂q − 3q]W,

∂2
z̄ (q

2 − 2q∂q − 1 + ∂2
q )e
− q

2

2 qW = ∂2
z̄e
− q

2

2 [q∂2
q − 4q2∂q + 2∂q + 4q3 − 6q]W,

and the proof follows.
The irreducible mp(2,R)-submodules in the kernel of D2

s were put into boxes
on the scheme of the mp(2,R)-decomposition of Pol(R2,C)⊗ S(R)

M0
// XsM0

⊕

// X2
sM0

⊕

// X3
sM0

⊕

// X4
sM0

⊕

// X5
sM0

⊕

M1
// XsM1

⊕

// X2
sM1

⊕

// X3
sM1

⊕

// X4
sM1

⊕

M2
// XsM2

⊕

// X2
sM2

⊕

// X3
sM2

⊕

M3
// XsM3

⊕

// X2
sM3

⊕

M4
// XsM4

⊕

M5

(6.58)

Theorem 6.5.16. The solution space of the symplectic twistor operator Ts is a
subspace of the space of solutions of the square of the symplectic Dirac operator
D2
s . In particular, the recurrence relations for D2

s specialized to even resp. odd
symplectic spinors from Theorem 6.5.15 are solved by (6.47) resp. (6.44).
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Proof. Let us start with even symplectic spinors. It is straightforward to rewrite
the recurrence relations in Theorem 6.5.15,

(m− p)(m− p− 1)(k + 2)(k + 1)am−pk+2 +

(m− 1− p)(p+ 1)
(
2(k + 2)(k + 1)am−1−p

k+2 − 2(2k + 1)am−1−p
k

)
+

(p+ 1)(p+ 2)
(
(k + 2)(k + 1)am−2−p

k+2 − 2(2k + 1)am−2−p
k + 4am−2−p

k−2

)
= 0,

into

(m− 1− p)(k + 2)
(
(m− p)(k + 1)am−pk+2 + (p + 1)(k + 1)am−1−p

k+2 − 2(p + 1)am−1−p
k

)
+(p + 1)(k + 2)

(
(m− 1− p)(k + 1)am−1−p

k+2 + (p + 2)(k + 1)am−2−p
k+2 − 2(p + 2)am−2−p

k

)
−2(p + 1)

(
(m− 1− p)(k − 1)am−1−p

k + (p + 2)(k − 1)am−2−p
k − 2(p + 2)am−2−p

k−2

)
= 0.

Because each of the last three rows corresponds to a recurrence relation (6.47),
the claim follows.

In the odd case, the recurrence relations

(m− p)(m− p− 1)(k + 2)(k + 3)am−pk+2 +

(m− 1− p)(p+ 1)
(
2(k + 2)(k + 3)am−1−p

k+2 − 2(2k + 3)am−1−p
k

)
+

(p+ 1)(p+ 2)
(
(k + 2)(k + 3)am−2−p

k+2 − 2(2k + 3)am−2−p
k + 4am−2−p

k−2

)
= 0,

can be rewritten as

(m− 1− p)(k + 3)
(
(m− p)(k + 2)am−pk+2 + (p + 1)(k + 2)am−1−p

k+2 − 2(p + 1)am−1−p
k

)
+(p + 1)(k + 3)

(
(m− 1− p)(k + 2)am−1−p

k+2 + (p + 2)(k + 2)am−2−p
k+2 − 2(p + 2)am−2−p

k

)
−2(p + 1)

(
(m− 1− p)kam−1−p

k + (p + 2)kam−2−p
k − 2(p + 2)am−2−p

k−2

)
= 0,

and each of the last three rows corresponds to the recurrence relation (6.44).

Theorem 6.5.17. The solution space of the symplectic twistor operator Ts, act-
ing on Pol(R2,C)⊗S(R), consists of the set of mp(2,R)-modules pictured in the
squares realized in the decomposition of Pol(R2,C)⊗S(R) on mp(2,R) irreducible
subspaces, (6.5)

1. Pol(R2,C)⊗ S(R)−:

M−
0

qe−
q2

2

// XsM
−
0

⊕

// X2
sM

−
0

⊕

// X3
sM

−
0

⊕

// . . .

M−
1

e−
q2

2 (q3(x+iy)−3iqy)

// XsM
−
1

⊕

// X2
sM

−
1

⊕

// . . .

e−
q2

2 (q5(x+iy)2+10q3y(−ix+y)−15qy2)

M−
2

// XsM
−
2

⊕

// . . .

M−
3

// . . .

(6.59)

2. Pol(R2,C)⊗ S(R)+:

M+
0

e−
q2

2

// XsM
+
0

⊕

// X2
sM

+
0

⊕

// X3
sM

+
0

⊕

// . . .

M+
1

e−
q2

2 (x+iy)

// XsM
+
1

⊕

// X2
sM

+
1

⊕

// . . .

M+
2

e−
q2

2 (x+iy)2

// XsM
+
2

⊕

// . . .

M+
3

// . . .

(6.60)

58



Notice that the representative vectors in the solution space of Ds are pictured
under the spaces of symplectic monogenics. In the case of S+, we exploit the
symplectic monogenics constructed in Theorem 6.5.9.

Proof. It follows from the metaplectic Howe duality, [9], that Theorem 6.5.16
characterizes the mp(2,R)-submodule of Pol(R2,C) ⊗ S(R) contained in the so-
lution space of Ts. Then Theorem 6.5.9, Theorem 6.5.14 and Theorem 6.5.15
characterize the space of solutions as the image of the space of symplectic mono-
genics by Xs, in addition to the space of constant symplectic spinors. The proof
is complete.

In previous sections, we discussed the space of polynomial solutions. A natu-
ral question is an extension of the function space from polynomials to the class of
analytic, smooth, hyperfunction, generalized, etc., function spaces. For example,
one can consider convergent power series constructed from the polynomial solu-
tions. We shall not attempt to discuss this question in a greater generality, but
observe the existence of a wider class of solutions.

Let us consider the function element znf(q) for f ∈ S(R), n ∈ N0. The
substitution into (6.17) implies that it belongs to the solution space of Ts provided
f(q) solves the ordinary differential equation

(1− q2)f(q) = q
∂

∂q
f(q). (6.61)

This equation has a unique solution f(q) = qe−
q2

2 in S(R), and so znqe−
q2

2 are in
the kernel of the symplectic twistor operator for all n ∈ N0.

A generalization of this result is contained in the following lemma.

Lemma 6.5.18. Let h(z) be arbitrary holomorphic function on C. Then the
complex analytic symplectic spinor

h(z)qe−
q2

2 (6.62)

is in the kernel of the symplectic twistor operator Ts.

Consequently, the space of holomorphic functions on C is embedded into the
space of smooth solutions of the symplectic twistor operator Ts.

Notice that an admissible continuous representation spaces of a reductive Lie
group G can be conveniently described in terms of a globalization of the under-
lying Harish-Chandra (g, K)-module, where g resp. K are the Lie algebra resp.
maximal compact subgroup of G. In this way, one has continuous representation
of G on the space of analytic, smooth, Frechet, hyperfunction, generalized, etc.,
functions. It is still natural to ask for a characterization of solutions of both Ts
and Ds on the space of such functions.
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7. Symplectic twistor operator
on (R2n, ω)

Text of this chapter is based on an article
Symplectic twistor operator on R2n and the Segal-Shale-Weil repre-

sentation,
published in Complex Analysis and Operator Theory, Volume 8, Issue 2

(2014), 513 - 528.
Marie Dostálová, Petr Somberg.
Abstract The aim of our article is the study of solution space of the sym-

plectic twistor operator Ts in symplectic spin geometry on the real symplectic
manifold (R2n, ω), which is the symplectic analogue of the twistor operator in
(pseudo-) Riemannian spin geometry. In particular, we observe a substantial dif-
ference between the case n = 1 of real dimension 2 and the case of R2n, n > 1.
For n > 1, the solution space of Ts is isomorphic to the Segal-Shale-Weil repre-
sentation.

Key words: Symplectic twistor operator, Symplectic Dirac operator, Meta-
plectic Howe duality.

MSC classification: 53C27, 53D05, 81R25.

7.1 Introduction and motivation

In the case when the second Stiefel-Whitney class of an orientable Riemannian
manifold is trivial, there is a double cover of the frame bundle and consequent-
ly there is an associated vector bundle for the spinor representation of the spin
structure group. There are two basic first order invariant differential operators
acting on spinor valued fields, namely the Dirac operator and the twistor oper-
ator. Their spectral properties are reflected in the geometric properties of the
underlying manifold. In Riemannian geometry, the twistor equation appeared
as an integrability condition for the canonical almost complex structure on the
twistor space, and it plays a prominent role in conformal differential geometry
due to its larger symmetry group. In physics, its solution space defines infinites-
imal isometries in Riemannian supergeometry. For an exposition with panorama
of examples, cf. [1], [18] and references therein.

The symplectic version of Dirac operator Ds was introduced in [28], and its
differential geometric properties were studied in [5], [22], [24]. The metaplectic
Howe duality for Ds, introduced in [9], allows to characterize the space of solutions
for the symplectic Dirac operator Ds on the real symplectic manifold (R2n, ω).

The aim of the present chapter is to study the symplectic twistor operator Ts
in context of the the metaplectic Howe duality, and consequently to determine
its solution space on the real symplectic manifold (R2n, ω). The operators Ds, Ts
were considered from a different perspective in [24], [31], [32]. From an analytic
point of view, Ts is represented by an overdetermined system of partial differential
equations and acts on the space of polynomials valued in the vector space of the
Segal-Shale-Weil representation. From the point of view of representation theory,
Ts is mp(2n,R)-invariant and the initial problem is solved by understanding of
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the interaction of Ts with the generators Ds, Xs of the Howe dual Lie algebra
sl(2).

As we shall see, as for Ts there is a substantial difference between the situation
for n = 1 and n > 1. Namely, there is in Ker(Ts) an infinite number of irreducible
mp(2n,R)-modules with different infinitesimal character for n = 1, while for
n > 1 the kernel contains just the Segal-Shale-Weil representation, a result of
independent interest. This is the reason why we decided to treat the case n = 1 in
a separate chapter (see Chapter 6) using different, more combinatorial approach,
which will be useful in complete understanding of the full infinite dimensional
symmetry group of our operator.

The structure of chapter goes as follows. In the first section, we review the
subject of symplectic spin geometry and metaplectic Howe duality. In the second
section, we start with the definition of the symplectic twistor operator Ts and
compute the space of polynomial solutions of Ts on (R2n, ω). These results follow
from a careful study of algebraic and differential properties of Ts. In the last
third section, we give a collection of unsolved problems related to the topic of the
present chapter.

7.2 Metaplectic Lie algebra mp(2n,R), symplec-

tic Clifford algebra and class of simple

weight modules for mp(2n,R)

In the present section, we recall several algebraic and representation theoretic
results used in the next section for the analysis of the solution space of the
symplectic twistor operator Ts. See, e.g., [5], [9], [19], [22], [24].

Let us consider 2n-dimensional symplectic vector space (R2n, ω =
∑n

j=1 ε
j ∧

εn+j), n ∈ N, and a symplectic basis {e1, . . . , en, en+1, . . . , e2n} with respect to the
non-degenerate two form ω ∈ ∧2(R2n)?. Let Ek,j be the 2n × 2n matrix with 1
on the intersection of the k-th row and the j-th column and zero otherwise. The
set of matrices

Xjk = Ej,k − En+k,n+j, Yjk = Ej,n+k + Ek,n+j, Zjk = En+j,k + En+k,j,

for j, k = 1, . . . , n is a basis of sp(2n,R). This basis can be realized by first order
differential operators

Xjk = xj∂xk − xn+j∂xn+j , Yjk = xj∂xn+k + xk∂xn+j , Zjk = xn+j∂xk + xn+k∂xj .

The metaplectic Lie algebra mp(2n,R) is the Lie algebra of the two-fold group
covering λ : Mp(2n,R) → Sp(2n,R) of the symplectic Lie group Sp(2n,R). It
can be realized by homogeneity two elements in the symplectic Clifford algebra
Cls(R2n, ω), where the isomorphism

λ? : mp(2n,R)→ sp(2n,R)

is given by

λ?(ek · ej) = −Ykj,
λ?(en+k · en+j) = Zkj,

λ?(ek · en+j + en+j · ek) = 2Xkj, (7.1)
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for j, k = 1, . . . , n.

Definition 7.2.1. The symplectic Clifford algebra Cls(R2n, ω) is an associative
unital algebra over C, given by the quotient of the tensor algebra T (e1, . . . , e2n)
by a two-sided ideal I ⊂ T (e1, . . . , e2n) generated by

v · w − w · v = −iω(v, w)

for all v, w ∈ R2n, where i ∈ C is the complex unit.

The symplectic Clifford algebra Cls(R2n, ω) is isomorphic to the Weyl algebra
W2n of complex valued algebraic differential operators on Rn, and the symplectic
Lie algebra sp(2n,R) can be realized as a subalgebra of W2n. In particular,
the Weyl algebra is an associative algebra generated by {q1, . . . , qn, ∂q1 , . . . , ∂qn},
the multiplication operator by qj and differentiation ∂qj , for j = 1, . . . , n The

symplectic Lie algebra sp(2n,R) has a basis {− i
2
q2
j ,− i

2
∂2

∂q2j
, qj

∂
∂qj

+ 1
2
}, j = 1, . . . , n.

The symplectic spinor representation is an irreducible Segal-Shale-Weil repre-

sentation of Cls(R2n, ω) on L2(Rn, e−
1
2

∑n
j=1 q

2
j dqRn), the space of square integrable

functions on (Rn, e−
1
2

∑n
j=1 q

2
j dqRn), where dqRn is the Lebesgue measure. Its action,

the symplectic Clifford multiplication cs, acts on the subspace of C∞(smooth)-
vectors given by the Schwartz space S(Rn) of rapidly decreasing complex valued
functions on Rn as a dense subspace. The space S(Rn) can be regarded as a
smooth (Fréchet) globalization of the space of K̃-finite vectors in the represen-
tation, where K̃ ⊂ Mp(2n,R) is the maximal compact subgroup given by the
double cover of K = U(n) ⊂ Sp(2n,R). Though we shall work in the smooth
globalization S(Rn), the representative vectors are usually chosen to belong to
the underlying Harish-Chandra module of K̃-finite vectors preserved by cs.

The function spaces associated to the Segal-Shale-Weil representation are sup-
ported on Rn ⊂ R2n, a maximal isotropic subspace of (R2n, ω). In its restriction
to mp(2n,R), S(R2) decomposes into two unitary representations realized on the
subspace of even resp. odd functions

% : mp(2n,R)→ End(S(R2)), (7.2)

where the basis vectors act by

%(ej · ek) = iqjqk,

%(en+j · en+k) = −i∂qj∂qk ,
%(ej · en+j + en+j · ej) = qj∂qj + ∂qjqj. (7.3)

for all j, k = 1, . . . , n. Because it is a complex representation of mp(2,R) we may
consider complex algebra mp(2,C) and isomorphic complex algebra sp(2,C).

In this representation, the symplectic Clifford algebra Cls(R2n, ω) acts on

L2(Rn, e−
1
2

∑n
j=1 q

2
j dqRn) by unbounded operators with domain S(Rn). The space

of K̃-finite vectors consists of even resp. odd homogeneity mp(2n,C)-submodule

{Poleven(q1, . . . , qn)e−
1
2

∑n
j=1 q

2
j }, {Polodd(q1, . . . , qn)e−

1
2

∑n
j=1 q

2
j }.

It is also an irreducible representation of mp(2n,C)nh(n), the semidirect product
of mp(2n,C) and (2n + 1)-dimensional Heisenberg Lie algebra h(n) spanned by
{e1, . . . , e2n, Id}. Cf. [16].
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Let us denote by Pol(R2n,C) the vector space of complex valued polynomials
on R2n, and by Poll(R2n,C) the subspace of homogeneity l polynomials. The com-
plex vector space Poll(R2n,C) is as an irreducible mp(2n,C)-module isomorphic
to Sl(C2n), the l-th symmetric power of the complexification of the fundamental
vector representation R2n, l ∈ N0.

7.3 Segal-Shale-Weil representation and meta-

plectic Howe duality

Let us review a representation-theoretical result of [2], formulated in the oppo-
site convention of highest weight metaplectic modules. Let us consider Borel
subalgebra of sp(2,C) generated by X ′ = 1

2

(−i
1

1
i

)
and H ′ =

(
0
i
−i
0

)
and Borel sub-

algebra of mp(2,C) generated by elements λ−1
? (X ′) and λ−1

? (H ′). Let $1, . . . , $n

be the fundamental weights of the Lie algebra sp(2n,C), and let L($) denote the
simple module over the universal enveloping algebra U(mp(2n,C)) of mp(2n,C)
generated by the highest weight vector of the weight $.

Algebraically, the decomposition of the space of polynomial functions on R2n

valued in the Segal-Shale-Weil representation corresponds to the tensor product
of L(−1

2
$n) resp. L($n−1 − 3

2
$n) with symmetric powers Sk(C2n) of the funda-

mental vector representation C2n of sp(2n,C), k ∈ N0. The following result is
well known.

Proposition 7.3.1. ([2]) We have for L(−1
2
$n)

1. In the even case k = 2l (2l + 1 terms on the right-hand side)

L(−1

2
$n)⊗ Sk(C2n) ' L(−1

2
$n)⊕ L($1 +$n−1 −

3

2
$n)

⊕L(2$1 −
1

2
$n)⊕ L(3$1 +$n−1 −

3

2
$n)⊕ . . .

⊕L((2l − 1)$1 +$n−1 −
3

2
$n)⊕ L(2l$1 −

1

2
$n),

2. In the odd case k = 2l + 1 (2l + 2 terms on the right-hand side)

L(−1

2
$n)⊗ Sk(C2n) ' L($n−1 −

3

2
$n)⊕ L($1 −

1

2
$n)

⊕L(2$1 +$n−1 −
3

2
$n)⊕ L(3$1 −

1

2
$n)⊕ . . .

⊕L(2l$1 +$n−1 −
3

2
$n)⊕ L((2l + 1)$1 −

1

2
$n),

We have for L($n−1 − 3
2
$n)

1. In the even case k = 2l (2l + 1 terms on the right-hand side)

L($n−1 −
3

2
$n)⊗ Sk(C2n) ' L($n−1 −

3

2
$n)⊕ L($1 −

1

2
$n)

⊕L(2$1 +$n−1 −
3

2
$n)⊕ · · · ⊕ L((2l − 1)$1 −

1

2
$n)

⊕L(2l$1 +$n−1 −
3

2
$n),
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2. In the odd case k = 2l + 1 (2l + 2 terms on the right-hand side)

L($n−1 −
3

2
$n)⊗ Sk(C2n) ' L(−1

2
$n)⊕ L($1 +$n−1 −

3

2
$n)⊕ . . .

⊕L(2l$1 −
1

2
$n)⊕ L((2l + 1)$1 +$n−1 −

3

2
$n).

A more geometrical reformulation of this statement is realized in the algebraic
(polynomial) Weyl algebra and termed metaplectic Howe duality, [9]. The meta-
plectic analogue of the classical theorem on the separation of variables allows to
decompose the space Pol(R2n,C)⊗ S(Rn) of complex polynomials valued in the
Segal-Shale-Weil representation under the action of mp(2n,R) into a direct sum
of simple mp(2n,R)-modules

Pol(R2n,C)⊗ S(Rn) '
∞⊕
l=0

∞⊕
j=0

Xj
sMl, (7.4)

where we use the notation Ml = M+
l ⊕M

−
l . This decomposition takes the form

of an infinite triangle

P0 ⊗ S P1 ⊗ S P2 ⊗ S P3 ⊗ S P4 ⊗ S P5 ⊗ S

M0
// XsM0

⊕

// X2
sM0

⊕

// X3
sM0

⊕

// X4
sM0

⊕

// X5
sM0

⊕

M1
// XsM1

⊕

// X2
sM1

⊕

// X3
sM1

⊕

// X4
sM1

⊕

M2
// XsM2

⊕

// X2
sM2

⊕

// X3
sM2

⊕

M3
// XsM3

⊕

// X2
sM3

⊕

M4
// XsM4

⊕

M5

(7.5)

Now, let us explain the notation used on the previous picture. First of all,
we used the shorthand notation Pl = Poll(R2n,C), l ∈ N0, S = S(Rn), and
the spaces and arrows in the picture have the following meaning. We denote
Ml = Poll(R2,C) ∩Ker(Ds), where we set the three operators

Xs =
n∑
j=1

(xn+j∂qj + ixjqj),

Ds =
n∑
j=1

(iqj∂xn+j − ∂xj∂qj),

E =
2n∑
j=1

xj∂xj . (7.6)

The operator Ds and Xs acts on the previous picture horizontally but in the
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opposite direction. They fulfil the sl(2,C)-commutation relations

[E + n,Ds] = −Ds,

[E + n,Xs] = Xs, (7.7)

[Xs, Ds] = i(E + n).

