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1) Symplectic manifolds and symplectic connections

Let (M, ω) be a symplectic manifold, i.e., ω point-wise
non-degenerate antisymmetric differential 2-form and closed
(dω = 0)

Let ∇ be symplectic (∇ω = 0) and torsion-free connection:
Fedosov connection
Non-unique in contrary to Riemannian geometry. Form affine space
modeled on smooth sections Γ(Sym3(T ∗M)) of the bundle
Sym3(T ∗M) (Libermann; Tondeur; see also Gelfand, Retakh,
Shubin)

Used for deformation quantization (of Poisson algebra of smooth
functions on M, an L∞-morphism)

Curvature R of ∇ : R = Σ+ W , no scalar curvature, Σ
constructed only by ω and Ric .



Symplectic Weyl-flat manifolds (M, ω,∇)

We always suppose that T∇ = 0 so we speak about Fedosov
connections
Definition: Symplectic Weyl-flat ⇐⇒ W = 0
(called also symplectic Ricci type)

Examples of symplectic Weyl-flat manifolds:
1) Kähler with constant holomorphic sectional curvature: If
geodesically complete, they are covered by CPn, open balls Bn, or
Euclidean Cn with their standard Riemannian structures and their
constant multiples [Igusa].
2) Bipolarized, bi-Lagrangian (=para-Kähler by [Alexeevskii,
Medori, Tomassini], see also [Etayo et al.]) both satisfying specific
PDEs [Vais]
3) Local models: symplectic Weyl-flat arise locally by descent from
(R2n+2, ω0): Bieliavsky, Cahen, Gutt, Schwachhöfer
4) also the Kodaira–Thurston manifold with a flat symplectic
connection [Fox]



Symplectic spinors

(V , ω0) real symplectic vector space of dimension 2n, G the
symmetry group - symplectic group Sp(V , ω0) of maps of V
preserving the bilinear form ω0.
Can choose V = R2n for simplicity.

G is non-compact; maximal compact in G :
K = G ∩ SO(2n,R) ≃ U(n). Fundamental group
π1(G) ≃ π1(U(n)) ≃ Z.

=⇒ ∃ λ : G̃ → G ⊆ Aut(V ), connected Lie group double cover of
G ; G̃ = Mp(V , ω0) - the metaplectic group: non-matrix Lie
group, 2 : 1 covering as Spin(m) → SO(m)
λ is also a representation of G̃ on V



Symplectic spinors - properties

U be a maximal ω0-isotropic subspace of (V , ω0), U ≃ Rn

Let L : G̃ → U(L2(U)) be the so called symplectic spinor
representation.
Hilbert space S = L2(U) called space of symplectic spinors

Unitary, faith-full, infinite dimensional; decomposes into two
non-equivalent irreducible representations; S = S+ ⊕ S−
Its ’infinitesimal structure’ (i.e., Harish-Chandra module) is⊕∞

i=0 Symi(U) ≃ Pol(x1, . . . , xn) [Kirillov]

Also known as Segal–Shale–Weil, metaplectic, oscillator
representation: [Shale], [Weil], [Howe]

Discovered by quantization of Klein–Gordon fields (David Shale
and Irving Segal), symmetries of ϑ-functions (Weil)



2) Model for the symplectic spinor complex
E i =

∧i V ∗ ⊗ S - symplectic spinor-valued wedge i-forms
E =

⊕2n
i=0

∧i V ∗ ⊗ S - symplectic spinor-valued wedge forms

ρ(g)(α⊗ s) = λ(g)∗α⊗ L(g)s, α⊗ s ∈ E i , g ∈ G̃

Remark: Similar - model for Dolbeault complex.
U(TxM, Jx , gx )-module

⊕
0≤p+q≤2n

∧p(TxM1,0)∗⊗
∧q(TxM0,1)∗,

(TxM, Jx , gx ) hermitian vector space and (M, J , g) is a complex
hermitian manifold.

Theorem 1 [KryJLieThy]: The module E decomposes as a
G̃-module into a finite direct sum⊕

(i ,j)∈P
E ij ,where P is a finite subset of Z× Z.