For the purposes of the present chapter, we do not need the proper normalization
of the generators Ds, Xs, E making the isomorphism with standard commutation
relations in sl(2,C) explicit.

The elements of Pol(R2n,C)⊗S(Rn) are called polynomial symplectic spinors.
Let ϕ ≡ ϕ(x1, . . . , x2n, q1, . . . , qn) ∈ Pol(R2n,C) ⊗ S(Rn), h ∈ Mp(2n,R) and
λ(h) = g ∈ Sp(2n,R) for the double covering λ : Mp(2n,R) → Sp(2n,R). We
define the action of Mp(2n,R) on Pol(R2n,C)⊗ S(Rn) by

%̃(h)ϕ(x1, . . . , x2n, q1, . . . , qn) = %(h)ϕ(λ(g−1)(x1, . . . , x2n)T , q1, . . . , qn), (7.8)

with % acting on the Segal-Shale-Weil representation via (7.2). Passing to the
infinitesimal action, we get the operators, which represent the basis elements of
mp(2n,R). For example, we have for j = 1, . . . , n

%̃(Xjj)ϕ =
d

dt

∣∣∣
t=0
%̃(exp(tXjj))ϕ(x1, . . . , x2n, q1, . . . , qn)

=
d

dt

∣∣∣
t=0
e
t
2ϕ(x1, . . . , xje

−t, . . . , xn+je
t . . . , x2n, q1, . . . , qje

t, . . . , qn)

=
(1

2
− xj

∂

∂xj
+ xn+j

∂

∂xn+j

+ qj
∂

∂qj

)
ϕ(x1, . . . , x2n, q1, . . . , qn).

These operators satisfy the commutation relations of the Lie algebra mp(2n,R),
and preserve the homogeneity in x1, . . . , x2n. The operators Xs and Ds com-
mute with operators %̃(Xjk), %̃(Yjk) and %̃(Zjk), j, k = 1, . . . , n, hence they are
mp(2n,R)-intertwining differential operators.

The action of mp(2n,R)× sl(2,C) generates the multiplicity free decomposi-
tion of Pol(R2n,C)⊗ S(Rn) and the pair of Lie algebras in the product is called
the metaplectic Howe dual pair. The operators Xs, Ds acting on the previous
picture horizontally identify the two neighbouring mp(2n,R)-modules isomorphi-
cally. The modules Ml, l ∈ N0 on the most left diagonal of our picture are termed
symplectic monogenics, and are characterized as l-homogeneous solutions of the
symplectic Dirac operator Ds. Thus the decomposition is given, as a vector space,
by tensor product of the symplectic monogenics multiplied by the polynomial al-
gebra C[Xs] of invariants.

7.4 Symplectic twistor operator Ts and its solu-

tion space on (R2n, ω)

We start with an abstract definition of the symplectic twistor operator Ts. Let
(M,ω) be a 2n-dimensional symplectic manifold, π : P → M a principal fibre
Sp(2n,R)-bundle of symplectic frames on M . A metaplectic structure on (M,ω)
is a principal fibre Mp(2n,R)-bundle Q → M together with bundle morphism

65



Q→ P , equivariant with respect to the double covering Mp(2n,R)→ Sp(2n,R).
The manifold (M,ω) with a metaplectic structure is usually called symplectic
spin manifold. The symplectic manifold M admits a metaplectic structure if and
only if the second Stiefel-Whitney class w2(M) is trivial, and the equivalence
classes of metaplectic structures are classified by H1(M,Z2). These is a unique
metaplectic structure on (R2n, ω).

Definition 7.4.1. Let (M,∇, ω) be a symplectic spin manifold of dimension 2n,
∇s the associated symplectic spin covariant derivative and ω ∈ C∞(M,∧2T ?M)
a non-degenerate 2-form such that ∇ω = 0. We denote by {e1, . . . , e2n} a local
symplectic frame. The symplectic twistor operator Ts on M is the first order
differential operator Ts acting on smooth symplectic spinors S

∇s : C∞(M,S) −→ T ?M ⊗ C∞(M,S),

Ts := PKer(cs) ◦ ω−1 ◦ ∇s : C∞(M,S) −→ C∞(M, T ), (7.9)

where T is the space of symplectic twistors, T ?M⊗S ' S⊕T , given by algebraic
projection

PKer(cs) : T ?M ⊗ C∞(M,S) −→ C∞(M, T )

on the kernel of the symplectic Clifford multiplication cs. In the local symplectic
coframe {ε1}2n

j=1 dual to the symplectic frame {ej}2n
j=1 with respect to ω, we have

the local formula for Ts

Ts =
2n∑
k=1

εk ⊗∇s
ek

+
i

n

2n∑
j,k,l=1

εl ⊗ ωkjel · ej · ∇s
ek
, (7.10)

where · is the shorthand notation for the symplectic Clifford multiplication and
i ∈ C is the imaginary unit. We use the convention ωkj = 1 for j = k + n and
k = 1, . . . , n, ωkj = −1 for k = n+1, . . . , 2n and j = k−n, and ωkj = 0 otherwise.

The symplectic Dirac operator Ds is defined as the image of the symplectic
Clifford multiplication cs, and a symplectic spinor in the kernel of Ds is called
symplectic monogenic.

Lemma 7.4.1. The symplectic twistor operator Ts is mp(2n,R)-invariant.

Proof. The property of invariance is a direct consequence of the equivariance of
symplectic covariant derivative and invariance of algebraic projection PKer(cs), and
amounts to verify

Ts(%̃(g)ϕ) = λ(g)⊗ %̃(g)(Tsϕ) (7.11)

for any g ∈ mp(2n,R) and ϕ ∈ C∞(M,S). Using the local formula (7.10) for Ts
in a local chart (x1, . . . , x2n), both sides of (7.11) are equal to

2n∑
k=1

εk ⊗ %(g)
∂

∂xk

[
ϕ
(
λ(g)−1x

)]
+
i

n

2n∑
j,k,l=1

εl ⊗ ωkjel · ej ·
[
%(g)

∂

∂xk

[
ϕ
(
λ(g)−1x

)]]
and the proof follows.
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In the case M = (R2n, ω), the symplectic Dirac and the symplectic twistor
operators are given by

Ds =
2n∑

j,k=1

ωkjek ·
∂

∂xj
, (7.12)

Ts =
2n∑
l=1

εl⊗ ∂

∂xl
+
i

n

2n∑
j,k,l=1

εl⊗ωkjel ·ej ·
∂

∂xk
=

2n∑
l=1

εl⊗
( ∂

∂xl
− i

n
el ·Ds

)
, (7.13)

and we restrict their action to the space of polynomial symplectic spinors.

Lemma 7.4.2. Let ϕ ∈ Pol(R2n,C)⊗S(Rn) be a symplectic spinor in the solution
space of the symplectic twistor operator Ts. Then ϕ is in the kernel of the square
of the symplectic Dirac operator D2

s .

Proof. Let ϕ be a polynomial symplectic spinor in Ker(Ts),

Tsϕ =
2n∑
l=1

εl ⊗
( ∂

∂xl
− i

n
el ·Ds

)
ϕ = 0, (7.14)

i.e. ( ∂

∂xl
− i

n
el ·Ds

)
ϕ = 0, l = 1, . . . , 2n. (7.15)

We apply to the last equation partial differentiation operator ∂
∂xm

, multiply it by

the skew symmetric form ωml and sum over m = 1, . . . , 2n:

2n∑
l,m=1

(
ωml

∂

∂xm

∂

∂xl
− i

n
ωmlel ·

∂

∂xm
Ds

)
ϕ = 0. (7.16)

The first part is zero because of the skew-symmetry of ω and the symmetry in
m, l, and the second part is (a non-zero multiple of) the square of the symplectic
Dirac operator D2

s . Hence

2n∑
l,m=1

i

n
ωmlel ·

∂

∂xm
Dsϕ = − i

n
D2
sϕ = 0 (7.17)

and the proof is complete.

Lemma 7.4.3. Let n ∈ N and ϕ ∈ Pol(R2n,C) ⊗ S(Rn) be a symplectic spinor
fulfilling

ϕ ∈ Ker(Ts) ∩Ker(Ds). (7.18)

Then ϕ is a constant (i.e., independent of x1, . . . , x2n) symplectic monogenic
spinor. This is described by the following picture:

• Pol(R2n,C)⊗ S(Rn)−:

M−
0

// XsM
−
0

⊕

// X2
sM

−
0

⊕

// X3
sM

−
0

⊕

// . . .

M−
1

// XsM
−
1

⊕

// X2
sM

−
1

⊕

// . . .

M−
2

// XsM
−
2

⊕

// . . .

M−
3

// . . .

(7.19)
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• Pol(R2n,C)⊗ S(Rn)+:

M+
0

// XsM
+
0

⊕

// X2
sM

+
0

⊕

// X3
sM

+
0

⊕

// . . .

M+
1

// XsM
+
1

⊕

// X2
sM

+
1

⊕

// . . .

M+
2

// XsM
+
2

⊕

// . . .

M+
3

// . . .

(7.20)

Proof. Let ϕ ∈ Pol(R2n,C)⊗S(Rn) be a solution of the symplectic twistor oper-
ator, see (7.15), ( ∂

∂xl
− i

n
el ·Ds

)
ϕ = 0, l = 1, . . . , 2n,

and at the same time ϕ ∈ Ker(Ds). This implies

∂

∂xl
ϕ = 0, l = 1, . . . , 2n,

so ϕ is a constant symplectic spinor. The proof is complete.

Lemma 7.4.4. Let ϕ ∈ Pol(R2n,C) ⊗ S(Rn) be a symplectic monogenic spinor
of homogeneity h ∈ N0, i.e. Ds(ϕ) = 0. Then the symplectic spinor Xs(ϕ) has
the following property

1. If n = 1, then Xs(ϕ) is in the kernel of Ts for any homogeneity h ∈ N0.
This is described by the following picture

• Pol(R2n,C)⊗ S(Rn)−:

M−
0

// XsM
−
0

⊕

// X2
sM

−
0

⊕

// X3
sM

−
0

⊕

// . . .

M−
1

// XsM
−
1

⊕

// X2
sM

−
1

⊕

// . . .

M−
2

// XsM
−
2

⊕

// . . .

M−
3

// . . .

(7.21)

• Pol(R2n,C)⊗ S(Rn)+:

M+
0

// XsM
+
0

⊕

// X2
sM

+
0

⊕

// X3
sM

+
0

⊕

// . . .

M+
1

// XsM
+
1

⊕

// X2
sM

+
1

⊕

// . . .

M+
2

// XsM
+
2

⊕

// . . .

M+
3

// . . .

(7.22)
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2. If n > 1, then Xs(ϕ) is in the kernel of Ts if and only if the homogeneity of
ϕ is equal to h = 0. This is described by the following picture

• Pol(R2n,C)⊗ S(Rn)−:

M−
0

// XsM
−
0

⊕

// X2
sM

−
0

⊕

// X3
sM

−
0

⊕

// . . .

M−
1

// XsM
−
1

⊕

// X2
sM

−
1

⊕

// . . .

M−
2

// XsM
−
2

⊕

// . . .

M−
3

// . . .

(7.23)

• Pol(R2n,C)⊗ S(Rn)+:

M+
0

// XsM
+
0

⊕

// X2
sM

+
0

⊕

// X3
sM

+
0

⊕

// . . .

M+
1

// XsM
+
1

⊕

// X2
sM

+
1

⊕

// . . .

M+
2

// XsM
+
2

⊕

// . . .

M+
3

// . . .

(7.24)

Proof. Let ϕ be a non-zero symplectic spinor in the kernel of Ds. The question
is when the system of partial differential equations acting on ϕ,

(∂xk −
i

n
ek ·Ds)Xsϕ = 0, (7.25)

holds for all k = 1, ..., 2n. In other words, we ask when Xs(ϕ) is in the kernel of
the symplectic twistor operator. Let us multiply the k-th equation of the system
by xk and sum over all k,

(E − i

n
XsDs)Xsϕ = 0. (7.26)

We use the sl(2)-commutation relations for Xs, Ds and for E, Xs, see (7.7), and
the fact that ϕ is in the kernel of Ds. This gives

(EXs −
1

n
XsE −Xs)ϕ = 0. (7.27)

Assuming that ϕ is of homogeneity h, Eϕ = hϕ, the last equation reduces to

(h+ 1− h

n
− 1)Xss = h(1− 1

n
)Xsϕ = 0. (7.28)

Observe that (1 − 1
n
) 6= 0 for n > 1, and Xs is an mp(2n,R)-intertwining map

acting injectively on Pol(R2n,C) ⊗ S(Rn) as a result of the metaplectic Howe
duality (i.e., ϕ being non-zero implies Xs(ϕ) is non-zero.) Because ϕ is assumed
to be non-zero, the last display implies that either
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1. h = 0 and n ∈ N is arbitrary, or

2. n = 1 and h is arbitrary.

A straightforward check for n > 1 and the homogeneity h = 0 gives

(∂xk − iek ·Ds)Xsϕ =
(
ek ·+Xs∂xk −

i

n
ek · E − ek

)
ϕ = 0. (7.29)

In the case n = 1 and arbitrary homogeneity, we have

(∂x1 − ie1Ds)Xsϕ =
(
e1 ·+e1 · x1∂x1 + e2 · x2∂x1 − e1 · x1∂x1 − e1 · x2∂x2 − e1 ·

)
ϕ =

=
(
x2(e2 · ∂x1 − e1 · ∂x2)

)
ϕ = −x2Dsϕ = 0. (7.30)

For the second component (∂x2 − ie2·Ds) of the symplectic twistor operator, the
computation is analogous to the first one in (7.30). This completes the proof.

Let us summarize our results in the final theorem.

Theorem 7.4.5. The solution space of the symplectic twistor operator Ts on the
real symplectic manifold (R2n, ω) is given by mp(2n,R)-modules in the boxes on
the following pictures

• In the case n = 1, we have for Pol(R2n,C)⊗ S(Rn)±:

M±
0

// XsM
±
0

⊕

// X2
sM

±
0

⊕

// X3
sM

±
0

⊕

// . . .

M±
1

// XsM
±
1

⊕

// X2
sM

±
1

⊕

// . . .

M±
2

// XsM
±
2

⊕

// . . .

M±
3

// . . .

(7.31)

• In the case n > 1, we have for Pol(R2n,C)⊗ S(Rn)±:

M±
0

// XsM
±
0

⊕

// X2
sM

±
0

⊕

// X3
sM

±
0

⊕

// . . .

M±
1

// XsM
±
1

⊕

// X2
sM

±
1

⊕

// . . .

M±
2

// XsM
±
2

⊕

// . . .

M±
3

// . . .

(7.32)

An interested reader can easily verify the previous result for n > 1 by taking a
simple solution ϕ ofDs of homogeneity at least one (it is sufficient to generate such
a simple solution from dimension n = 1 case) and check that Xs(ϕ) /∈ Ker(Ts).

Example 6. In the case n = 2 and the homogeneity 2, the symplectic spinor

ϕ = e−
q21+q

2
2

2 (−ix1x2 + x1x4 + x2x3 + ix3x4) (7.33)
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is a solution of Ds. However, Xsϕ is not a solution of the symplectic twistor
operator Ts because, for example, the first and the second components of TsXs(ϕ)
are nonzero

(Tss)
1 = ε1 ⊗ e−

q21+q
2
2

2 q2(x2 + ix4)2 6= 0,

(Tss)
2 = ε2 ⊗ e−

q21+q
2
2

2 q1(x1 + ix3)2 6= 0.

It is much harder to verify the result Xss ∈ Ker(Ts) for all polynomial sym-
plectic spinors ϕ, ϕ ∈ Ker(Ds), in the case n = 1, and we refer to Chapter 6 for
a non-trivial combinatorial proof of this assertion.

We would like to emphasize that the kernel of our solution space realizes (for
n > 1) the Segal-Shale-Weil representation, a prominent Sp(2n,R)-module with
far-reaching impact on harmonic analysis.

7.5 Comments and open problems

First of all, notice that in the case of (both even and odd) orthogonal algebras and
the spinor representation as an orthogonal analogue of the Segal-Shale-Weil rep-
resentation, the solution space of the twistor operator for orthogonal Lie algebras
on Rn is given by two copies of the spinor representation, in complete analogy
with the symplectic case, see [1] for n ≥ 3. As for n = 2, we were not able to find
the required result in the available literature, although we believe it is known to
specialists. Here one half of the Dirac operator is the Dolbeault operator and the
twistor operator is its complex conjugate, while the opposite half of the Dirac
and twistor operators are their complex conjugates, respectively. The solution
spaces for both halves of the twistor operator on R2 are the complex linear spans
of polynomials {zj}j∈N0 and {z̄j}j∈N0 , respectively, intersecting non-trivially in
the constant polynomials. This is an orthogonal analogue of our results in sym-
plectic category, and indicates an infinite-dimensional symmetry group acting on
the solutions spaces of both symplectic Dirac and symplectic twistor operators in
the real dimension 2.

Another observation is related to the proof of Lemma 7.4.2 and its structure
on curved symplectic manifolds. Let us consider a 2n-dimensional metaplectic
manifold (M,∇, ω), with ∇s the metaplectic covariant derivative. Then a differ-
ential consequence of the symplectic twistor equation on M is

2n∑
l,m=1

(
ωml(∇s

m,∇s
l )−

i

n
D2
s

)
ϕ = 0, (7.34)

where the first term (skewing of the composition of metaplectic covariant deriva-
tives) gives the action of the symplectic curvature of the symplectic connection
∇s on the space of sections of a metaplectic bundle on M . This equation should
be thought of as a symplectic analogue of the equation

D2s =
1

4

n

n− 1
Rs, n ≥ 3 (7.35)

in Riemannian spin geometry with ϕ a twistor spinor, D the Dirac operator and
R the scalar curvature of the Riemannian structure, cf., [1]. The prolongation
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of the symplectic twistor equation then constructs a linear connection and co-
variant derivative on the Segal-Shale-Weil representation, in such a way that the
covariantly constant sections correspond to symplectic twistor spinors.
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8. Symmetries of symplectic
Dirac operator

We shall start the present section with a short reminder of the notion of symmetry
operators for the classical Dirac operator associated to a quadratic form, see [15]
and then pass to the case of our interest: the symplectic Dirac operator.

The Clifford algebra associated to a vector space equipped with a quadratic
form B is determined by the relations ejek + ekej = −2B(ej, ek), while the sym-
plectic Clifford algebra on (R2n, ω) is given by relations ej ·ek−ek ·ej = −iω(ej, ek)
with ω canonical symplectic form, i ∈ C. In the orthogonal case, the Dirac
operator on Rm is D =

∑m
j=1 ej∂xj and its solutions are termed the spherical

monogenics. The module of polynomial spherical monogenics of homogeneity h
is denoted by Mh =

(
Polh(Rm,C)⊗ S

)
∩Ker(D), where S is the spinor space. In

particular, each of the modules Mh, h ∈ N0, is an irreducible representation of
the Lie algebra so(m) acting by the differential operators

Kjk = xj∂xk − xk∂xj −
1

2
ejek, j 6= k, j, k = 1, . . . ,m.

See, e.g., [11]. Moreover, the space M =
⊕

hMh is a representation of the
conformal Lie algebra so(m+1, 1,R), which is the linear span of Kjk, 2E+m−1,
∂xj and T̃j, j, k = 1, . . . ,m; here the operators T̃j : Mh →Mh+1 act by

T̃j = Xej + xj(m+ 2E)− |X|2∂xj . (8.1)

Operators T̃j can be found for example in [26, Lem. 5.1].

Now let us turn our attention to the real symplectic manifold (R2n, ω) with co-
ordinates x1, . . . , xn, y1, . . . , yn, and coordinate vector fields ∂x1 , . . . , ∂xn , ∂y1 , . . . ,
∂yn or equivalently symplectic frame e1, . . . , e2n fulfilling

ω(ej, en+j) = 1, ω(en+j, ej) = −1, j = 1, . . . , n (8.2)

and zero otherwise.
Let us remind realizations of sp(2n,R) (1.3) on Pol(R2n,C) and (1.4) on

S(Rn). The representation of sp(2n,R) on the space of polynomial symplectic
spinors Pol(R2n,C)⊗ S(Rn) is

Xjk = xj∂xk − yk∂yj + qj∂qk +
1

2
δj,k,

Yjj = xj∂yj −
i

2
q2
j ,

Yjk = xj∂yk + xk∂yj − iqjqk for j 6= k,

Zjj = yj∂xj −
i

2
∂2
qj
,

Zjk = yj∂xk + yk∂xj − i∂qj∂qk for j 6= k, (8.3)
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The three symplectic invariant operators with values in End(S(Rn)),

Xs =
n∑
j=1

(yj∂qj + ixjqj),

Ds =
n∑
j=1

(iqj∂yj − ∂xj∂qj),

E =
n∑
j=1

(xj∂xj + yj∂yj), (8.4)

are sp(2n,C)-equivariant and generate the representation of sl(2,C) on the space
Pol(R2n,C)⊗ S(Rn). Their commutation relations are

[E + n,Ds] = −Ds,

[E + n,Xs] = Xs,

[Xs, Ds] = i(E + n). (8.5)

First of all, we find differential operators increasing the homogeneity of poly-
nomial solutions of the symplectic Dirac operator by one. We construct them as
a composition of the multiplication by xl, yl, l = 1, . . . , n, and projection on the
kernel of the symplectic Dirac operator Ds.

In the first step we check that D3
s acts trivially on xlm, ylm for m ∈M s

h and
coordinate functions xl, yl on R2n. For j = 1, . . . , n, we have

D2
s(xjm) = Ds(−∂qjm) = −

2n∑
k=1

(iqk∂yk − ∂qk∂xk)∂qjm = i∂yjm,

D2
s(yjm) = Ds(iqjm) =

2n∑
k=1

(iqk∂yk − ∂qk∂xk)iqjm = −i∂xjm, (8.6)

and so xlm, ylm are in the kernel of D3
s for all l = 1, . . . , n. Denoting the identity

endomorphism Id, the corresponding projector of xlm, ylm on the homogeneity
h+ 1 subspace of Ker(Ds) is

P s
h+1 = Id +cXsDs + dX2

sD
2
s

for some constants c, d depending on h and n. The relations (6.7) imply that on
the spaces of homogeneous symplectic monogenics, the following relations hold

P s
h+1mh+1 = mh+1,

P s
h+1Xsmh = Xsmh + cXsDsXsmh =

(
1− ic(h+ n)

)
Xsmh,

P s
h+1X

2
smh−1 = X2

smh−1 + cXsDs(X
2
smh−1) + dX2

sD
2
s(X

2
smh−1)

= X2
smh−1 − icX2

s (h− 1 + n)mh−1 − icXs(h+ n)Xsmh−1

− d(2h+ 2n− 1)(h+ n− 1)X2
smh−1. (8.7)

The second and the third expressions in (8.7) are zero if

c =
1

i(h+ n)
, d =

−1

(h+ n)(2h+ 2n− 1)
.
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Hence, the projector is

P s
h+1 = Id +

1

i(h+ n)
XsDs −

1

(h+ n)(2h+ 2n− 1)
X2
sD

2
s . (8.8)

The actions of the operators Sl = P s
h+1xl, l = 1, . . . , n and Sn+l = P s

h+1yl, l =
1, . . . , n, on m ∈M s

h are given by

Sjm = xjm− cXs∂qjm+ diX2
s∂yjm,

Sn+jm = yjm+ cXsiqjm− diX2
s∂xjm.

Thus we can define for j = 1, . . . , n the collection of differential operators

Zj = −i(h+ n)(2h+ 2n− 1)Sn+j,

Zn+j = i(h+ n)(2h+ 2n− 1)Sj. (8.9)

Lemma 8.0.1. Let j = 1, . . . , n. The mp(2n,R)-equivariant first order differen-
tial operators

Zj = X2
s∂xj − iyj(E + n)(2E + 2n− 1)− iXsqj(2E + 2n− 1),

Zn+j = X2
s∂yj + ixj(E + n)(2E + 2n− 1)−Xs∂qj(2E + 2n− 1)

(8.10)

preserve the solution space of the symplectic Dirac operator on (R2n, ω). The
operators Zl, l = 1, . . . , 2n, increase by one the homogeneity in the base variables
x1, . . . , xn, y1, . . . , yn

Zl : Ker(Ds)→ Ker(Ds),

Zl : Mh →Mh+1, l = 1, . . . , 2n, (8.11)

where Mh is the irreducible mp(2n,R)-module of symplectic polynomial spinors
of homogeneity h in Ker(Ds).

Proof. The result is a consequence of

[Ds, X
2
s∂xj ] =− iXs∂xj(2E + 2n− 1), (8.12)

[Ds, ωjkδ
k,lxl(E + n)(2E + 2n− 1)] =− ej(E + n)(2E + 2n− 1)

+ ωjkδ
k,lxl(4E + 4n+ 1)Ds,

[Ds, Xsej(2E + 2n− 1)] =− iej(E + n)(2E + 2n− 1)

− iXs∂xj(2E + 2n− 1) + 2XsejDs,

because the linear combination

AX2
s∂xj +Bωjkδ

k,lxl(E + n)(2E + 2n− 1) + CXsej(2E + 2n− 1)

for A,B,C ∈ C and all j = 1, . . . , 2n commutes with Ds provided A = 1, B = i
and C = −1. To shorten our notation we use ωjk = ω(ej, ek), see (8.2).

The differential operators Zj, Zn+j, j = 1, . . . , n are of third order, and are of
second order in the base variables xj, yj (due to their quadratic dependence on
the homogeneity operator E.)
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Lemma 8.0.2. The mp(2n,R)-equivariant first order differential operators

∂xj , ∂yj , j = 1, . . . , n (8.13)

preserve the solution space of the symplectic Dirac operator on (R2n, ω) and
decrease by one the homogeneity in the base variables x1, . . . , xn, y1, . . . , yn

∂xj , ∂yj : Ker(Ds)→ Ker(Ds),

∂xj , ∂yj : Mh →Mh−1, j = 1, . . . , n, (8.14)

where Mh is the irreducible mp(2n,R)-module of symplectic polynomial spinors
of homogeneity h in Ker(Ds).

Proof. The proof follows from [∂xj , Ds] = 0 and [∂yj , Ds] = 0 for j = 1, . . . , n.

8.1 First order symmetries of Ds on (R2, ω)

The aim of the present section is to compute all first order differential operators
which are symmetries of the symplectic Dirac operator. Here we restrict to n = 2.
The case of general even dimension is notationally tedious.

We start with (R2, ω) and denote the coordinates by x = x1, y = y1, the
coordinate vector fields by ∂x, ∂y and the symplectic frame by e1, e2 with the
action on a symplectic spinor ϕ ∈ Pol(R2,C)⊗ S(R) given by

e1 · ϕ = iqϕ, e2 · ϕ = ∂qϕ.

Following (8.3), the basis elements of mp(2,R)(' sp(2,R) ' sl(2)) act as

X̃ = −y∂x −
i

2
q2,

Ỹ = −x∂y −
i

2
∂2
q ,

H̃ = −x∂x + y∂y + q∂q +
1

2
, (8.15)

and satisfy the commutation relations of the Lie algebra mp(2,R)

[X̃, Ỹ ] = H̃,

[H̃, X̃] = 2X̃,

[H̃, Ỹ ] = −2Ỹ .

Notice that these operators preserve homogeneity in the variables x, y. The three
mp(2,R)-invariant operators

Xs = y∂q + ixq,

Ds = iq∂y − ∂x∂q,
E = x∂x + y∂y (8.16)

form a Lie algebra isomorphic to sl(2). The operators Xs, Ds and E commute
with X̃, Ỹ and H̃, i.e., they are mp(2,R)-intertwining differential operators on
complex polynomials valued in the Segal-Shale-Weil representation.
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Lemma 8.1.1. The commuting operators

Z1 = −X2
s∂x + iy(E + 1)(2E + 1) +Xsiq(2E + 1),

Z2 = −X2
s∂y − ix(E + 1)(2E + 1) +Xs∂q(2E + 1) (8.17)

preserve the solution space of the symplectic Dirac operator Ds and increase the
homogeneity in the variables x, y by one, Zj : Mh →Mh+1, j = 1, 2.

The commuting operators
∂x, ∂y (8.18)

preserve the solution space of the symplectic Dirac operator Ds and decrease the
homogeneity in the variables x, y by one.

The commutator [Z1, Z2] is zero, and

[∂x, Z1] = −2iX̃(2E + 1),

[∂y, Z1] = 2XsDs + iH̃(2E + 1) + i(2E + 1)(2E + 1) +
i

2
,

[∂x, Z2] = −2XsDs + iH̃(2E + 1)− i(2E + 1)(2E + 1)− i

2
,

[∂y, Z2] = 2iỸ (2E + 1). (8.19)

Moreover, we have
[Z1, H̃] = −Z1, [Z2, H̃] = Z2,

[Z1, X̃] = 0, [Z2, X̃] = −Z1,

[Z1, Ỹ ] = Z2, [Z2, Ỹ ] = 0,
[Z1, E] = −Z1, [Z2, E] = −Z2,

(8.20)

as well as
[∂x, H̃] = −∂x [∂y, H̃] = ∂y,

[∂x, X̃] = 0 [∂y, X̃] = −∂x,
[∂x, Ỹ ] = −∂y [∂y, Ỹ ] = 0,
[∂x, E] = ∂x, [∂y, E] = ∂y.

(8.21)

Remark 9. The commutator of commutators [∂x, Z1] = −2iX̃(2E + 1) and
[∂y, Z2] = 2iỸ (2E + 1) gives

[−2iX̃(2E + 1), 2iỸ (2E + 1)] = 4H̃(2E + 1)(2E + 1).

We can compute the commutator of this commutator. For example, we have
[∂x, Z1] = −2iX̃(2E + 1), resulting into the third power of (2E + 1). In general,
we can produce an arbitrarily high power of (2E + 1) in iterated commutators,
hence the linear span of the operators H̃, X̃, Ỹ , ∂x, ∂y, Z1, Z2 and E is not closed
under the commutator bracket.

Let us briefly mention the key concept of (generalized) differential symmetries
for the symplectic Dirac operator, see [15] and references therein. A differential
operator A is a symmetry of Ds if there exists another differential operator B
such that

DsA = BDs. (8.22)

Consequently, symmetry operators preserve the solution space of the symplectic
Dirac operator.

77



Theorem 8.1.2. The first order symmetries of the symplectic Dirac operator Ds

on R2 are given by the linear span of differential operators ∂x, ∂y, H̃, X̃, E and
yH̃ − 2xX̃ + yE + 3

2
y.

Proof. Let us consider a general first order differential operator in the variables
x, y, q

A = F0(x, y, q)∂x + F1(x, y, q)∂y + F2(x, y, q)∂q + F3(x, y, q),

where Fj, j = 0, 1, 2, 3, are convenient functions of x, y and q. Then DsA =
ADs + [Ds, A], so that (8.22) implies [Ds, A] = B′Ds for a differential operator
B′. The computation of commutators gives(
iq[∂y, F0(x, y, q)]− ∂q[∂x, F0(x, y, q)]− [∂q, F2(x, y, q)]∂q − [∂q, F3(x, y, q)]

)
∂x

+
(
iq[∂y, F1(x, y, q)]− ∂q[∂x, F1(x, y, q)] + F2(x, y, q)[iq, ∂q]

)
∂y

− [∂q, F0(x, y, q)]∂2
x − [∂q, F1(x, y, q)]∂x∂y

+ iq[∂y, F2(x, y, q)]∂q − ∂q[∂x, F2(x, y, q)]∂q + iq[∂y, F3(x, y, q)]− ∂q[∂x, F3(x, y, q)]

= B′(iq∂y − ∂x∂q).

The commutator [∂q, F0(x, y, q)] by ∂2
x does not depend on ∂q, and thus equals

to zero. Hence F0(x, y, q) is independent of the variable q, F0 ≡ F0(x, y). Then
the commutator [∂q, F1(x, y, q)] by ∂x∂y has to be zero as well, i.e., F1(x, y) is
independent of q. Moreover, the commutator [∂x, F1(x, y)] in ∂q[∂x, F1(x, y)]∂y
has to be zero, i.e., F1 ≡ F1(y).

We can separate the last equation into three equalities(
iq[∂y, F0(x, y)]− [∂q, F3(x, y, q)]−

(
[∂x, F0(x, y)] + [∂q, F2(x, y, q)]

)
∂q
)
∂x

= −B′∂q∂x, (8.23)(
iq[∂y, F1(y)]− iF2(x, y, q)

)
∂y = B′iq∂y, (8.24)

iq[∂y, F2(x, y, q)]∂q − ∂q[∂x, F2(x, y, q)]∂q + iq[∂y, F3(x, y, q)]

− ∂q[∂x, F3(x, y, q)] = 0. (8.25)

The equation (8.23) yields iq[∂y, F0(x, y)]− [∂q, F3(x, y, q)] = 0. We set

F3(x, y, q) = F ′3(x, y)
i

2
q2 + F ′′3 (x, y), (8.26)

and therefore

[∂y, F0(x, y)] = F ′3(x, y). (8.27)

The second equality (8.24) implies

F2(x, y, q) = F ′2(x, y)q. (8.28)

Then [∂q, F2(x, y, q)] = F ′2(x, y), and equations (8.24) and (8.23) give

[∂y, F1(y)]− F ′2(x, y) = [∂x, F0(x, y)] + F ′2(x, y),

[∂y, F1(y)] = [∂x, F0(x, y)] + 2F ′2(x, y). (8.29)
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The equation (8.25) can be rewritten with the use of (8.26) and (8.28) as

[∂y, F
′
2(x, y)]iq2∂q − [∂x, F

′
2(x, y)](∂q + q∂2

q )− [∂y, F
′
3(x, y)]

1

2
q3

+[∂y, F
′′
3 (x, y)]iq − [∂x, F

′
3(x, y)](iq +

1

2
iq2∂q)− [∂x, F

′′
3 (x, y)]∂q = 0.

Because there is only one commutator by q∂2
q and q3, we have F ′2 ≡ F ′2(y),

F ′3 ≡ F ′3(x). Then the commutators by ∂q have to be zero and F ′′3 is independent
of x, F ′′3 ≡ F ′′3 (y). The commutators by iq2∂q and iq give the relations

[∂y, F
′
2(y)]− 1

2
[∂x, F

′
3(x)] = 0, [∂y, F

′′
3 (y)]− [∂x, F

′
3(x)] = 0. (8.30)

The solution of (8.30) is F ′2(y) = 1
2
αy + γ, F ′3(x) = αx + β and F ′′3 = αy + γ.

The substitution of this solution into (8.27) yields F0(x, y) = αxy + βy + F ′0(x).
Substituting into (8.29), we get F ′0(x) = ηx+ ζ and F1(y) = αy2 + (2γ + η)y+ κ.
Taken altogether, the functions Fj, j = 0, 1, 2, 3 are

F0 = αxy + ηx+ βy + ζ, F2 =
1

2
αyq + γq,

F1 = αy2 + (2γ + η)y + κ, F3 = (αx+ β)
i

2
q2 + αy + δ,

where α, β, γ, δ, η, ζ, κ ∈ C are arbitrary constants. The constant β corresponds
to the operator X̃, ζ and κ correspond to ∂x and ∂y. A combination of η, γ and
δ corresponds to a combination of E, H̃ and the identity operator. Finally, α
corresponds to the operator yH̃ − 2xX̃ + yE + 3

2
y.

We notice that Ỹ is a second order differential operator, but it is first order
in the base variables x, y. The operators Z1, Z2 are symmetries of Ds but they
are third order differential operators, second order in the base variables x, y.

8.2 First order symmetries of Ds in holomorphic

variables on (R2, ω)

We use the complex coordinates z = x+ iy, z = x− iy, for the standard complex
structure on R2, where ∂x = ∂z + ∂z̄ and ∂y = i(∂z − ∂z̄). In the complex
coordinates z, z̄ we have

Xs =
i

2

(
(q − ∂q)z + (q + ∂q)z̄

)
,

Ds = −(q + ∂q)∂z + (q − ∂q)∂z̄,
E = z∂z + z̄∂z̄ (8.31)

and

Z1 = 2X2
s∂z + z̄(E + 1)(2E + 1) + iXs(∂q − q)(2E + 1),

Z2 = 2X2
s∂z̄ − z(E + 1)(2E + 1)− iXs(∂q + q)(2E + 1), (8.32)

where Z1 = Z̄1 + iZ̄2 and Z2 = Z̄1− iZ̄2. Cf., Z̄1 and Z̄2 in Lemma 8.1.1 rewritten
in the variables z, z̄.
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The commutator [Z1, Z2] = 0, and the commutators with (anti-)holomorphic
coordinate vector fields are

[Z1, ∂z] = 2iXt(2E + 1),

[Z1, ∂z̄] = 2iXsDs −Ht(2E + 1)− (2E + 1)(2E + 1)− 1

2
,

[Z2, ∂z] = −2iXsDs −Ht(2E + 1) + (2E + 1)(2E + 1) +
1

2
,

[Z2, ∂z̄] = 2iYt(2E + 1). (8.33)

Moreover, we introduce

Ht = i ¯̃X − i ¯̃Y,

Xt = −1

2

( ¯̃X + ¯̃Y + i ¯̃H
)
,

Yt = −1

2

( ¯̃X + ¯̃Y − i ¯̃H
)
,

where ¯̃H, ¯̃X and ¯̃Y denote the operators (8.15) in variables z, z̄

Ht = z̄∂z̄ − z∂z +
1

2
(q2 − ∂2

q ),

Xt = iz̄∂z +
i

4
(q − ∂q)2,

Yt = −iz∂z̄ +
i

4
(q + ∂q)

2. (8.34)

The operators Ht, Xt and Yt commute with Ds, Xs, E, and satisfy the commuta-
tion relations of algebra mp(2n,R)

[Xt, Yt] = Ht,

[Ht, Xt] = 2Xt,

[Ht, Yt] = −2Yt. (8.35)

The straightforward computation reveals

[Z1, Ht] = −Z1, [Z2, Ht] = Z2,
[Z1, Xt] = 0, [Z2, Xt] = iZ1,
[Z1, Yt] = −iZ2, [Z2, Yt] = 0,
[Z1, E] = −Z1, [Z2, E] = −Z2,

(8.36)

[∂z, Ht] = −∂z, [∂z̄, Ht] = ∂z̄,
[∂z, Xt] = 0, [∂z̄, Xt] = i∂z,
[∂z, Yt] = −i∂z̄, [∂z̄, Yt] = 0,
[∂z, E] = ∂z, [∂z̄, E] = ∂z̄.

(8.37)
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9. Rudiments of symplectic
Clifford-Fourier transform

The central role in harmonic analysis on Rn is played by the Lie algebra sl(2,C),
generated by the so(n,R)-invariant Laplace operator 4, the norm squared |x|2
of the vector x ∈ Rn and the Euler operator. The classical integral Fourier
transform,

F (f)(y) = (2π)−
n
2

∫
Rn
f(x) exp−i〈x,y〉 dx, 〈x, y〉 =

n∑
i=1

xiyi, (9.1)

can be equivalently represented by the operator exponential that contains the
generators of sl(2,C)

exp
iπn
4 exp

iπ
4

(4−|x|2) . (9.2)

In particular the operators 4, |x|2 have the same spectral properties. There are
analogous results in the harmonic analysis for finite groups based on Dunkl oper-
ators, or Clifford analysis based on the Clifford algebra associated to a quadratic

form and the Dirac operator D =
n∑
j=1

ej∂xj , written in a basis e1, . . . en of Rn with

coordinates x1, . . . , xn. Cf., [7], [8] and [10].
In the present section, we discuss several basic questions in this direction,

focusing on symplectic Clifford analysis and the associated symplectic Dirac op-
erator in real dimension 2.

9.1 Eigenfunction decomposition for operator

Ds − cXs

The symplectic Fourier transform is based on the eigenvalue equation

(Ds − cXs)f = λf, c ∈ R, λ ∈ C. (9.3)

As already indicated, we shall stick to the real dimension 2 and look for solutions
of this equation in terms of a linear combination of elements g(Xs)m

s
k, where

ms
k ∈ M s

k is a symplectic monogenic and g is a polynomial in the variable Xs.
First we shall focus on the problem whether for a symplectic spinor ϕ valued in
S(R) the relation eαXsϕ ∈ S(R) holds for α ∈ C.

Lemma 9.1.1. The following identity holds

eαXse−
q2

2 = e−
q2

2 e
1
2
α(ix−y)(2q+αy). (9.4)

Proof. Writing the exponential as

eαXse−
q2

2 =
∞∑
k=0

αk

k!
Xk
s e
− q

2

2 ,
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we show by induction on k ∈ N0 that

Xk
s e
− q

2

2 = e−
q2

2

b k
2
c∑

m=0

k!(ix− y)k−mqk−2mym

m!(k − 2m)!2m
. (9.5)

Recall, that b·c is the floor function. The equation is satisfied for k = 0 and for

k = 1, Xse
− q

2

2 is equal to e−
q2

2 q(ix − y). Assuming (9.5) holds for k, we aim to
prove the identity for k + 1. Let us start with odd k

(ixq + y∂q)e
− q

2

2

b k
2
c∑

m=0

k!(ix− y)k−mqk−2mym

m!(k − 2m)!2m
=

= e−
q2

2

b k
2
c∑

m=0

k!(ix− y)k+1−mqk+1−2mym

m!(k − 2m)!2m
+ e−

q2

2

b k
2
c∑

m=0

k!(ix− y)k−mqk−1−2mym+1

m!(k − 2m− 1)!2m
,

and the shift m 7→ m− 1 in the second sum results into

e−
q2

2

b k
2
c∑

m=0

(k + 1)!(ix− y)k+1−mqk+1−2mym

m!(k + 1− 2m)!2m

(
k + 1− 2m

k + 1
+

2m

k + 1

)

+ e−
q2

2
(k + 1)!(ix− y)k+1− k+1

2 y
k+1
2(

k+1
2

)
!2

k+1
2

=

= e−
q2

2

b k+1
2
c∑

m=0

(k + 1)!(ix− y)k+1−mqk+1−2mym

m!(k + 1− 2m)!2m

which proves the induction step. For k even, bk
2
c = bk+1

2
c and the second expres-

sion on the last display is zero. Then

eαXse−
q2

2 = e−
q2

2

∞∑
k=0

b k
2
c∑

m=0

αk(ix− y)k−mqk−2mym

m!(k − 2m)!2m
.