E ij = E ij,+ ⊕ E ij,− ⊆ E i and E ij,± are non-equivalent irreducible
G̃-modules. (E ij not irreducible.)



Decomposition of symplectic spinor-valued wedge forms

Dim M = 6

E0 E1 E2 E3 E4 E5 E6

E 00 E 10 E 20 E 30 E 40 E 50 E 60

E 11 E 21 E 31 E 41 E 51

E 22 E 32 E 42

E 33

pij : E i → E ij the unique projection according to the splitting
above



Inducing the model to the metaplectic structures

If a symplectic manifold (M, ω) admits a metaplectic structure
(symplectic analogue of the riemannian or pseudoriemannian spin
structure, specific principal bundle that double-covers the bundle of
symplectic frames), denoted by P, =⇒ form

associated bundles E = P ×ρ E - bundle of symplectic spinor
valued wedge forms

and associated bundles E ij = P ×ρ E ij

For a symplectic connection, construct the exterior covariant
derivatives d∇

i : Γ(E i) = Ωi(M)⊗̂ϵS → Γ(E i+1) = Ωi+1(M)⊗̂ϵS



Sequences of symplectic twistor operators

Definition: Let ∇ be a symplectic connection on (M, ω). Then
T ij
± = pi+1,j±1d∇

|Γ(E ij ) is called the (±)-symplectic twistor
operator, or (i , j)-th (±)-symplectic twistor operator.

Symplectic Dirac operators introduced by Habermann
[KHMathNachr].

Dim M = 4

E00

##F
F E10

##F
F E20

##F
F E30

##F
F E40

##F
F E50 E60

E11

##F
F

;;

E21

##F
F

;;

E31

;;

##F
F

;;

E41

;;

E51

;;

E22

##F
F

;;

E32

;;

E42

;; ;;

E33

;;



Complexes for (M, ω,∇) with a metaplectic structure

Theorem 2: If ∇ is symplectic, torsion-free and symplectic Weyl
flat, then for any i , j , the sequence

(
Γ(E i+k,j±k),T i+k,j±k

±

)
k∈Z

is

a complex, i.e., T i+k+1,j±k±1
± T i+k,j±k

± = 0.

Proof. [KryCliffAlg].



3) Primitive forms and symplectic twistor cohomology
Let (ei)

2n
i=1 be a symplectic basis of (V , ω0) such that (ei)

n
i=1 ⊆ U.

For s ∈ S(U) (Schwartz functions on U,S(U) ⊆dense S = L2(U)),
set

(ei · s)(x) := ıx is(x) and (ei+n · s)(x) := ∂s
∂x i (x),

where U ∋ x =
∑n

i=1 x iei . Extend linearly to V , getting v · s
(v =

∑2n
i=1 x iei). It is the canonical quantization prescription

up a constant.

Set Y (α⊗ s) :=
2n∑

i ,j=1
ωijιeiα⊗ ej · s,

where ι denotes insertion. Extend linearly. (Motivation [Slupinski].)

Remark: Extension · : V × S → S to the map V ⊗ S → S is
G̃-equivariant w.r.t. representations λ⊗ L and L.



Primitive forms

Definition: Symplectic spinor-valued i-form ϕ =
∑

k αk ⊗ sk is
called primitive if it is an element of the kernel of Y .

Set X (α⊗ s) =
∑2n

i=1 ϵ
i ∧ α⊗ ei · s (extend linearly), where α is a

differential form and s is a symplectic spinor field.

Lemma 3 (Rep-thy-Lemma): Let 0 ≤ i ≤ n. Symplectic
spinor-valued i-form is primitive if and only if it is a section of E ij

for i = j . It is primitive if it is in the kernel of X 2n−2i+1.

Proof. Follows from [KrJLieThy].



4) Decomposition into primitive forms and map [X ]

Theorem 4 (Lefschetz type decomposition): For a symplectic
manifold (M, ω,∇) with symplectic Weyl-flat connection and
0 ≤ i ≤ n

E i =
i⊕

j=0
X i−jE jj

and also Γ(E i) =
⊕i

j=0 X i−jΓ(E jj).