The change of the order in the last summation when keeping m fixed, gives

∞∑
k=2m

αk(ix− y)k−mqk−2mym

m!(k − 2m)!2m
=
α2m(ix− y)mym

m!2m
eαq(ix−y), (9.6)

and thus

e−
q2

2

∞∑
m=0

α2m(ix− y)mym

m!2m
eαq(ix−y) = e−

q2

2 e
1
2
α(ix−y)(2q+αy).

This completes the proof.

By Lemma 9.1.1, we see that eαXsϕ, α ∈ C, is for ϕ = e−
q2

2 a Schwartz
function in the variable q and a non-polynomial function in the variables x, y.

This property remains true for any ϕ = p(x, y)e−
q2

2 , where p(x, y) ∈ Pol(R2,C).
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Taking as basis elements of the Schwartz space qje−
q2

2 ∈ S(R), j ∈ N0, we see
that

eαXsqje−
q2

2 =
∞∑
k=0

αk

k!
Xk
s q

je−
q2

2 (9.7)

is a Schwartz function in q, because in the expansion of Xk
s q

je−
q2

2 the maximal

exponent of q is just k + j, cf., (9.5). Therefore, eαXsqje−
q2

2 grows as qje−
q2

2 eαq,
α ∈ C, which is a characterizing property of Schwartz function class in the variable
q.

It is easy to verify the following identities in the universal enveloping algebra
U
(
sl(2,C)

)
[E + n,Xk

s ] = kXk
s ,

[Ds, X
k
s ] = −i(E + n)Xk−1

s − iXs(E + n)Xk−2
s − . . .− iXk−1

s (E + n)

= −ikk − 1

2
Xk−1
s − ikXk−1

s (E + n). (9.8)

Then for α ∈ C, we get

[Ds, e
αXs ] =

∞∑
k=0

αk

k!
[Ds, X

k
s ]

= −i
∞∑
k=1

αk

(k − 1)!
Xk−1
s (E + n)− iα

2

2
Xs

∞∑
k=2

αk−2

(k − 2)!
Xk−2
s

= −iαeαXs(E + n)− iα
2

2
Xse

αXs . (9.9)

Let us mention the generalized Laguerre polynomials

Lβj (x) =

j∑
l=0

(−1)l
(
j + β

j − l

)
xl

l!

defined by the formula

Lβj (x) =
x−βex

j!

dj

dxj
(xx+βe−x)

for j ∈ N0 and arbitrary real β > −1, see [33] for more details.
The spectral decomposition of our operator, which we call the symplectic spin

harmonic oscillator, is summarized in the following Lemma.

Lemma 9.1.2. The operator H = Ds − cXs, c ∈ R, has a complete system of
eigenfunctions (valued in the Segal-Shale-Weil representation) given by

f jk = e
√

2icXsL2n+2k−1
j (−2

√
2icXs)m

s
k, (9.10)

where ms
k ∈ M s

k is a symplectic monogenic, Lαj (−2
√

2icXs) is the generalized

Laguerre polynomial of operator −2
√

2icXs and j, k ∈ N. The corresponding
eigenvalues are

λjk =
√

2ic(n+ j + k). (9.11)
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Proof. The substitution of
f = eαXsg(Xs)m

s
k

into (9.3), where ms
k ∈M s

k is a symplectic monogenic and g(Xs) is a polynomial
in Xs, yields

Dse
αXsg(Xs)m

s
k − cXse

αXsg(Xs)m
s
k = λeαXsg(Xs)m

s
k.

By (9.9) and because eαXs is an invertible operator, we get

Ds(g(Xs)m
s
k)− iα(E + n)g(Xs)m

s
k −

(
c+ i

α2

2

)
Xsg(Xs)m

s
k = λg(Xs)m

s
k.

Now we set c = −iα2

2
, i.e.,

√
2ic = α (we choose and fix one of the roots)

Ds

(
g(Xs)m

s
k

)
− iα(E + n)g(Xs)m

s
k = λg(Xs)m

s
k (9.12)

and substitute

g(Xs) = gjk(Xs) =

j∑
l=0

βj,kl X l
s. (9.13)

Then (9.12) turns into recurrence relation

λ

j∑
l=0

βj,kl X l
sm

s
k = −iα

j∑
l=0

βj,kl (l + k + n)X l
sm

s
k +

j∑
l=0

βj,kl Ds(X
l
sm

s
k).

Noting that Ds(X
l
sm

s
k) = −i l

2
(2k + 2n+ l − 1)X l−1

s ms
k, see (9.8), we have

j∑
l=0

(λ+ iα(l + k + n))βj,kl X l
sm

s
k = −i

j−1∑
l=0

l + 1

2
(2k + 2n+ l)βj,kl+1X

l
sm

s
k.

Finally, we obtain the following recurrence relations for l = 0, 1, . . . , j − 1

(λ+ iα(l + k + n))βj,kl = −i l + 1

2
(2k + 2n+ l)βj,kl+1, (9.14)

(λ+ iα(l + k + n))βj,kj = 0. (9.15)

In order g(Xs) is a polynomial, we have λ = −iα(n+j+k), that is an eigenvalue.
Hence, our recurrence relation becomes

α(j − l)βj,kl =
l + 1

2
(2k + 2n+ l)βj,kl+1,

which results into

βj,kl+1 =
2α(j − l)

(l + 1)(2k + 2n+ l)
βj,kl = . . . = 2l+1αl+1

(
j

l + 1

)
(2k + 2n− 1)!

(2k + 2n+ l)!
βj,k0 .

Therefore, we conclude that

βj,kl = 2lαl
(
j

l

)
(2k + 2n− 1)!

(2k + 2n− 1 + l)!
βj,k0 . (9.16)
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We choose βj,k0 = 1. Hence, we have

gjk(Xs) =
l∑
l=0

2lαl
(
j

l

)
(2k + 2n− 1)!

(2k + 2n− 1 + l)!
X l
s

= j!
(2k + 2n− 1)!

(2k + 2n− 1 + j)!
L2n+2k−1
j (−2αXs), (9.17)

where Lβj is the generalized Laguerre polynomial.

Example 7. The simplest eigenfunction for j = 0 is e
√

2icXse−
q2

2 ∈ M s
0 , where

e−
q2

2 is a highest weight vector of the Segal-Shale-Weil representation.
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10. Symplectic Fischer product
and reproducing kernel on
symplectic spinors

Let us briefly mention a motivation given by the classical orthogonal Fischer scalar
product. For two complex polynomials valued in the Clifford algebra associated
to a quadratic form, f ⊗ a, g ⊗ b ∈ Pol(Rm,C) ⊗ Cl(Rm), the Fischer scalar
product is defined by

〈f ⊗ a, g ⊗ b〉 = [f(∂x)g]x=0[ab]0.

Here f(∂x) is a differential operator, where we substitute ∂xj for the variable xj,
j = 1, . . . ,m, and act by the resulting differential operator on a polynomial g(x).
As for the values, [ ]0 denotes the zero degree part of an element in Cl(Rm).
The properties of scalar products are conveniently encoded in their reproducing
kernels. For example, the space of homogeneous polynomials of homogeneity k
satisfies 〈

〈x, y〉k

k!
, g(x)

〉
= g(y)

for all g ∈ Polk(Rm,C) and 〈, 〉 the canonical scalar product on Rm. Hence, the
reproducing kernel for homogeneity k harmonic polynomials Hk,

Zk(x, y) = ProjHk

(
〈x, y〉k

k!

)
, (10.1)

can be expressed by the use of the so-called Gegenbauer polynomial. The inter-
ested reader can find more about this topic in, e.g., [6].

In what follows, we attempt to apply the concept of Fischer product and
reproducing kernel to the space of symplectic spinors equipped with the action
of the metaplectic Lie algebra. As in the previous section, after some general
considerations we focus mostly on the real dimension 2.

10.1 Symplectic Fischer product and reproduc-

ing kernel for n = 1

Now we aim to define the Fischer product on the space of symplectic spinors. We
construct the symplectic Fischer product on Pol(R2n,C)⊗S(Rn) for f ⊗ψ, g⊗φ
with f, g ∈ Pol(R2n,C) and ψ, φ ∈ S(Rn), in the form

〈f ⊗ ψ, g ⊗ φ〉 = ω(f, g)

∫
Rn
ψ(q)φ(q) dq. (10.2)

The integral is the inner product in the fiber variables q1, . . . , qn and ω(f, g) is
the evaluation of a lift of the symplectic form to Symk(R2n), k ∈ N. We put

ω(v1 ⊗ . . .⊗ vn, w1 ⊗ . . .⊗ wn) =
∑

(j1,...,jn)∈Sn

ω(v1, wj1)ω(v2, wj2) . . . ω(vn, wjn),

(10.3)
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where vj, wj ∈ R2n and we sum over all even permutations of the set {1, . . . , n}.
As already announced above, we focus on the real 2-dimensional case and for

a moment, just on the part of the inner product on Pol(R2,C). We normalize the
lift of the symplectic form to be ω(e1, e2) = 1 for v = xe1 + ye2 ∈ R2, and define
the Fourier symplectic transformation by

x←→ ∂y, y ←→ −∂x.

Consequently, we get for r, s, t, u ∈ N0

〈xrys, xtyu〉 = ω(xrys, xtyu) = (−1)s∂ry∂
s
xx

tyu = (−1)su!s!δr,uδs,t.

Thus, we have for f = xrys, g = xtyu and r + s = t+ u

ω(f, yg) = 〈f, yg〉 = (−1)s∂ry∂
s
xx

tyu+1 = (−1)s(u+ 1)!s!δr,u+1δs,t,

ω(∂xf, g) = 〈∂xf, g〉 = r〈xr−1ys, xtyu〉 = (−1)sr(r − 1)!s!δr−1,uδs,t,

ω(f, xg) = 〈f, xg〉 = (−1)s(t+ 1)!s!δr,uδs,t+1,

ω(∂yf, g) = 〈∂yf, g〉 = (−1)s−1r!(s− 1)!δr,uδs−1,t.

Hence, there are relations

〈∂xf, g〉 = 〈f, yg〉, −〈∂yf, g〉 = 〈f, xg〉. (10.4)

Let us now summarize our definitions and basic properties in the 2-dimensional
case.

Definition 10.1.1. The symplectic Fischer product for f(x, y)⊗ ψ, g(x, y)⊗ φ,
with f, g ∈ Pol(R2,C) and ψ, φ ∈ S(R), is given by

〈f ⊗ ψ, g ⊗ φ〉 = [f(∂y,−∂x)g(x, y)]x=y=0

∫ ∞
−∞

ψ(q)φ(q) dq, (10.5)

where the bar denotes the complex conjugation of a complex valued function.

Lemma 10.1.1. The bilinear form defined in (10.5) for all a, b ∈ Pol(R2,C) ⊗
S(R) satisfies

1. 〈qa, b〉 = 〈a, qb〉, and 〈iqa, b〉 = 〈a,−iqb〉,

2. 〈∂qa, b〉 = −〈a, ∂qb〉 and 〈i∂qa, b〉 = 〈a, i∂qb〉,

3. 〈∂xa, b〉 = 〈a, yb〉,

4. 〈∂ya, b〉 = −〈a, xb〉,

5. 〈xa, b〉 = 〈a, ∂yb〉,

6. 〈ya, b〉 = −〈a, ∂xb〉.

Now we compute the adjoints of operators Ds, Xs with respect to 〈 , 〉.

Lemma 10.1.2. The adjoint operator for the symplectic Dirac operator Ds with
respect to the symplectic Fischer product is Xs, and vice versa. Thus, we have

〈Dsa, b〉 = 〈a,Xsb〉, 〈Xsa, b〉 = 〈a,Dsb〉,

for arbitrary a, b ∈ Pol(R2,C)⊗ S(R).
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Proof. A direct computation for a, b ∈ Pol(R2,C)⊗ S(R) reveals

〈Dsa, b〉 = 〈(iq∂y − ∂q∂x)a, b〉 = 〈a, (iqx+ ∂qy)b〉,
〈Xsa, b〉 = 〈(iqx+ ∂qy)a, b〉 = 〈a, (iq∂y − ∂q∂x)b〉.

Consequently, we have the orthogonality relations for the symplectic Fischer
decomposition,

〈Xj
sm

s
k, X

l
sm

s
h〉 ∼ δj,lδk,h, (10.6)

with symplectic monogenics ms
k ∈M s

k ,m
s
h ∈M s

h.

Lemma 10.1.3. The adjoint operators to the basis elements X̃, Ỹ and H̃ of
mp(2,R), cf., (8.15), with respect to the symplectic Fischer product are −X̃,−Ỹ
and −H̃, respectively.

Now we pass to the construction of the reproducing kernel Kk(ξ1, ξ2, x, y) for
the bilinear form

(f(x, y), g(x, y)) = [f(∂y,−∂x)g(x, y)]x=y=0

on the space of polynomials of homogeneity k. Inspired by the orthogonal case,
we claim

Kk(ξ1, ξ2, x, y) =
1

k!

(
− ξ1y + ξ2x

)k
. (10.7)

Indeed, we have(
Kk(ξ1, ξ2, x, y), p(x, y)

)
=

(
1

k!

(
− ξ1y + ξ2x

)k
, p(x, y)

)
=

1

k!

(
ξ1∂x + ξ2∂y

)k
p(x, y) = p(ξ1, ξ2) (10.8)

for p(x, y) ∈ Polk(R2,C).
In order to adapt Kk(ξ1, ξ2, x, y) to the reproducing kernel Zk of the space

of symplectic monogenics M s
k , we shall regard Kk(ξ1, ξ2, x, y) as an element in

Polk(R2,C)⊗ End(S(R)) with the value in End(S(R)) given by the identity en-
domorphism on S(R). Moreover, we introduce the projector

Projksm : Polk(R2,C)⊗ S(R)→M s
k ,

Projksm =
k∑
j=1

akjX
j
sD

j
s ∈ Polk(R2,C)⊗ End(S(R)), (10.9)

to homogeneity k symplectic monogenics, see [9], and define the symplectic Fis-
cher End(S(R))-valued product for the elements in Polk(R2,C)⊗ End(S(R)) by

〈f(ξ1, ξ2, x, y, q, ∂q), g(x, y, q)〉 = [f(ξ1, ξ2, ∂y,−∂x, q, ∂q)g(x, y, q)]x=y=0 .(10.10)

We remark that in (10.10) we use the same notation 〈 , 〉 for the symplectic Fischer
End(S(R))-valued product as for the R-valued scalar product (10.2), and believe
the attentive reader will not have a problem in distinguishing which of them is
currently used. Another remark is that we exploit in (10.10) the well-known fact
that any symplectic spinor g(x, y, q) ∈ Polk(R2,C)⊗ S(R) can be regarded as an
element in Polk(R2,C)⊗ End(S(R)), because the space of Schwartz functions is
a complex algebra.
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Theorem 10.1.4. The projection operator Projksm and the reproducing kernel
Zk relate to the symplectic Fischer product as follows

1. Projksm is self-adjoint.

2. Zk(ξ1, ξ2, x, y, q, ∂q) = ProjksmKk(ξ1, ξ2, x, y) is the reproducing kernel for
M s

k .

Proof. Using this pairing, we first observe the self-adjointness property of Projksm,
indeed,

〈Projksmf, g〉 =
k∑
j=0

akj 〈Xj
sD

j
sf, g〉 =

k∑
j=0

akj 〈f,Xj
sD

j
sg〉 = 〈f,Projksmg〉.

By (10.8), we have for ms
k ∈M s

k

〈Zk(ξ1, ξ2, x, y, q, ∂q),m
s
k(x, y, q)〉 = 〈Kk(ξ1, ξ2, x, y),Projksmm

s
k〉 = ms

k(ξ1, ξ2, q),

and for any j ∈ N, the relation holds

〈Zk(ξ1, ξ2, x, y, q, ∂q), X
j
sm

s
k−j(x, y, q)〉 = 〈Kk(ξ1, ξ2, x, y),ProjksmX

j
sm

s
k−j〉 = 0.

The proof is complete.

Lemma 10.1.5. The reproducing kernel Zk has the explicit form

Zk(ξ1, ξ2, x, y, q, ∂q) =
k∑
j=0

ijakj
1

(k − j)!
(
− ξ1y + ξ2x

)k−j
Xj
sξ
j
s , (10.11)

where ξs = −qξ1 + i∂qξ2.

Proof. First we need an explicit formula for Dj
sKk(ξ1, ξ2, x, y), j = 1, . . . , k. By

the chain rule, we obtain

DsKk(ξ1, ξ2, x, y) = (iq∂y − ∂q∂x)
1

k!

(
− ξ1y + ξ2x

)k
= Kk−1(ξ1, ξ2, x, y)(iqξ1 − ∂qξ2) = iKk−1(ξ1, ξ2, x, y)ξs.

Therefore, Dj
sKk(ξ1, ξ2, x, y) = ijKk−j(ξ1, ξ2, x, y)ξjs , and so

Zk(ξ1, ξ2, x, y, q, ∂q) =
k∑
j=0

akjX
j
sD

j
sKk(ξ1, ξ2, x, y)

=
k∑
j=0

ijakjX
j
sKk−j(ξ1, ξ2, x, y)ξjs =

k∑
j=0

ijakjX
j
s

(
− ξ1y + ξ2x

)k−j
(k − j)!

ξjs ,

which proves the assertion.
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11. Explicit bases of symplectic
monogenics on (R2, ω)

In the present section we construct some explicit bases for symplectic monogenics
M s

h in Pol(R2,C)⊗S(R) of homogeneity h, and prove several useful characterizing
properties.

The first distinguished basis is written in the real coordinates x and y on R2

and the (topological) basis qje−
q2

2 , j ∈ N0, of the Schwartz space. The second
distinguished basis for symplectic monogenics is written in the complex coordi-
nates z and z̄ on R2 ' C and the (topological) basis of Hermite functions ψj(q),
j ∈ N0, for S(R).

Lemma 11.0.6. The symplectic spinors of homogeneity h in the variables x, y
and odd in the variable q for k ∈ N0, k ≥ h,

s̃ho,k = e−
q2

2

h∑
p=0

(−1)p
(2k + 1)!!

(2k − 2p+ 1)!!

(
h

p

)
q2k+1−2p(x+ iy)h−p(iy)p, (11.1)

and even in variable q for k ∈ N0,

s̃he,k = e−
q2

2

h∑
p=0

(−1)p
(2k)!!

(2k − 2p)!!

(
h

p

)
q2k−2p(x+ iy)h−p(iy)p, (11.2)

form a topological basis of the odd and even part of the symplectic monogenics
M s

h, respectively.

Proof. Let us consider a polynomial symplectic spinor

f(x, y, q) = e−
q2

2

∞∑
j=0

qjpj(x, y),

where pj(x, y) are polynomials in the variables x, y. Solving the equation 0 =
Dsf(x, y, q), we have

0 = (iq∂y − ∂x∂q)f(x, y, q)

= e−
q2

2

∞∑
j=0

(
iqj+1∂ypj(x, y) + qj+1∂xpj(x, y)− jqj−1∂xpj(x, y)

)
.

Because the functions e−
q2

2 qj, j ∈ N0 are linearly independent,

qj ((∂x + i∂y)pj−1(x, y)− (j + 1)∂xpj+1(x, y)) = 0 (11.3)

for each j ∈ N0. We get a system of recurrence equations, splitting into two
subsystems of odd and even in the variable q and the solution follows. The
functions pj(x, y) are polynomials, hence solutions.

For a fixed homogeneity h in the variables x and y, the systems s̃ho,k and s̃he,k
contain all powers qj, j ∈ N0, for appropriate k and all possible combinations
of x, y in Pol(R2,C) so that it is in Ker(Ds). Therefore, odd (11.1) and even

(11.2) systems form a basis of M s
h because {qje− q

2

2 }j∈N0 is a topological basis of
S(R).
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Retaining the notation of the previous Lemma, it is straightforward to prove.

Remark 10. The symplectic monogenics s̃ho,k and s̃he,k are eigenfunctions for op-

erators X̃ ′ = X̃, H̃ ′ = H̃ + 2iX̃ and Ỹ ′ = Ỹ − iH̃ + X̃, where X̃, Ỹ and H̃ are
defined in (8.15).

In the complex coordinates z = x + iy, z = x − iy, with ∂x = ∂z + ∂z̄ and
∂y = i(∂z − ∂z̄), the symplectic Dirac operator in the complex coordinates z, z̄ is
given by

Ds = −(q + ∂q)∂z + (q − ∂q)∂z̄. (11.4)

See (6.32). Let us recall that the Hermite functions {ψk(q)}k∈N0 are a topological
basis of the Schwartz space S(R). The k-th Hermite function is

ψk(q) =
1√

2kk!
√
π
e−

q2

2 Hk(q) =
(−1)k√
2kk!
√
π

(
q − ∂q

)k
e−

q2

2 ,

where Hk is the k-th Hermite polynomial. The operators (q + ∂q) and (q − ∂q)
act on the basis vectors by

(q + ∂q)ψk =
√

2
√
kψk−1,

(q − ∂q)ψk =
√

2
√
k + 1ψk+1. (11.5)

Together with the Euler operator acting by a multiple of identity on each ψk,
they form a representation of the Lie algebra sl(2,C). We shall use the following
easily verified formulas

(q2 − ∂2
q )ψk = (2k + 1)ψk,

(q − ∂q)2ψk = 2
√

(k + 1)(k + 2)ψk+2,

(q + ∂q)
2ψk = 2

√
k(k − 1)ψk−2. (11.6)

Lemma 11.0.7. The polynomial symplectic spinors of homogeneity h in the
variables z, z̄ and odd in the variable q for k ∈ N0,

sho,k =
h∑
p=0

√
(2k + 2p)!!

(2k + 2p+ 1)!!

(
h

p

)
ψ2k+2p+1(q)z̄h−pzp, (11.7)

form the basis of the odd part of the solution space of the symplectic Dirac
operator Ds.

The polynomial symplectic spinors of homogeneity h in the variables z, z̄ and
even in the variable q for k ∈ N0,

she,k =
h∑
p=0

√
(2k + 2p− 1)!!

(2k + 2p)!!

(
h

p

)
ψ2k+2p(q)z̄

h−pzp, (11.8)

and, for k = −1,−2, . . . ,−h,

she,k =
h∑

p=|k|

√
(2k + 2p− 1)!!

(2k + 2p)!!

(
h

p

)
ψ2k+2p(q)z̄

h−pzp, (11.9)

form a basis of the even part of the solution space of the symplectic Dirac operator
Ds.
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Proof. Let us consider a symplectic spinor

f(z, z̄, q) =
∞∑
l=0

ψl(q)pl(z, z̄),

where ψl(q) is the l-th Hermite function and pl(z, z̄) is a polynomial in the vari-
ables z, z̄. The action of the symplectic Dirac operator is then

Dsf(z, z̄, q) =
(
(q + ∂q)∂z − (q − ∂q)∂z̄

)
f(z, z̄, q)

=
√

2
∞∑
l=0

√
lψl−1(q)∂zpl(z, z̄)−

√
l + 1ψl+1(q)∂z̄pl(z, z̄).

The Hermite functions are linearly independent, which implies

ψl(q)(
√
l + 1∂zpl+1(z, z̄)−

√
l∂z̄pl−1(z, z̄)) = 0 (11.10)

for each l ∈ N0. The system of recurrence equations is split into two subsystems
with odd and even indexes in the variable q, each of which is easy so resolve.

For a fixed homogeneity h, the systems of symplectic polynomial spinors
(11.7), (11.8) and (11.9) form a basis of symplectic monogenics M s

k of homo-
geneity h. Because the Hermite functions form a topological basis of S(R) the
above collection of symplectic monogenics is a topological basis of Ker(Ds).

Now let us explore the properties of the symplectic Fischer product (10.5)
applied to the basis elements discussed in the Proposition 11.0.6 and Proposition
11.0.7. The motivation for this question is the existence of a basis of symplectic
monogenics, which is isotropic with respect to the product (10.5).

Lemma 11.0.8. The basis elements (11.1) and (11.2) of homogeneity 2 in the
symplectic Fischer product (10.5) satisfy, for k, l ∈ N, k, l ≥ 2,

〈s̃2
o,k, s̃

2
o,l〉 =

−3
√
π(2k + 2l − 5)

2k+l−3
,

〈s̃2
e,k, s̃

2
e,l〉 =

−3
√
π(2k + 2l − 5)

2k+l−2
,

〈s̃2
o,k, s̃

2
e,l〉 = 0.

Proof. Focusing just on the Pol(R2,C) part of the symplectic Fischer product
(10.5), the only non zero combinations of x, y in homogeneity 2 are 〈x2, y2〉 = 2

and 〈xy, xy〉 = −1. Then
∫∞
−∞ e

−q2q2t dq =
√
π(2t+1)

2t
for t ∈ N0 and moreover,∫∞

−∞ e
−q2qt dq = 0 for t odd.

Therefore, we see that the symplectic Fischer product (10.5) of any two odd
or even basis elements (11.1), (11.2) for k, l ≥ 2 is non-zero (in fact, negative) for
k = l. This implies that the symplectic Fischer product (10.5) does not seem to
be a convenient candidate for the scalar product on Pol(R2,C)⊗ S(R).

Let us rewrite the symplectic Fischer product (10.5) in the complex variables.
In the variables z, z̄, we have a non-trivial pairing for the pairs z ←→ −2i∂z̄

92



and z̄ ←→ 2i∂z. Hence for f(z, z̄) ⊗ ψ, g(z, z̄) ⊗ φ, with f, g ∈ Pol(R2,C) and
ψ, φ ∈ S(R),

〈f ⊗ ψ, g ⊗ φ〉 = [f(−2i∂z̄, 2i∂z)g(z, z̄)]z=z̄=0

∫ ∞
−∞

ψ(q)φ(q) dq. (11.11)

Let us look at the symplectic Fischer product (11.11) for the low homogeneity
basis elements sho,k, (11.7), of odd part of the symplectic monogenics.

Example 8. In the homogeneity 2 and k, l ∈ N, the relation holds

〈s2
o,k, s

2
o,l〉 = −8

(2k)!!

(2k + 1)!!
δ2k+1,2l+5 +16

(2k + 2)!!

(2k + 3)!!
δ2k+2,2l+2−8

(2k + 4)!!

(2k + 5)!!
δ2k+5,2l+1,

where just one of the (Kronecker) deltas on the previous display may be non-zero.
We observe that for k = l is 〈s2

o,k, s
2
o,k〉 6= 0, because δ2k+2,2l+2 6= 0.

In the homogeneity 3 and k, l ∈ N,

〈s3
o,k, s

3
o,l〉 =− 48i

(2k)!!

(2k + 1)!!
δ2k+1,2l+7 − 16i

(2k + 2)!!

(2k + 3)!!
δ2k+3,2l+5

+ 16i
(2k + 4)!!

(2k + 5)!!
δ2k+5,2l+3 + 48i

(2k + 6)!!

(2k + 7)!!
δ2k+7,2l+1,

where again just one delta may be non-zero. For k = l the symplectic Fischer
product gives zero, 〈s3

o,k, s
3
o,k〉 = 0, and analogous conclusion 〈sho,k, sho,k〉 = 0 can

be made for all odd homogeneities h.

Let us now consider another skew-symmetric bilinear form on Pol(R2,C) ⊗
S(R), which is skew-symmetric on S(R) and possesses several remarkable prop-
erties. We use again the complex variables on R2.

Definition 11.0.2. Let us introduce a bilinear form 〈 , 〉1 on symplectic spinors,
defined on f(z, z̄)⊗ ψ, g(z, z̄)⊗ φ with f, g ∈ Pol(R2,C) and ψ, φ ∈ S(R) by

〈f ⊗ ψ, g ⊗ φ〉1 =
√

2

[
1

h!
f(∂z, ∂z̄)g(z, z̄)

]
z=z̄=0

∫ ∞
−∞

(
∂qψ(q)

)
φ(q) dq, (11.12)

where h denotes the homogeneity of the polynomial f(z, z̄).

In the monomial basis, we have for r, s, t, u ∈ N0

〈zrz̄s ⊗ ψ, ztz̄u ⊗ φ〉1 =
√

2
r!s!

(r + s)!
δr,tδs,u

∫ ∞
−∞

(
∂qψ(q)

)
φ(q) dq, (11.13)

where δr,t denotes the Kronecker delta. Moreover, for a, b ∈ Pol(R2,C) ⊗ S(R),
the relations hold

〈za, b〉1 = 〈a, ∂zb〉1, 〈∂za, b〉1 = 〈a, zb〉1,
〈z̄a, b〉1 = 〈a, ∂z̄b〉1, 〈∂z̄a, b〉1 = 〈a, z̄b〉1. (11.14)
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Notice that the bilinear form 〈 , 〉1 is not mp(2,R)-invariant on the whole space
of symplectic spinors, because

〈Ht(f ⊗ ψ), g ⊗ φ〉1 − 〈f ⊗ ψ,Ht(g ⊗ φ)〉1

= [f, g]

∫ ∞
−∞

qψ(q)φ(q) dq,

〈Xt(f ⊗ ψ), g ⊗ φ〉1 − 〈f ⊗ ψ,Xt(g ⊗ φ)〉1

=
i

2
[f, g]

∫ ∞
−∞

(
qψ(q)φ(q) + 2q

(
∂qψ(q)

)(
∂qφ(q)

))
dq,

〈Yt(f ⊗ ψ), g ⊗ φ〉1 − 〈f ⊗ ψ, Yt(g ⊗ φ)〉1

=
i

2
[f, g]

∫ ∞
−∞

(
qψ(q)φ(q)− 2q

(
∂qψ(q)

)(
∂qφ(q)

))
dq,

with

[f, g] =
√

2

[
1

h!
f(∂z, ∂z̄)g(z, z̄)

]
z=z̄=0

.

However, 〈 , 〉1 is mp(2,R)-invariant when restricted to any of the two irreducible
subspaces of symplectic spinors (given by the subspaces of even and odd Schwartz
functions, respectively).

Now, let us define the elements

shE,l =
1

2h

l∑
j=0

she,j, (11.15)

which form a basis of even symplectic monogenics in the homogeneity h (as well
as the set she,l, l ∈ N0, cf., (11.8).)

Lemma 11.0.9. The basis elements sho,k, s
h
E,k, k ∈ N0, of polynomial symplectic

monogenics of homogeneity h in the variables z, z̄ form two isotropic subspaces of
symplectic monogenics M s

h with respect to the form defined in (11.12). Namely,
the basis elements satisfy

〈sho,k, sho,l〉1 = 0, 〈sho,k, shE,l〉1 = δk,l,

〈shE,k, shE,l〉1 = 0, 〈shE,l, sho,k〉1 = −δk,l, (11.16)

for k, l ∈ N0 and h ∈ N0. Moreover, the form is identically zero for symplectic
monogenics of different homogeneities h, h′.

Proof. Let us remind the orthonormality relation
∫∞
−∞ ψk(q)ψl(q) dq = δk,l for

Hermite functions. Then the relations in the first column (11.16) are obvious,
because the derivative of a Hermite function ψk(q) is

∂qψk(q) =

√
k

2
ψk−1(q)−

√
k + 1

2
ψk+1(q)

and consequently, the integral in the bilinear form is zero.
As for the proof of the relation 〈sho,k, shE,l〉1 = δk,l, we first prove

〈sho,k, she,l〉1 = 2h(δk,l − δk+1,l)
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for k, l ∈ N0. We use (11.13) to simplify the calculation, we get

〈sho,k, she,l〉1 =
h∑
p=0

√
(2k + 2p)!!(2l + 2p− 1)!!

(2k + 2p+ 1)!!(2l + 2p)!!

(
h

p

)2
(h− p)!p!

h!
×

×
(
δ2k+2p,2l+2p

√
2k + 2p+ 1− δ2k+2p+2,2l+2p

√
2k + 2p+ 2

)
.

This is equal to
∑h

p=0

(
h
p

)
= 2h for k = l, −2h for k + 1 = l and zero otherwise.

Then for the basis elements shE,l we have 〈sho,k, shE,l〉1 =
∑l

j=0 δk,j −
∑l

j=0 δk+1,j,
which is non-zero just for k = l. The last relation in (11.16) follows from the
skew-symmetry of the product.

For different homogeneities, the statement easily follows from (11.13), and the
proof is complete.

We remark that for k < 0, the elements she,k in (11.9) satisfy

〈she,l, she,k〉1 = 0, 〈sho,j, she,k〉1 = 0, 〈shE,j, she,k〉1 = 0,

for each k, l ∈ Z, −h ≤ k < 0, −h ≤ l and j ∈ N0.

11.1 Action of symmetries of Ds on basis of sym-

plectic monogenics

In the present part we determine the action of the symmetry operators introduced
in Section 8.2 on the basis of symplectic monogenics described in Lemma 11.0.7.
We remark that the action of the symmetry operators on the basis of symplectic
monogenics described in Lemma 11.0.6 is much more involved.

We shall start with the even component of the basis.

Lemma 11.1.1. The operators ∂z and ∂z̄ decrease the homogeneity in z, z̄ and
preserve the elements of even basis (11.8), (11.9) of the kernel of the symplectic
Dirac operator Ds. In particular, for k ∈ Z, k ≤ −h,

∂zs
h
e,k = hsh−1

e,k+1,

∂z̄s
h
e,k = hsh−1

e,k , for k 6= −h, ∂z̄s
h
e,−h = 0. (11.17)

Proof. We verify the relation ∂zs
h
e,k = hsh−1

e,k+1 for k ∈ N0, the others being analo-
gous. We have

∂z

h∑
p=0

√
(2k + 2p− 1)!!

(2k + 2p)!!

(
h

p

)
ψ2k+2p(q)z̄

h−pzp =

=
h∑
p=1

√
(2k + 2p− 1)!!

(2k + 2p)!!

h!

(h− p)!(p− 1)!
ψ2k+2p(q)z̄

h−pzp−1.

Shifting the summation index by one, we get

h−1∑
p=0

√
(2k + 2p+ 1)!!

(2k + 2p+ 2)!!

h!

(h− p− 1)!p!
ψ2k+2p+2(q)z̄h−1−pzp = hsh−1

e,k+1

as required.
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Lemma 11.1.2. The operators Ht, Xt and Yt, see (8.34), preserve the span of
even elements of the basis (11.8), (11.9) of the kernel of the symplectic Dirac
operator, and the action on basis elements is, for k ∈ Z, k ≤ −h, given by

Hts
h
e,k = (h+ 2k +

1

2
)she,k,

Xts
h
e,k = i(h+ k + 1)she,k+1,

Yts
h
e,k = i(k − 1

2
)she,k−1, for k 6= −h, Yts

h
e,−h = 0. (11.18)

Proof. This is again a straightforward computation. For example, let us prove
the relation Xts

h
e,k = i(h+ k + 1)she,k+1, k ∈ N0. We have

(
iz̄∂z +

i

4
(q − ∂q)2

) h∑
p=0

√
(2k + 2p− 1)!!

(2k + 2p)!!

(
h

p

)
ψ2k+2p(q)z̄

h−pzp =

= i
h∑
p=1

√
(2k + 2p− 1)!!

(2k + 2p)!!

h!

(h− p− 1)!(p− 1)!
ψ2k+2p(q)z̄

h−p+1zp−1

+
i

4

h∑
p=0

√
(2k + 2p− 1)!!

(2k + 2p)!!

(
h

p

)
2
√

(2k + 2p+ 1)(2k + 2p+ 2)ψ2k+2p+2(q)z̄h−pzp.

Shifting by one in the summation index in the first sum, we get

= i
h∑
p=0

√
(2k + 2p+ 1)!!

(2k + 2p+ 2)!!

(
h

p

)
ψ2k+2p+2(q)z̄h−pzp

(
h− p+

1

2
(2k + 2p+ 2)

)
= i(h+ k + 1)she,k+1.

Lemma 11.1.3. The operators Z1 and Z2, see (8.32), increase the homogeneity
by one in the variables z, z̄ and preserve even elements of the basis (11.8), (11.9)
of the kernel of the symplectic Dirac operator. The operators satisfy for k ∈ Z,
k ≤ −h,

Z1s
h
e,k = 2(h+ 1)(h+ k + 1)sh+1

e,k ,

Z2s
h
e,k = (h+ 1)(2k − 1)sh+1

e,k−1. (11.19)

Proof. It follows from (8.32) that

Z1 =− 1

2

((
q − ∂q

)2
z2 + 2

(
q2 + ∂2

q

)
zz̄ +

(
q + ∂q

)2
z̄2
)
∂z

+ z̄(E + 1)(2E + 1) +
1

2

((
q − ∂q

)2
z +

(
q + ∂q

)(
q − ∂q

)
z̄
)

(2E + 1),

Z2 =− 1

2

((
q − ∂q

)2
z2 + 2

(
q2 + ∂2

q

)
zz̄ +

(
q + ∂q

)2
z̄2
)
∂z̄

− z(E + 1)(2E + 1) +
1

2

((
q − ∂q

)(
q + ∂q

)
z +

(
q + ∂q

)2
z̄
)

(2E + 1).
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Now using (11.5), (11.6) and (2E+ 1)she,k = (2h+ 1)she,k, (E+ 1)she,k = (h+ 1)she,k,

we verify the relation Z2s
h
e,k = (h+ 1)(2k − 1)sh+1

e,k−1 for k ∈ N0. The expression

Z2

(
h∑
p=0

√
(2k + 2p− 1)!!

(2k + 2p)!!

(
h

p

)
ψ2k+2p(q)z̄

h−pzp

)

can be expanded in the following tree sums.

=− 1

2

h−1∑
p=0

√
(2k + 2p− 1)!!

(2k + 2p)!!

(
h

p

)
(h− p)×

× 2
(√

(2k + 2p+ 1)(2k + 2p+ 2)ψ2k+2p+2(q)z̄h−p−1zp+2

+ (4k + 4p+ 1)ψ2k+2p(q)z̄
h−pzp+1

+
√

(2k + 2p)(2k + 2p− 1)ψ2k+2p−2(q)z̄h−p+1zp
)

−
h∑
p=0

√
(2k + 2p− 1)!!

(2k + 2p)!!

(
h

p

)
(h+ 1)(2h+ 1)ψ2k+2p(q)z̄

h−pzp+1

+
1

2

h∑
p=0

√
(2k + 2p− 1)!!

(2k + 2p)!!

(
h

p

)
(2h+ 1)2

(
(2k + 2p)ψ2k+2p(q)z̄

h−pzp+1

+
√

(2k + 2p)(2k + 2p− 1)ψ2k+2p−2(q)z̄h−p+1zp
)

We reorganize the sum of summations to get the contributions to a given Hermite
function as follows

h−1∑
p=0

√
(2k + 2p+ 1)!!

(2k + 2p+ 2)!!
ψ2k+2p+2(q)z̄h−p−1zp+2

(
h

p

)
(p− h)(2k + 2p+ 2)

+
h∑
p=0

√
(2k + 2p− 1)!!

(2k + 2p)!!
ψ2k+2p(q)z̄

h−pzp+1

(
h

p

)
×

×
(
(p− h)(4k + 4p+ 1) + (2h+ 1)(2k + 2p− h− 1)

)
+

h∑
p=0

√
(2k + 2p− 3)!!

(2k + 2p− 2)!!
ψ2k+2p−2(q)z̄h−p+1zp

(
h

p

)
(2k + 2p− 1)(h+ p+ 1).

We do the appropriate shifts in summations and multiple expressions to produce
the required combinatorial numbers

h+1∑
p=0

√
(2k + 2p− 3)!!

(2k + 2p− 2)!!
ψ2k+2p−2(q)z̄h−p+1zp

(h+ 1)!

(h− p+ 1)!p!
×

× 1

h− 1

(
− (p− 1)p(2k + 2p− 2) + p(p− 1− h)(4k + 4p− 3)

+ p(2h+ 1)(2k + 2p− h− 3) + (h− p+ 1)(2k + 2p− 1)(h+ p+ 1)
)

=sh+1
e,k−1(h+ 1)(2k − 1).

The remaining equalities are analogous and the proof is complete.
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The proof of the analogous statement for the odd part of the basis of the
kernel of the symplectic Dirac operator is analogous computation to the even
part in the previous Lemma and so it is omitted. This result is summarized in
the next Lemma.

Lemma 11.1.4.

1. The operators ∂z and ∂z̄ decrease the homogeneity in the variables z, z̄ by
one and preserve odd elements of the basis (11.7), k ∈ N0, of the kernel of
the symplectic Dirac operator Ds

∂zs
h
o,k = hsh−1

o,k+1,

∂z̄s
h
o,k = hsh−1

o,k . (11.20)

2. The operators Ht, Xt and Yt preserve odd elements of the basis (11.7),
k ∈ N0, of the kernel of the symplectic Dirac operator

Hts
h
o,k = (h+ 2k +

3

2
)sho,k,

Xts
h
o,k = i(h+ k +

3

2
)sho,k+1,

Yts
h
o,k = iksho,k−1, for k 6= 0, Yts

h
o,0 = 0. (11.21)

3. The operators Z1 and Z2 increase the homogeneity by one in the variables
z, z̄, and map odd elements of the basis (11.7), k ∈ N0, to the elements of
odd basis of the homogeneity plus one higher of the kernel of the symplectic
Dirac operator,

Z1s
h
o,k = (1 + h)(2h+ 2k + 3)sh+1

o,k ,

Z2s
h
o,k = 2(h+ 1)ksh+1

o,k−1. (11.22)
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12. Extension map for symplectic
spinors on (R2n, ω)

Let us introduce a notation of this chapter for three symplecticaly invariant oper-
ators, endomorphisms of polynomial symplectic spinors, already defined in (7.6)
and also in (8.4)

Xs,n =
n∑
j=1

(yj∂qj + ixjqj),

Ds,n =
n∑
j=1

(iqj∂yj − ∂xj∂qj),

En =
n∑
j=1

(xj∂xj + yj∂yj). (12.1)

They generate the representation of the sl(2,C) on the space Pol(R2n,C)⊗S(Rn).
The non-canonical sl(2,C) commutation relations of these operators are

[En + n,Ds,n] = −Ds,n,

[En + n,Xs,n] = Xs,n, (12.2)

[Xs,n, Ds,n] = i(En + n).

A mathematical induction and previous commutators yield to following relations
for the power of operators acting on ϕ ∈ Pol(R2n,C)⊗S(Rn) and ψ ∈ Ker(Ds,n) ⊂
Pol(R2n,C)⊗ S(Rn)

(En + n)(Xs,n)kϕ = (Xs,n)k(En + n+ k)ϕ, (12.3)

Ds,n(Xs,n)kϕ = (Xs,n)kDs,nφ− i(Xs,n)k−1
(
k(En + n) +

(k − 1)k

2

)
ϕ,

(Ds,n)l(Xs,n)kψ = (−i)l(Xs,n)k−l
l−1∏
j=0

(
(k − j)(En + n) +

(k − 1− j)(k − j)
2

)
ψ,

where k ∈ N0.

12.1 Representation on tensor product

The Schwartz space of rapidly decreasing functions S(Rn) is a Fréchet space.
Moreover, it is a nuclear space. Therefore there is a canonical isomorphism

S(Rn)⊗̂S(Rm) ∼= S(Rn+m) (12.4)

for n,m ∈ N as noticed in the Section 2.4.
Let ρn and ρm be two representations of Lie algebras sp(2n,R) and sp(2m,R)

on Pol(R2n,C) ⊗ S(Rn) and Pol(R2m,C) ⊗ S(Rm), respectively derived from
Segal-Shale-Weil representation of corresponding symplectic groups. We want to
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characterise a block diagonal injection of Lie algebras sp(2n,R) × sp(2m,R) ↪→
sp(2(n+m),R) in the terms of representations.

For representation spaces of ρn and ρm we have(
Pol(R2n,C)⊗ S(Rn)

)
⊗̂
(
Pol(R2m,C)⊗ S(Rm)

) ∼= Pol(R2(n+m),C)⊗ S(Rn+m)

thanks to (12.4) and multiplicative structure on polynomials.
Let us consider tensor product of representations

ρn � ρm : sp(2n,R)× sp(2m,R)→ End
(
Pol(R2(n+m),C)

)
⊗ End

(
S(Rn+m)

)
→ End

(
Pol(R2(n+m),C)⊗ S(Rn+m)

)
for gn ∈ sp(2n,R) and gm ∈ sp(2m,R) by

(ρn � ρm)(gn, gm) = ρn(gn)⊗ Idm + Idn⊗ρm(gm)

on the endomorphisms of the space
(
Pol(R2n,C)⊗S(Rn)

)
⊗̂
(
Pol(R2m,C)⊗S(Rm)

)
,

where Idn, Idm denote appropriate identity operators.

12.2 Extension map

The construction of symplectic monogenics in Pol(R2,C) ⊗ S(R) is described
in Chapter 6 and in Chapter 11 we have showed an explicit basis for symplec-
tic monogenics. In this chapter we study the question whether there is a way to
construct symplectic monogenics in Ker(Ds,n) ⊂ Pol(R2n,C)⊗S(Rn). We demon-
strate a recursive construction from Ker(Ds,n−1) and Ker(Ds,1) to Ker(Ds,n).

Moreover, from representations of algebras sp(2(n − 1),R) and sp(2,R), we
get the discrete part of a representation of algebra sp(2n,R).

Let us denote

X̃s,n = yn∂qn + ixnqn,

D̃s,n = iqn∂yn − ∂xn∂qn ,
Ẽn = xn∂xn + yn∂yn (12.5)

operators generating sl(2) algebra in variables xn, yn and qn. The commutation
relations are as in (12.2)

[Ẽn, D̃s,n] = −D̃s,n, [Ẽn, X̃s,n] = X̃s,n, [X̃s,n, D̃s,n] = i(Ẽn + 1). (12.6)

Theorem 12.2.1. Let ms
h ∈ M s

h(R2n−2) be a symplectic monogenic and m̃s
h̃
∈

M s
h̃
(R2) be a symplectic monogenic in variables xn, yn and qn. Then

Ψb : M s
h̃
(R2)×M s

h(R2n−2)→M s
h̃+h+b

(R2n), (12.7)

Ψb(m̃
s
h̃
,ms

h) = (12.8)

=
b∑
l=0

(−1)l

∏l−1
j=0

(
(b− j)(h+ n− 1) + (b−j−1)(b−j)

2

)
∏l

j=1

(
j(h̃+ 1) + (j−1)j

2

) (X̃s,n)lm̃s
h̃
(Xs,n−1)b−lms

h,

where b ∈ N0.
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Proof. Let us show that Ds,nΨb(m̃
s
h̃
,ms

h) = 0, where Ds,n = D̃s,n + Ds,n−1. By
the relation (12.3) we have

D̃s,n(X̃s,n)lm̃s
h̃

=− i
(
l(h̃+ 1) +

(l − 1)l

2

)
(X̃s,n)l−1m̃s

h̃
,

Ds,n−1(Xs,n−1)b−lms
h =− i

(
(b− l)(h+ n− 1) +

(b− l − 1)(b− l)
2

)
×

× (Xs,n−1)b−l−1ms
h

whence D̃s,nΨb(m̃
s
h̃
,ms

h) +Ds,n−1Ψb(m̃
s
h̃
,ms

h) = 0 because

b∑
l=1

(−1)l

∏l−1
j=0

(
(b− j)(h+ n− 1) + (b−j−1)(b−j)

2

)
∏l−1

j=1

(
j(h̃+ 1) + (j−1)j

2

) (X̃s,n)l−1m̃s
h̃
(Xs,n−1)b−lms

h =

=
b−1∑
l=0

(−1)l

∏l
j=0

(
(b− j)(h+ n− 1) + (b−j−1)(b−j)

2

)
∏l

j=1

(
j(h̃+ 1) + (j−1)j

2

) (X̃s,n)lm̃s
h̃
(Xs,n−1)b−l−1ms

h.

It is possible to modify the ”principle” of the map Ψb in order to obtain
extension map Ψb,c that increases the dimension by more than one.

Proposition 12.2.2. Let c ∈ N, ms
h is a symplectic monogenic of the homogene-

ity h and m̃s
h̃

is a symplectic monogenic of the homogeneity h̃ in the variables
xn+1, . . . , xn+c, yn+1, . . . , yn+c and qn+1, . . . , qn+c. Then

Ψb,c(m̃
s
h̃
,ms

h) : Ker(Ds,c)×Ker(Ds,n)→ Ker(Ds,n+c), (12.9)

Ψb,c(m̃
s
h̃
,ms

h) = (12.10)

=
b∑
l=0

(−1)l

∏l−1
j=0

(
(b− j)(h+ n) + (b−j−1)(b−j)

2

)
∏l

j=1

(
j(h̃+ c) + (j−1)j

2

) (Xs,n+c −Xs,n)lm̃s
h̃
(Xs,n)b−lms

h,

where b ∈ N0.

Proof. The proof follows the idea of the proof of Theorem 12.2.1.

Remark 11. By the decomposition (7.5) every polynomial symplectic spinor p ∈
Polh(R2n−2,C)⊗S(Rn−1) is possible to write as linear combination of (Xs,n−1)jms

l ,
where j ∈ N0, j ≤ h and ms

l ∈ M s
l ⊂ Ker(Ds,n−1) for l ≤ h. Therefore it is

possible to write a variant of the mapping Ψb for which it is sufficient to know
symplectic monogenics in Polh(R2,C)⊗ S(R) only.

Ψa : M s
h̃
(R2)× Polh(R2n−2,C)⊗ S(Rn−1)→M s

h̃+h−a(R
2n), (12.11)

where a = 0, 1, . . . , h. Mapping Ψa constructs a symplectic spinor in the kernel
of the symplectic Dirac operator Ds,n from the symplectic monogenic

m̃s
h̃

= m̃s
h̃
(xn, yn, qn) ∈M s

h̃
(R2)
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and arbitrary symplectic spinor of homogeneity h

p = p(x1, . . . , xn−1, y1, . . . , yn−1, q1, . . . , qn−1) ∈ Polh(R2n−2,C)⊗ S(Rn−1)

by the formula

Ψa(m̃
s
h̃
, p) =

h∑
l=0

(−i)l∏l
j=1

(
j(h̃+ 1) + (j−1)j

2

)(X̃s,n)lm̃s
h̃
(Ds,n−1)l+ap. (12.12)
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13. Symplectic Dirac and
symplectic Twistor operators on
complex tori

In the present chapter, we shall be interested in a class of examples given by even
dimensional tori. So let Γ be a lattice in Cn, i.e., a free Z-module whose rank
is the cardinality of a real basis of Cn over R. The discrete group Γ acts on Cn

by translations, and its action is proper and fixed point free. The quotient Cn/Γ
is compact and called complex (or even dimensional) tori. There is a R-linear
automorphism of Cn sending Γ to Z2n, so that the complex tori is as a topological
manifold isomorphic to (R/Z)2n ' (S1)2n. Since the standard Hermitian metric
on Cn is preserved by Γ, it induces flat Kähler metric on Cn/Γ. Generators of
the lattice Γ will be denoted by v1, . . . , v2n.

We have the first homology class H1(Cn/Γ,Z2) ' Z2n
2 for n-dimensional com-

plex tori. Its dual H1(Cn/Γ,Z2) ' Z2n
2 is a Z2-module generated by classes

1

2
v?1,

1

2
v?2, . . . ,

1

2
v?2n ∈ (

1

2
Γ?)/Γ?. (13.1)

Here we use the notation v?1, . . . , v
?
2n for the generators of the dual lattice

Γ? = HomZ(Γ,Z), Γ? ' Z < v?1, . . . , v
?
2n >, (13.2)

fulfilling v?i (vj) = δi,j, i, j = 1, . . . , 2n. Let e1, . . . , e2n be a (real) basis of Cn,
Γ ⊂ Cn a lattice and B the matrix with column entries given by coefficients of
the expansion of generators of Γ in the basis e1, . . . , e2n. Then the coefficients of
analogous expansion for the dual lattice Γ? ⊆ Cn? are given by matrix entries in
A = B(BTB)−1 = (BT )−1.

It remains to describe the function spaces for different choices of metaplectic
structure. The smooth translation Γ-invariant functions on Cn,

fv?(x) = e2πi〈v?,x〉, v? ∈ Γ?, x ∈ Cn, (13.3)

descend to Cn/Γ and form the topological basis of C∞(R2n/Γ,C). The tensor
product with Segal-Shale-Weil representation gives the basis of the space of sec-
tions of symplectic spinor bundle for the trivial metaplectic structure.

The symplectic spinor bundle for a non-trivial metaplectic structure is realized
by a twist of the trivial symplectic spinor bundle with a real line bundle L fulfilling
L ⊗ L ' C∞(M). The complexified line bundle LC = L ⊗ C is topologically
trivial because H2(Cn/Γ,Z) has no Z2-torsion. The equivalence classes of L
bijectively correspond to elements of H1(C2n/Γ,Z2) ' Z2n

2 , i.e., to the 2n-tuples
ε = (ε1, . . . , ε2n) ∈ Z2n

2 . Then the complete basis of the space of smooth sections
of the vector bundle L on R2n/Γ corresponding to metaplectic structure ε is
parametrized by the lattice Γ? +

∑2n
j=1

1
2
εjv

?
j , and elements

fv?+ε(x) = e2πi〈v?+
∑2n
j=1

1
2
εjv

?
j ,x〉, v? ∈ Γ? ⊂ (R2n)?, x ∈ R2n, (13.4)
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tensored with the Segal-Shale-Weil representation give a complete basis of the
space of sections for the symplectic spinor bundle corresponding to the metaplec-
tic structure ε. This is the result of the comparison isomorphism between two
metaplectic bundles for two different metaplectic structures, cf. [17] for analogous
considerations in the case of the classical (orthogonal) Dirac operator.

Notice that eigenfunctions and eigenvalues for the coordinate vector fields ∂xj ,
j = 1, . . . , n, are

∂xje
2πi〈v?+ 1

2

∑2n
j=1 εjv

?
j ,x〉 = 2πi(v? +

1

2
ε)je

2πi〈v?+ 1
2

∑2n
j=1 εjv

?
j ,x〉, (13.5)

where (v? + 1
2
ε)j denotes j-th component of the vector v? + 1

2
ε in the dual basis

v?1, . . . , v
?
n.

13.1 Complex tori of dimension one: Elliptic

curves

One dimensional complex tori correspond to elliptic curves. In its complex uni-
formization C/Γτ , the 2-dimensional torus T2

τ is a compact Riemann surface of
genus one. Here the lattice Γτ ' Z ⊕ τZ, where τ is in the upper half plane
H = {τ ∈ C | Im(τ) > 0}, is isomorphic to π1(T2). Isomorphic choices for the
generators of the lattice Γτ are related by elements in SL(2,Z), acting on H by
the fractional linear transformations

τ 7→ aτ + b

cτ + d
,

(
a b
c d

)
∈ PSL(2,Z).

Another characterization of T2
τ up to an isomorphism is given by an equivalence

class of a conformal structure of flat representative metric, (where x1, y1 are real
coordinates on C)

ds2 = ef |dx1 + τdy1|2g, gab = ρ

(
1 Re(τ)

Re(τ) τ τ̄

)
, f ∈ C∞(T,C). (13.6)

Being a Kähler manifold, the associated complex structure on T2
τ is given by

Ja
b =
√
g εac g

cb, (13.7)

for εab the Levi-Civita symbol and g = det(gab). The complex structure J is
clearly invariant under the local Weyl transformations of the metric gab and so
descends to its conformal class. The inverse of the metric g

gcb =
1

ρ(Im(τ))2

(
τ τ̄ −Re(τ)

−Re(τ) 1

)
implies

J1
1 =
−Re(τ)

Im(τ)
, J1

2 =
1

Im(τ)
, J2

1 =
−τ τ̄

Im(τ)
, J2

2 =
Re(τ)

Im(τ)
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with Ja
bJb

c = −Ida
c. In the real basis

(
1
0

)
,
(

0
i

)
of C/R, the lattice Γτ ' Z〈1, τ〉

has the matrix form

B =

(
1 Re(τ)
0 Im(τ)

)
, Im(τ) > 0, τ = Re(τ) + iIm(τ). (13.8)

Its inverse

B−1 =

(
1 −Re(τ)

Im(τ)

0 1
Im(τ)

)
(13.9)

is the matrix of the dual lattice Γ?τ ⊂ C and due to 1− iRe(τ)
Im(τ)

= −iτ
Im(τ)

,

Γ?τ ' Z
〈

i

Im(τ)
,
−iτ

Im(τ)

〉
' Z

〈
i

Im(τ)
,

iτ

Im(τ)

〉
. (13.10)

Then the columns of the matrix

B(BTB)−1 = (BT )−1 =

(
1 0

−Re(τ)
Im(τ)

1
Im(τ)

)
give the coordinates of generators of Γ?τ . An element v? ∈ Γ?τ is then of the form

v? = mε1 −mRe(τ)

Im(τ)
ε2 + n

1

Im(τ)
ε2 m,n ∈ Z, (13.11)

where {ε1}2
j=1 is the symplectic coframe dual to the symplectic frame {ej}2

j=1,
εj(ek) = δj,k.

13.2 Symplectic Dirac operator on elliptic

curves

We use the notation x1, y1 for the real coordinates on C, the universal covering
space of an elliptic curve. The coordinate on the 1-dimensional real vector space
underlying the Schwartz space S(R) is denoted by q.

A smooth symplectic spinor f ∈ C∞(T2
τ ,S(R)) can be written as a convergent

series

f(x1, y1, q) ≡
∑
v?∈Γ?

Bv?fv?(x1, y1, q)

fv?(x1, y1, q) ≡
∞∑
j=0

Aj,v?e
2πi〈v?,x 〉qje−

q2

2 (13.12)

for Aj,v? , Bv? ∈ C and x ≡ (x1, y1). The symplectic Dirac operator Ds, written
on C in the real coordinates x1, y1, is

Ds = iq∂y1 − ∂q∂x1 . (13.13)

It descends to T2
τ , and we use the same notation for the corresponding operator

on T2
τ .
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Lemma 13.2.1. A smooth symplectic spinor f ∈ C∞(T2
τ ,S(R)) for the trivial

metaplectic structure on T2 is in the kernel of the symplectic Dirac operator Ds

if and only if f(x1, y1, q) is independent of x1, y1.

Proof. We have

Dsf(x1, y1, q) =(2πi)
∑
v?∈Γ?

Bv?

∞∑
j=0

Aj,v?v
?
2iq

j+1e2πi〈v?,x 〉e−
q2

2 (13.14)

− (2πi)
∑
v?∈Γ?

Bv?

∞∑
j=0

Aj,v?v
?
1(jqj−1 − qj+1)e2πi〈v?,x 〉e−

q2

2 ,

where v?1, v
?
2 are components of v? and we used

∂x1e
2πi〈v?,x 〉 = 2πiv?1e

2πi〈v?,x 〉, ∂y1e
2πi〈v?,z〉 = 2πiv?2e

2πi〈v?,x 〉.

First of all, for v? = 0 we get the constant function in x1, y1, so it is in the
solution space of Ds. The elements in the kernel of the symplectic Dirac operator
are characterized by

−A1,v?v
?
1 = 0,

A0,v?(v
?
1 + iv?2)− 2A2,v?v

?
1 = 0,

. . .

Aj,v?(v
?
1 + iv?2)− (j + 2)Aj+2,v?v

?
1 = 0, j ∈ N0. (13.15)

For v?1 = 0, we get Aj,v? = 0 for all j ∈ N0 and this yields the trivial solution. For
v?1 6= 0, we get A1,v? = 0 and therefore all odd coefficients A2k+1,v? = 0, k ∈ N0.
So there is no non-trivial solution supported by odd coefficients.

For even j = 2k, k ∈ N0, the coefficients fulfil the recursion relation

v?1 + iv?2
(j + 2)v?1

Aj,v? =
w

(j + 2)
Aj,v? = Aj+2,v? ,

where we introduced the shorthand notation w =
v?1+iv?2
v?1

(v?1, v
?
2 are components

of v?) with the real part of w equal to 1. The recursion relates even coefficients in
the expansion of fv? , i.e., A2k,v? is determined by A0,v? for all k ∈ N0 and v? ∈ Γ?

A2k,v? =
1

k!

(w
2

)k
A0,v? . (13.16)

Its unique solution is the even function in the variable q,

fv?(x1, y1, q) = eq
2(w2 −

1
2)e2πi〈v?,x 〉. (13.17)

However, fv? is not in C∞(T2
τ ,S(R)) because Re

(
w
2
− 1

2

)
= 0, and so there is no

even solution in the required analytical class.

Let us consider a general metaplectic structure ε = (ε1, ε2). Denoting by e?1, e
?
2

the generators of Γ?τ , we have(
(v?1 +

1

2
ε1e

?
1) + (v?2 +

1

2
ε2e

?
2)
)(
x1e1 + y1e2

)
= (v?1 +

1

2
ε1)x1 + (v?2 +

1

2
ε2)y1,
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and so

∂x1e
2πi〈v?+ 1

2
(ε1e?1+ε2e?2),x 〉 = 2πi

(
v?1 +

1

2
ε1

)
e2πi〈v?+ 1

2
(ε1e?1+ε2e?2),x 〉,

∂y1e
2πi〈v?+ 1

2
(ε1e?1+ε2e?2),x 〉 = 2πi

(
v?2 +

1

2
ε2

)
e2πi〈v?+ 1

2
(ε1e?1+ε2e?2),x 〉.

Lemma 13.2.2. The solution space of the symplectic Dirac operator Ds acting
on smooth sections of symplectic spinor bundle on T2

τ is trivial for each non-trivial
metaplectic structure ε = (ε1, ε2) 6= 0 ∈ Z2

2.

Proof. For each non-trivial metaplectic structure ε on T2, we get from an equation
Dsf(x1, y1, q) = 0 the condition analogous to (13.15)

A1,v?

(
v?1 +

1

2
ε2

)
= 0,

. . . ,

Aj,v?

(
(v?1 +

1

2
ε1) + i(v?2 +

1

2
ε2)

)
− (j + 2)Aj+2,v?

(
v?1 +

1

2
ε2

)
= 0, (13.18)

j ∈ N0. In the case v?1 + 1
2
ε2 = 0 it follows Aj,v? = 0 for all j ∈ N0, hence the

solution is trivial. Also the odd part in the case v?1 + 1
2
ε2 6= 0 is trivial. Otherwise,

we define

w′ =
v?1 + iv?2 + 1

2
(ε1 + iε2)

v?1 + 1
2
ε1

.

Then in the exponent of the unique solution of our recursion relation, we get
w′−1

2
. Because Re(w′) = 1, the solution is not in C∞(T2

τ ,S(R)) again.
For each non-trivial metaplectic structures ε = (ε1, ε2) 6= (0, 0), there is no

v? ∈ Γ? such that v? + 1
2
(ε1e

?
1 + ε2e

?
2) = 0. Applying the same line of reasoning

as in the case of the trivial metaplectic structure, we see that the only solution
is the trivial one.

Lemma 13.2.3. A smooth symplectic spinor satisfying the eigen-equation

Dsg = α g

for α ∈ C, α 6= 0, does not belong to the function space C∞(T2
τ ,S(R)).

Proof. Any smooth symplectic spinor g ∈ C∞(T2
τ ,S(R)) can be written as

g(x1, y1, q) ≡
∑
m,n∈Z

am,n(q, τ)e2πi(mx1−mRe(τ)
Im(τ)

y1+n 1
Im(τ)

y1),

where am,n(q, τ) ∈ S(R) and 〈v?,x 〉 was expanded by (13.11) as mx1−mRe(τ)
Im(τ)

y1+

n 1
Im(τ)

y1, v? ∈ Γ?τ and m,n ∈ Z.

Solving the equationDsg(x1, y1, q) = α g(x1, y1, q), we recallDs = iq∂y1−∂q∂x1
and so∑
m,n∈Z

(
iqam,n(q, τ)2πi

(
−mRe(τ)

Im(τ)
+

n

Im(τ)

)
− ∂qam,n(q, τ)2πim

)
×

× e2πi(mx1−mRe(τ)
Im(τ)

y1+n 1
Im(τ)

y1) = α
∑
m,n∈Z

am,n(q, τ)e2πi(mx1−mRe(τ)
Im(τ)

y1+n 1
Im(τ)

y1).
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Because the vectors e2πi(mx1−mRe(τ)
Im(τ)

y1+n 1
Im(τ)

y1) are linearly independent for differ-
ent pairs m,n ∈ Z, this reduces to

am,n(q, τ)

(
−2πq

(
n

Im(τ)
− mRe(τ)

Im(τ)

)
− α

)
= 2πim

(
∂qam,n(q, τ)

)
. (13.19)

For m = 0, we have a1,n(q, τ) = 0, while for m 6= 0,

am,n(q, τ) = e
iα

2πm
q+i

n−mRe(τ)
mIm(τ)

q2

2 cm,n(τ), (13.20)

where cm,n(τ) is a smooth function of τ . Therefore, we get

g(x1, y1, q) =
∑
m,n∈Z

cm,n(τ)e
iα

2πm
q+i

n−mRe(τ)
mIm(τ)

q2

2 e2πi(mx1−mRe(τ)
Im(τ)

y1+n 1
Im(τ)

y1). (13.21)

However, this function is not in C∞(T2
τ ,S(R)), because

Re
( iα

2πm
q + i

n−mRe(τ)

mIm(τ)

q2

2

)
=
−Im(α)

2πm
q.

and for m,n ∈ Z, it holds∫ ∞
−∞

∣∣∣∣cm,n(τ)e
iα

2πm
q+i

n−mRe(τ)
mIm(τ)

q2

2 e2πi(mx1−mRe(τ)
Im(τ)

y1+n 1
Im(τ)

y1)
∣∣∣∣2 dq =

=

∫ ∞
−∞
|cm,n(τ)|2e

2Re

(
iα

2πm
q+i

n−mRe(τ)
mIm(τ)

q2

2

)
dq =

∫ ∞
−∞
|cm,n(τ)|2e

−Im(α)
πm

q dq.

Howewer, this does not converge for any choice of α ∈ C. In conclusion, there is
no solution in the required analytical class S(R) ⊂ L2(R).

13.3 Symplectic Twistor operator on elliptic

curves

We now pass to analogous questions for the symplectic twistor operator Ts. The
symplectic twistor operator has two components at covectors ε1 and ε2, see (5.16)
and (5.17). By abuse of notation we denote Ts a component by covector ε1,

Ts = ∂x1 − q∂q∂x1 + iq2∂y1 , (13.22)

and call it the symplectic twistor operator. This terminology is justified by the
following property. A smooth symplectic spinor f ∈ C∞(T2

τ ,S(R)) is in the
kernel of the symplectic twistor operator if and only if it fulfils the equation
(∂x1 − q∂q∂x1 + iq2∂y1)f = 0.

The symplectic twistor operator descends as in the case of the symplectic
Dirac operator to T2

τ . Acting on a smooth symplectic spinor f , cf., (13.12), we
get

Tsf(x1, y1, q) = 2πi
( ∑
v?∈Γ?

Bv?

∞∑
j=0

(
Aj,v?v

?
1(1− j)qj

+ Aj,v?(v
?
1 + iv?2)qj+2

)
e2πi〈v?,x 〉e−

q2

2

)
. (13.23)
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Lemma 13.3.1. A smooth symplectic spinor f ∈ C∞(T2
τ ,S(R)),

f(x1, y1, q) =
∑
v?∈Γ?

Bv?fv?(x1, y1, q)

for the trivial metaplectic structure on T2, Bv? ∈ C, v? ∈ Γ?, is in the kernel of
the symplectic twistor operator Ts, acting on smooth sections of symplectic spinor
bundle on T2

τ , if and only if f(x1, y1, q) = B0f0(q), f0(q) being independent on
x1, y1.

Proof. The symplectic spinors f(x1, y1, q) independent on x1 and y1 are obviously
in the solution space of the symplectic twistor operator.

The symplectic spinor (13.12) is a solution of the symplectic twistor operator
provided the following recursion relation

A0,v?v
?
1 = 0, A1,v?v

?
1(1− 1) = 0, . . . , Aj+2,v?v

?
1(1− j) + Aj,v?(v

?
1 + iv?2) = 0,

Aj+2,v? =
w

j − 1
Aj,v? (13.24)

is satisfied for each j ∈ N0, where A0,v? = 0 and A1,v? ∈ C. Here we introduced

the shorthand notation w =
v?1+iv?2
v?1

. In the case v?1 = 0 we get fv?(x1, y1, q) = 0.

For even j = 2k, we get the trivial solution A2k,v? = 0 for all k ∈ N0.
For odd j = 2k + 1, we choose the value of the coefficient A1,v? and the

recursion yields

A2k+1,v? =
1

k!

(w
2

)k
A1,v? , k ∈ N0. (13.25)

The resulting odd solution in the variable q is

fv?(x1, y1, q) = qeq
2(w−1

2 )e2πi〈v?,x 〉, (13.26)

and because Re(w) = 1, fv?(x1, y1, q) is moreover not square integrable in the
fibre variable and so there is no solution from S(R) ⊂ L2(R). This completes the
proof.

Lemma 13.3.2. For each non-trivial metaplectic structure ε = (ε1, ε2) 6= (0, 0) ∈
Z2

2 on T2, there is no non-trivial smooth solution of the symplectic twistor operator
Ts.

Proof. For each non-trivial metaplectic structure, Tsf(x1, y1, q) = 0 implies the
conditions analogous to (13.23) for the trivial metaplectic structure

Aj,v?

(
(v?1 +

1

2
ε1) + i(v?2 +

1

2
ε2)

)
− (j − 1)Aj+2,v?

(
v?1 +

1

2
ε2

)
= 0, j ∈ N0.

(13.27)

The metaplectic structure ε = (ε1, ε2) ∈ Z2
2 and the variable

w′ =
v?1 + iv?2 + 1

2
(ε1 + iε2)

v?1 + 1
2
ε1

,

allow to write the exponent of the solution as w′−1
2

. Thus, Re(w′) = 1 implies
that the solution is not in S(R).
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14. Symplectic analogues of
classical theta functions

The content of the present chapter is motivated by definition of classical theta
functions, there we construct a generalization of classical theta functions for the
symplectic Dirac operator. As it is based on the symplectic Dirac operator, which
is less restrictive than the Cauchy-Riemann operator, it allows to construct non-
holomorphic examples in the hierarchy of symplectic theta functions. The ques-
tions on divisors, zeroes and the modular behaviour of symplectic theta functions
are postponed to further research. We shall call these objects symplectic theta
functions.

Let Γ ⊂ Cn be a lattice and D a pull-back of a positive divisor on Cn/Γ to Cn.
A theta function of type (T, J) on the complex torus Cn/Γ is a non-zero entire
function F : Cn → C whose zeroes are in D, and such that for all z ∈ Cn, γ ∈ Γ,

F (z + γ) = e2iπ(T (z,γ)+J(γ))F (z), (14.1)

where T : Cn × Γ → C is C-linear in the first variable and J : Γ → C is a
function. The element e(γ, z) = e2iπ(T (z,γ)+J(γ)) is called the automorphy factor
for the theta function.

In the case n = 1, the classical theta function θ(z, τ) is a complex valued
holomorphic (or, analytic) function, depending on z ∈ C and a lattice Γ = Γτ ⊂ C
determined by a point in the upper half space H = {τ ∈ C| Im(τ) > 0}

θ(z, τ) =
∑
n∈Z

eiπn
2τ+2πinz, (14.2)

satisfying

θ(z + 1, τ) = θ(z, τ), θ(z + τ, τ) = e−iπτ−2iπzθ(z, τ). (14.3)

For introduction and motivation of the classical theta function we refer to [34].
We shall start with a prospective definition in the case n = 1.

Definition 14.0.1. The symplectic theta function is a smooth function

θs ∈ C∞(R2 ×H,S(R)),

satisfying

1. Dsθs(x1, x1,Re(τ), Im(τ), q) = 0,

2. θs(x1 + 1, y1,Re(τ), Im(τ), q) = θs(x1, y1,Re(τ), Im(τ), q),

3. θs(x1 + Re(τ), y1 + Im(τ),Re(τ), Im(τ), q) =

= C(x1, y1,Re(τ), Im(τ), q)θs(x1, y1,Re(τ), Im(τ), q),

where C(x1, y1,Re(τ), Im(τ),−) ∈ C∞(R2 ×H× R,Aut(S(R))), i.e.,

Cls(R2, ω)-valued invertible smooth function on R2.
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Throughout the chapter we shall assume

C(x1, y1,Re(τ), Im(τ), q) = eA(Re(τ),Im(τ),q)+B(Re(τ),Im(τ),q)x1+B̃(Re(τ),Im(τ),q)y1 ,
(14.4)

where e denotes the operator exponential and operators A(Re(τ), Im(τ), q),
B(Re(τ), Im(τ), q) and B̃(Re(τ), Im(τ), q) ∈ C∞(H,End(S(R))). In particular,
we do not assume θs to be a holomorphic function of both the base variables
x1, y1 and the moduli of lattices variables Re(τ), Im(τ).

14.1 Holomorphic symplectic theta functions

Now let us assume that a symplectic theta function in Definition 14.0.1 is in
addition holomorphic in variables τ and z = x1 + iy1, namely θs = θs(z, τ, q) and
∂z̄θs(z, τ, q) = 0. The first and the second conditions in Definition 14.0.1 together
with the holomorphy assumption imply

θs(z, τ, q) =
∑
n∈Z

an(τ, q)e2πinz, (14.5)

and

Dsθs(z, τ, q) = 0 ⇐⇒ (q + ∂q)an(τ, q) = 0 for all n ∈ Z. (14.6)

Finally, the last condition in Definition 14.0.1 describes the quasi-periodicity for
z 7→ z + τ . Thus we are looking for differential operators A(τ, q), B(τ, q) ∈
End(S(R)) such that

θs(z + τ, τ, q) = eA(τ,q)+B(τ,q)zθs(z, τ, q). (14.7)

For B(τ, q) = −2πi, we get

θs(z + τ, τ, q) = eA(τ,q)−2πizθs(z, τ, q) =

= eA(τ,q)−2πiz
∑
n∈Z

an(τ, q)e2πinz =
∑
n∈Z

eA(τ,q)an(τ, q)e2πi(n−1)z,

and the comparison with

θs(z + τ, τ, q) =
∑
n∈Z

an−1(τ, q)e2πi(n−1)ze2πi(n−1)τ

reveals the recursion relation

eA(τ,q)an(τ, q) = e2πi(n−1)τan−1(τ, q), n ∈ Z,

which is by invertibility of eA(τ,q) equivalent to

an(τ, q) = e−A(τ,q)e2πi(n−1)τan−1(τ, q), n ∈ Z. (14.8)

It remains to find a collection of S(R)-valued functions an(τ, q), n ∈ Z, sub-
ordinate to (14.6) and (14.8). The unique solution of (14.6) is

an(q, τ) = bn(τ)e−
q2

2 , n ∈ Z, (14.9)
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bn(τ) depending only on τ for all n ∈ Z, and the equation (14.8) turns into

e−
q2

2 bn(τ) = e−A(τ,q)e2πi(n−1)τe−
q2

2 bn−1(τ). (14.10)

Let us now assume that A(τ, q) does not depend on the variable q, i.e., A(τ, q) =
A(τ) is a multiple of the identity endomorphism of S(R). Then (14.10) reduces
to

bn(τ) = e−A(τ)e2πi(n−1)τbn−1(τ). (14.11)

Introducing the notation bn(τ) = e2πidn(τ), 2πia(τ) = −A(τ), the previous recur-
sion relation reduces to

dn(τ) = a(τ) + (n− 1)τ + dn−1(τ), (14.12)

whose unique solution is

dm+1(τ) = a(τ) +mτ + dm(τ) = (m+ 1)a(τ) +
(m+ 1)m

2
τ + d0(τ),

d−(m+1)(τ) = −a(τ) + (m+ 1)τ + d−m(τ) =

− (m+ 1)a(τ) +
(−m− 1)(−m− 2)

2
τ + d0(τ) (14.13)

for all m ∈ N. Let us summarize the previous considerations into

Proposition 14.1.1. Let a(τ), d0(τ) be smooth functions such that the sum

θs(z, τ, q) =
∑
n∈Z

e2πi
(
na(τ)+

n(n−1)
2

τ+d0(τ)
)
e2πinze−

q2

2 (14.14)

is uniformly convergent on compact subsets of C. Then θs ∈ C∞(C × H,S(R))
and satisfies

1. Dsθs(z, τ, q) = 0,

2. θs(z + 1, τ, q) = θs(z, τ, q),

3. θs(z + τ, τ, q) = e−2πia(τ)−2πizθs(z, τ, q).

For example, the choice a(τ) = τ
2

and d0(τ) = 0 leads to the classical theta

function θ(z, τ), the function θs(z, τ, q) = θ(z, τ)e−
q2

2 is in the kernel of the sym-
plectic Dirac operator Ds.

Moreover, for a general element (rτ + s) ∈ Γτ , r, s ∈ Z, we have

θs(z + rτ + s, τ, q) =
∑
n∈Z

e2πi
(
na(τ)+

n(n−1)
2

τ+d0(τ)
)
e2πinz+2πinrτ+2πinse−

q2

2 =

=
∑
n∈Z

e2πi
(

(n+r)a(τ)−ra(τ)+
(n+r)(n+r−1)

2
τ− r

2−r
2

τ+d0(τ)+(n+r)z−rz
)
e2πinse−

q2

2 =

= e−πi(r
2−r)τ−2πira(τ)−2πirzθs(z, τ, q), (14.15)

and so the automorphy factor of this symplectic theta function for κ = rτ+s ∈ Γτ
is given by

ea(τ)(κ, z) = e−πi((r2−r)τ+2ra(τ)+2rz). (14.16)
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Lemma 14.1.2. Let κ1, κ2 ∈ Γτ . Then the automorphy factor of the symplectic
theta function (14.14) fulfils

ea(τ)(κ1 + κ2, z) = ea(τ)(κ2, z + κ2)ea(τ)(κ1, z). (14.17)

Proof. Let κ1 = r1τ + s1, κ2 = r2τ + s2 for some r1, r2, s1, s1 ∈ Z. Then

ea(τ)(κ1 + κ2, z) = ea(τ)

(
(r1 + r2)τ + (s1 + s2), z

)
= e−πi((r1+r2)2τ−(r1+r2)τ+2(r1+r2)a(τ)+2(r1+r2)z)

= e−πi((r22−r2)τ+2r2a(τ)+r2(z+r1τ))e−πi((r21−r1)τ+2r1a(τ)+2r1z)

and the claim follows.

Lemma 14.1.3. Let a(τ) ∈ {2n+1
2
τ |n ∈ Z} and d0(τ) ∈ C a constant. Then

θs(z + 1
2
, τ + 1, q) = θs(z, τ, q). (14.18)

Proof. A direct computation, for example for a(τ) = 3τ
2

, reveals

θs(z + 1
2
, τ + 1, q) =

∑
n∈Z e

2πi
(
n 3τ

2
+n 3

2
+
n(n−1)

2
τ+

n(n−1)
2

+d0(τ)
)
e2πinz+πine−

q2

2 =

=
∑
n∈Z

e2πi
(
n 3τ

2
+
n(n−1)

2
τ+d0(τ)

)
e2πinze−

q2

2 eπin(n+3) = θs(z, τ, q),

because n(n + 3) is even for all n ∈ Z. The proof for other values of a(τ) is
analogous.

There is no symplectic theta function depending on the anti-holomorphic vari-
able z̄ only, given by the anti-holomorphic counterpart of (14.6)

(−q + ∂q)an(τ, q) = 0, n ∈ Z, (14.19)

whose unique solution an(τ, q) = bn(τ)e
q2

2 is not in S(R) for every n ∈ Z.
It is also straightforward to generalize all preceding considerations to symplec-

tic theta functions for generalized theta characteristics ξ = (c, b), b, c ∈ R. We
shall state here just the definition, which can be completed to the results parallel
to the trivial theta characteristic discussed in the previous exposition.

Definition 14.1.1. Let ξ = b+ cτ for b, c ∈ R. A symplectic theta function with
theta characteristic ξ is defined by

θsξ(z, τ, q) =
∑
n∈Z

e2πi
(

(n+c)a(τ)+
(n+c)(n+c−1)

2
τ+d0(τ)

)
e2πi(n+c)(z+b)e−

q2

2 , (14.20)

where a(τ) and d0(τ) are smooth functions such that the sum is uniformly con-
vergent on compact subsets of C.
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14.2 Holomorphic symplectic theta functions

and non-trivial endomorphisms of S(R)

In the previous part, we considered symplectic theta functions, characterized
by periodicity which is realized by the scalar valued transitions on their values
in S(R), see Proposition 14.1.1. However, the algebra End(S(R)) is infinite-
dimensional and contains the symplectic Clifford (or, Weyl) algebra Cls(R2, ω).
Consequently, it offers variety of potential possibilities to be considered. Despite
the fact that we do not have a clear evidence for a class of endomorphisms together
with a reasonable characterization useful in the construction of symplectic theta
functions, we present a non-trivial example.

Let us now assume A(τ, q) = c1q+ c2∂q for c1 = c1(τ), c2 = c2(τ) ∈ C∞(H), so
we emphasize that A(τ, q) ∈ End(S(R)) is not a multiple of identity map. We first
recall the Baker-Hausdorff-Campbell formula for the composition of exponentials
of two operators X, Y

eXeY = eY+[X,Y ]+ 1
2!

[X,[X,Y ]]+ 1
3!

[X,[X,[X,Y ]]]+...eX , (14.21)

and apply it to X = c1q + c2∂q, Y = −A
2
q2 for some A ∈ C. Because the only

non-trivial iterated commutators are

[c1q + c2∂q,−
A

2
q2] = −Ac2q, [c1q + c2∂q, [cqq + c2∂q,−

A

2
q2]] = −Ac2

2,

we get

ec1q+c2∂qe−
A
2
q2 = e−

A
2
q2−Ac2q−A2! c

2
2ec1q+c2∂q (14.22)

and so it remains to evaluate

ec1q+c2∂q1 =
∞∑
k=0

(c1q + c2∂q)
k

k!
1

with 1 the q-constant function.

Lemma 14.2.1. For all k ∈ N0, we have

(c1q + c2∂q)
k1 =

b k
2
c∑

m=0

k!

m!(k − 2m)!2m
ck−m1 cm2 q

k−2m. (14.23)

Proof. The proof is by induction on k ∈ N0. For k = 0, 1, the claim is obvious.
Assuming the formula holds for a given k, we apply to it the operator c1q + c2∂q

(c1q + c2∂q)

b k
2
c∑

m=0

k!

m!(k − 2m)!2m
ck−m1 cm2 q

k−2m =

=

b k
2
c∑

m=0

k!

m!(k − 2m)!2m
ck+1−m

1 cm2 q
k+1−2m

+

b k
2
c∑

m=0

k!

m!(k − 2m)!2m
ck−m1 cm+1

2 (k − 2m)qk−1−2m,

and sum up the coefficients with the same power of q by shifting the summation
index in the second sum by 1. It is easy to check that the resulting formula
corresponds to (14.23) for k replaced by k + 1. This completes the proof.
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The last result claims

ec1q+c2∂q1 =
∞∑
k=0

b k
2
c∑

m=0

1

m!(k − 2m)!2m
ck−m1 cm2 q

k−2m. (14.24)

Now we are allowed to change the order of summations by the Fubini theorem,
because there exists an absolute convergent majorization

∞∑
k=0

b k
2
c∑

m=0

∣∣∣∣ ck−m1 cm2 q
k−2m

m!(k − 2m)!2m

∣∣∣∣ ≤ ∞∑
m

∞∑
k=2m

|c1|k−m|c2|m|q|k−2m

m!(k − 2m)!2m
≤

≤
∞∑
m

|c1|m|c2|m

m!2m

∞∑
k=2m

|c1|k−2m|q|k−2m

(k − 2m)!
=
∞∑
m

|c1|m|c2|m

m!2m
e|c1||q| = e|c1||q|+

|c1||c2|
2 <∞

By changing the order of summation, we get

∞∑
m

∞∑
k=2m

ck−m1 cm2 q
k−2m

m!(k − 2m)!2m
=
∞∑
m

cm1 c
m
2

m!2m

∞∑
k=2m

ck−2m
1 qk−2m

(k − 2m)!
=

=
∞∑
m

cm1 c
m
2

m!2m
ec1q = ec1qe

c1c2
2 .

The substitution of the last result into (14.22) yields

ec1q+c2∂qe−
A
2
q2 = e−

A
2
q2+(c1−Ac2)q+

c1−Ac2
2

c2 . (14.25)

In particular, for A = 1 we get

ec1q+c2∂qe−
q2

2 bn(τ) = e2πi(n−1)τan−1(τ, q) ⇐⇒

an−1(τ, q) = e−
q2

2
+(c1−c2)q+

c1−c2
2
−2πi(n−1)τbn(τ),

and an−1(τ, q) satisfies (q − ∂q)an−1(τ, q) = 0 if and only if c1 = c2. Let us
summarize our previous considerations.

Proposition 14.2.2. Let a(τ), d0(τ) and c1(τ) be smooth functions such that
the sum

θs(z, τ, q) =
∑
n∈Z

e2πi
(
na(τ)+

n(n−1)
2

τ+d0(τ)
)
e2πinze−

q2

2 (14.26)

is uniformly convergent on compact subsets of C. Then θs ∈ C∞(C × H,S(R))
satisfies

1. Dsθs(z, τ, q) = 0,

2. θs(z + 1, τ, q) = θs(z, τ, q),

3. θs(z + τ, τ, q) = e−2πia(τ)−2πiz+c1(τ)(q+∂q)θs(z, τ, q).

115



14.3 Vector valued non-holomorphic symplectic

theta functions

Recall that in section 14.1 we constructed holomorphic symplectic theta functions.
The aim of the present subsection is the construction of a series of vector-valued
non-holomorphic symplectic theta functions as certain extensions of holomorphic
symplectic theta function. More precisely, a class of symplectic theta functions
in question is realized inside finite tensor powers of the Segal-Shale-Weil repre-
sentation equipped with the diagonal action of the symplectic Dirac operator.
Up to a multiple by invertible functions, the automorphy factors are in the basis
of non-holomorphic descendants characterized by unipotent matrices of the rank
equal to the power of the Segal-Shale-Weil representation.

Proposition 14.3.1. Let k ∈ N0. Then the 1-parameter family (given by β ∈ C
such that Re(β) > 0) of functions on R2, (x1, y1) ∈ R2,

θk,β(x1, y1, τ, q) = (14.27)

=
∑
m∈Z

(q2

2
+ 2πmy1 + πm2Im(τ)

)k
e−

βq2

2 e2πim(x1+iβy1)eπim
2(Re(τ)+iβIm(τ)),

is in the kernel of the symplectic Dirac operator Ds and belongs to S(R) with
respect to the variable q. These functions are invariant with respect to translation
x1 7→ x1 + 1 and transform as

θk,β(x1 + Re(τ), y1 + Im(τ), τ, q) = (14.28)

= e−2πi(x1+iβy1)−πi(Re(τ)+iβIm(τ))

k∑
j=0

(
k

j

)(
− 2πy1 − πIm(τ)

)j
θ(k−j),β(x1, y1, τ, q)

for (x1, y1) 7→ (x1, y1) + (Re(τ), Im(τ)).

Proof. The periodicity of θk,β(x1, y1, τ, q) for (x1, y1) 7→ (x1, y1)+(1, 0) is obvious.

Let us introduce the notation Z =
(
q2

2
+ 2πmy1 + πm2Im(τ)

)
and show the

property

(iq∂y1 − ∂q∂x1)θk,β(x1, y1, τ, q) =

=
∑
m∈Z

(
iq
(
2πkZk−1 − 2πmβZk

)
e−

βq2

2 e2πim(x1+iβy1)eπim
2(Re(τ)+iβIm(τ))

− 2πim
(
qkZk−1 + Zk(−βq)

)
e−

βq2

2 e2πim(x1+iβy1)eπim
2(Re(τ)+iβIm(τ))

)
= 0.
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Then the translation (x1, y1) 7→ (x1, y1) + (Re(τ), Im(τ)) results into

θk,β(x1 + Re(τ), y1 + Im(τ), τ, q) =

=
∑
m∈Z

(q2

2
+ 2πmy1 + 2πmIm(τ) + πm2Im(τ)

)k
×

× e−
βq2

2 e2πim(x1+Re(τ)+iβ(y1+Im(τ)))+πim2(Re(τ)+iβIm(τ))

=
∑
m∈Z

(q2

2
+ 2π(m+ 1)y1 + π(m+ 1)2Im(τ)− 2πy1 − πIm(τ)

)k
×

× e−
βq2

2 e2πi(m+1)(x1+iβy1)+πi(m+1)2(Re(τ)+iβIm(τ))e−2πi(x1+iβy1)−πi(Re(τ)+iβIm(τ))

=
∑
m∈Z

k∑
j=0

(
k

j

)(q2

2
+ 2π(m+ 1)y1 + π(m+ 1)2Im(τ)

)k−j
(−2πy1 − πIm(τ))k×

× e−
βq2

2 e2πi(m+1)(x1+iβy1)+πi(m+1)2(Re(τ)+iβIm(τ))e−2πi(x1+iβy1)−πi(Re(τ)+iβIm(τ))

= e−2πi(x1+iβy1)−πi(Re(τ)+iβIm(τ))

k∑
j=0

(
k

j

)(
− 2πy1 − πIm(τ)

)j
θ(k−j),β(x1, y1, τ, q)

and the proof is complete.

In fact, the function

θ0,1(x1, y1, τ, q) =
∑
m∈Z

e−
q2

2 e2πim(x1+iy1)eπim
2(Re(τ)+iIm(τ))

is precisely the one introduced in Proposition 14.1.1 for the choice a(τ) = 0 and
d0(τ) = 0.

For further simplification we associate to κ ∈ Γτ , κ = s(1, 0)+r(Re(τ), Im(τ)),
s, r ∈ Z,

ηβ(κ,x ) = e−2πir(x1+iβy1)−πir2(Re(τ)+iβIm(τ)),

$(κ,x ) = −2πry1 − πr2Im(τ). (14.29)

Proposition 14.3.2. Let κ ∈ Γτ , κ = s(1, 0) + r(Re(τ), Im(τ)), s, r ∈ Z, x ≡
(x1, y1) ∈ R2 and k ∈ N0. Then {θl,β(x , τ, q)}l≤k for given β ∈ C, Re(β) > 0,
defines a vector valued function satisfying

θ0,β

θ1,β

θ2,β
...
θk,β

 (x + κ, τ, q) = eβ(κ,x ) ·


θ0,β

θ1,β

θ2,β
...
θk,β

 (x , τ, q), (14.30)

where

eβ(κ,x ) = ηβ


1 0 0 . . . 0
$ 1 0 . . . 0
$2 2$ 1 . . . 0
...

. . .
...

$k
(
k
1

)
$k−1 . . .

(
k
k−1

)
$ 1

 (14.31)
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for ηβ ≡ ηβ(κ,x ), $ ≡ $(κ,x ) associated to κ ∈ Γτ via (14.29). The set of
matrix valued functions eβ(κ,x ) satisfies

θ0,β

θ1,β

θ2,β
...
θk,β

 (x + κ1 + κ2, τ, q) = eβ(κ2,x + κ1) · eβ(κ1,x ) ·


θ0,β

θ1,β

θ2,β
...
θk,β

 (x , τ, q), (14.32)

hence they are the automorphy factors for these vector-valued non-holomorphic
symplectic theta functions with the matrix multiplication rule

eβ(κ1 + κ2,x ) = eβ(κ2,x + κ1) · eβ(κ1,x ). (14.33)

Proof. We first prove the equation (14.30) for fixed k and a translation given by
the lattice element κ ∈ Γτ , κ = s(1, 0) + r(Re(τ), Im(τ)) for s, r ∈ Z

θk,β(x1 + s+ rRe(τ), y1 + rIm(τ), τ, q) =

=
∑
m∈Z

(q2

2
+ 2πmy1 + 2πmrIm(τ) + πm2Im(τ)

)k
×

× e−
βq2

2 e2πim(x1+iβy1)+2πim(s+rRe(τ)+iβrIm(τ))+πim2(Re(τ)+iβIm(τ))

=
∑
m∈Z

(q2

2
+ 2π(m+ r)y1 + π(m+ r)2Im(τ)− 2πry1 − πr2Im(τ)

)k
×

× e−
βq2

2 e2πi(m+r)(x1+iβy1)−2πir(x1+iβy1)eπi(m+r)2(Re(τ)+iβIm(τ))−πir2(Re(τ)+iβIm(τ))

= e−2πir(x1+iβy1)−πir2(Re(τ)+iβIm(τ))×

×
k∑
j=0

(
k

j

)(
− 2πry1 − πr2Im(τ)

)j
θ(k−j),β(x1, y1, τ, q). (14.34)

Now we prove equation (14.32). It holds for θ0,β, because

ηβ(κ1 + κ2,x ) =

= e−2πi(r1+r2)(x1+iβy1)−πi(r1+r2)2(Re(τ)+iβIm(τ))

= e−2πir2(x1+iβy1)−πi(2r1r2+r22)(Re(τ)+iβIm(τ))e−2πir1(x1+iβy1)−πir21(Re(τ)+iβIm(τ))

= e−2πir2(x1+s1+r1Re(τ)+iβ(y1+r1Im(τ)))−πir22(Re(τ)+iβIm(τ))ηβ(κ1,x )

= ηβ(κ2,x + κ1)ηβ(κ1,x ).

For $(κj,x ) defined by (14.29), we get

$(κ1 + κ2,x ) = −2π(r1 + r2)y1 − π(r1 + r2)2Im(τ)

= −2πr2(y1 + r1Im(τ))− πr2
2Im(τ)− 2πr1y1 − πr2

1Im(τ)

= $(κ2,x + κ1) +$(κ1,x ).

Therefore, we have for any l ∈ Z

$(κ1 + κ2,x )l =
l∑

j=0

(
l

j

)
$(κ2,x + κ1)j$(κ1,x )l−j,
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hence the matrix
1 0 0 . . . 0

$(κ1 + κ2,x ) 1 0 . . . 0
$(κ1 + κ2,x )2 2$(κ1 + κ2,x ) 1 . . . 0

...
. . .

...

$(κ1 + κ2,x )k
(
k
1

)
$(κ1 + κ2,x )k−1 . . .

(
k
k−1

)
$(κ1 + κ2,x ) 1


equals to the matrix multiplication product (denoted ◦)

1 0 0 . . . 0
$(κ2,x + κ1) 1 0 . . . 0
$(κ2,x + κ1)2 2$(κ2,x + κ1) 1 . . . 0

...
. . .

...

$(κ2,x + κ1)k
(
k
1

)
$(κ2,x + κ1)k−1 . . .

(
k
k−1

)
$(κ2,x + κ1) 1

 ◦


1 0 0 . . . 0
$(κ1,x ) 1 0 . . . 0
$(κ1,x )2 2$(κ1,x ) 1 . . . 0

...
. . .

...

$(κ1,x )k
(
k
1

)
$(κ1,x )k−1 . . .

(
k
k−1

)
$(κ1,x ) 1

 . (14.35)

This, together with the transformation property for ηβ, gives the assertion for the
automorphy factor eβ(κ1 + κ2,x ).

In fact, the vector valued symplectic theta functions in Proposition 14.3.1 are
not unique. There are more general possibilities for the coefficient at Re(τ) +
iβIm(τ) in the exponent and at Im(τ) in the bracket, cf., Proposition 14.1.1.

Proposition 14.3.3. Let k ∈ N0 and β, a1, a2 ∈ C such that Re(β) > 0 and let
d1(τ) and d2(τ) be smooth functions such that

θk,β,a(x1, y1, τ, q) =
∑
m∈Z

(
q2

2
+ 2πmy1 + 2π

(
ma2 +

m(m− 1)

2

)
Im(τ) + d2(τ)

)k
× e−

βq2

2 e2πim(x1+iβy1)e2πi
(
ma1+

m(m−1)
2

)
(Re(τ)+iβIm(τ))+d1(τ) (14.36)

is uniformly convergent on compact subsets of C. Then θk,β,a ∈ C∞(R2×H,S(R)),
and satisfies

1. Dsθk,β,a(x1, y1, τ, q) = 0,

2. for s, r ∈ Z

θk,β,a(x1 + rRe(τ) + s, y1 + rIm(τ), τ, q) = (14.37)

= e−2πir(x1+iβy1)−πi(r2−r+2ra1)(Re(τ)+iβIm(τ))×

×
k∑
j=0

(
k

j

)(
− 2πry1 − (r2 − r + 2ra2)πIm(τ)

)j
θ(k−j),β,a(x1, y1, τ, q).
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Moreover, a1 and a2 can be suitable smooth function of (Re(τ) + iβIm(τ))
and Im(τ).

The following Lemma is similar to Lemma 14.1.3.

Lemma 14.3.4. Take a1, d1(τ) from (14.36) so that a1 = 1
2
m, for same m ∈ Z,

and d1(τ) ∈ C, (or smooth periodic function of τ with period 1). Then

θk,β,a(x1 + 1
2
, y1, τ + 1, q) = θk,β,a(x1, y1, τ, q). (14.38)

14.4 Symplectic vector valued non-holomorphic

theta functions on higher even dimensional

tori

In the present section we find a modification of the vector valued theta function
introduced in the previous section for higher dimensional even dimensional sym-
plectic tori. This means that instead of pair of variables x1, y1, we shall work
with 2n-tuple of symplectic variables x1, . . . , xn, y1, . . . , yn ∈ R2n with symplectic
pairing between xj, yj, j = 1, . . . , n. The symplectic spinor variable q is replaced
by n-tuple q1, . . . , qn. The higher dimensional analogue of τ from the upper half
space H is complex valued n × n symmetric matrix Υ whose imaginary part is
positive definite. The space of all such Υ is called the Siegel upper half space Hn.
Notice that, we consider flat tori.

Let us review the symplectic Dirac operator in dimension 2n,

Ds =
n∑
j=1

(
iqj∂yj − ∂qj∂xj

)
.

Let us also introduce a shorthand notation,

x = (x1, . . . , xn)T ∈ Rn, y = (y1, . . . , yn)T ∈ Rn,

q = (q1, . . . , qn)T ∈ Rn, m = (m1, . . . ,mn)T ∈ Zn, (14.39)

and finally β for a diagonal matrix with β1, . . . , βn ∈ C fulfilling Re(βj) > 0,
j = 1 . . . , n, on the diagonal. The canonical basis of Rn is denoted ej, j = 1, . . . , n.

Proposition 14.4.1. Let β1, . . . , βn ∈ C, Re(βj) > 0 for j = 1 . . . , n, are such
that the sum

θk,β(x,y,Υ,q) =
∑
m∈Zn

( n∑
l=1

q2
l

2
+ 2πmTy + πmT Im(Υ)m

)k
e−

∑n
l=1

βlq
2
l

2 e2πi(mTx+imT βy)+πimT (Re(Υ)+iβIm(Υ))m (14.40)

is uniformly convergent on compact subset of R2n. Then θk,β is a smooth function
in C∞(R2n ×Hn,S(Rn)), with Hn the Siegel upper half space, satisfying

1. Dsθk,β(x,y,Υ,q) = 0,

2. θk,β(x + ej,y,Υ,q) = θk,β(x,y,Υ,q) for all j = 1, . . . , n,
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3. For r = (r1, . . . , rn)T ∈ Zn,

θk,β(x + Re(Υ)r,y + Im(Υ)r,Υ,q) = e−2πirT (x+iβy)−πirT (Re(Υ)+iβIm(Υ))r×

×
k∑
j=0

(
k

j

)(
− 2πrTy − πrT Im(Υ)r

)j
θk−j,β(x,y,Υ,q).

Proof. Let us introduce the notation

Zm =
( n∑
l=1

q2
l

2
+ 2πmTy + πmT Im(Υ)m

)
,

Em = e−
∑n
l=1

βlq
2
l

2
+2πi(mTx+imT βy)+πi(mTRe(Υ)m+imT βIm(Υ)m).

Then

Dsθk,β(x,y,Υ,q) =
n∑
j=1

(
iqj∂yj − ∂qj∂xj

) ∑
m∈Zn

ZmEm

=
∑
m∈Zn

n∑
j=1

(
iqj
(
Zk−1

m 2πmj + 2πiimjβj
)
Em

− 2πimj

(
qjZ

k−1
m − qjβj

)
Em

)
= 0.

The second property is obvious, because θk,β(x + ejy,Υ,q) = e2πiθk,β(x,y,Υ,q).
In the proof of the third property, we first consider the exponent

2πi(mTx + imTβy) + πi(mTRe(Υ)m + imTβIm(Υ)m),

and substitute x 7→ x + Re(Υ)r and y 7→ y + Im(Υ)r into it. We get

2πimT (x + iβy) + 2πimT (Re(Υ) + iβIm(Υ))r + πimT (Re(Υ) + iβIm(Υ))m =

= 2πi(m + r)T (x + iβy)− 2πirT (x + iβy)

+ πi(m + r)T (Re(Υ) + iβIm(Υ))(m + r)− πirT (Re(Υ) + iβIm(Υ))r

because the matrices Re(Υ), Im(Υ) and β are symmetric and so is (Re(Υ) +
iβIm(Υ)). Finally, we substitute y 7→ y + Im(Υ)r into( n∑

l=1

q2
l

2
+ 2πmTy + πmT Im(Υ)m

)k
,

with the result( n∑
l=1

q2
l

2
+ 2πmTy + 2πmT Im(Υ)r + πmT Im(Υ)m

)k
=

=
( n∑
l=1

q2
l

2
+ 2π(m + r)Ty + π(m + r)T Im(Υ)(m + r)− 2πrTy − πrT Im(Υ)r)

)k
.

The rest of proof is based on the binomial expansion and the shift m 7→ m + r
in the sum over m ∈ Zn.

121



References

[1] Baum, H., Friedrich, T., Kath, I., Gruenewald, F. Twistors and killing
spinors on Riemannian manifolds. B.G. Teubner, 1991. ISBN 3-8154-2014-8.

[2] Britten, D. J., Lemire,F. W. On modules of bounded multiplicities for the
symplectic algebras. Trans. Amer. Math. Soc. 351, 1999, 3413–3431.

[3] Cannas da Silva, A. Lectures on Symplectic Geometry. Springer-Verlag,
2006.

[4] Choquet-Bruhat, Y., DeWitt-Morette, C. Analysis, Manifolds and
Physics. Revised Editional. Amsterodam: North-Holland, 1982. ISBN 0-444-
86017-7.

[5] Crumeyrolle, A. Orthogonal and Symplectic Clifford Algebras: Spinor
Structures. Springer Netherlands, 2009. ISBN-13 978-9048140596.

[6] Dai, F., Xu, Y. Approximation Theory and Harmonic Analysis on Spheres
and Balls (Springer Monographs in Mathematics). Springer, 2013. ISBN 978-
1-4614-6659-8.

[7] De Bie, H., Ørsted, B., Somberg, P., Souček, V. Dunkl operators and a
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