Proof. Schur lemma, G̃-equivariance of X and decomposition
structure of E (see also Lemma 1).

Definition: The (+)-twistor cohomology group is the quotient

H i ,j
T (M) = Ker T i ,j

+ /Im T i−1,j−1
+ .

The +-case is for simplicity.



Lefschetz map on twistor cohomology

Theorem 5: If (M, ω,∇) is a symplectic manifold with a
symplectic Weyl-flat connection, then X descends to the twistor
cohomology groups, i.e., [X ] : H i ,j

T (M) → H i+1,j
T (M),

[X ][ϕ] := [X (ϕ)], is a well defined linear map.

Proof. [ψ] = 0 =⇒ ψ ∈ ImT i−1,j−1
+ =⇒ ψ = pi ,jd∇ϕ =⇒

Xψ = Xpi ,jd∇ϕ.
Since X is G-equivariant. By Schur lemma for intertwining
operators: Xpi ,j = −µpi+1,jX for a constant µ, possibly zero. Thus
Xψ = −µpi+1,jXd∇ϕ.
It is easy to compute that Xd∇ = −d∇X using the torsion-free
property.
Conclude: Xψ = −µpi+1,jXd∇ϕ = pi+1,jd∇X (µϕ) = T i ,j−1

+ (µϕ),

thus it is in the image of T i ,j−1
+ . 2



Lefschetz map and hard Lefschetz property

Assumptions:

Let ∇ be Fedosov (torsion-free and symplectic) and flat. Then we
have d∇

i+1d∇
i = 0. Thus (Γ(E i), d∇

i )i is a complex.
Form symplectic spinor cohomology:
H i

sys(M, S) = Ker d∇
i /Im d∇

i−1

Easy to derive action of ω = X ◦ X .

Definition: Set [ω∧k ] = [X 2k∧] : Hn−k
sys (M, S) → Hn+k

sys (M, S) is
called the (symplectic spinor) Lefschetz map.



Lefschetz property for symplectic spinors
Theorem 6: Let (M, ω,∇) be compact symplectic and flat, then
[ω∧k ] : Hn−k

sys (M, S) → Hn+k
sys (M, S) is an isomorphism for each

0 ≤ k ≤ n.

Idea of proof: Hn−k
sys (M, S) ≃ Kharm := Ker∆n−k (by harmonic

theory), where ∆i = (d∇
i )∗d∇

i + d∇
i−1(d∇

i−1)
∗, where the adjoints

are with respect to a hermitian metric compatible with ω.
ω commutes with ∆i , and moreover with δ∇i = (d∇

i )∗. Problems:
Commuting ω∧k∧ with the adjoints of derivatives is difficult.
(Codifferentials do not have an easy Leibniz property). Escape by
divergence formula:

d∇∗
(α⊗ s) =

∑
i ,j

−∇ei (α(eij)ϵ
j ⊗ s) + div(ei)α(eij)ϵ

j ⊗ s

Not necessary [J , d∇] = 0 (the Kähler property in the considered
case).
2

Remark: Notice that in Kähler geometry, one needs Jd∇
i = d∇

i J .



Hodge theories - partial algebraic point of view

1) Forms on Riemannian and Kählerian manifolds - quite known

2) Forms on Symplectic: Symplectic Laplacian is zero =⇒ replace
K ′

harm,symp := Ker d ∩ Ker δsymp, δsymp = ∗ d ∗, ∗ symplectic star.

Mathieu: Symplectic manifold has hard Lefschetz property iff
K ′

harm,symp ≃ HdRham(M) (Brylinsky condition).



Suppl.: Definition of metaplectic structure

(M, ω) symplectic manifold
Q = {A : V → TmM|ω0(u, v) = ωm(Au,Av), u, v ∈ V ,m ∈ M} is
a principal G-bundle, bundle of symplectic frames, πQ : Q → M
If πP : P → M is principal G̃-bundle and Λ : P → Q is a fibre
bundle map, (P,Λ) is called metaplectic structure on (M, ω) if
the diagram

P × G̃

Λ×λ

��

// P

Λ
��

πP
##FF

FF

M

Q × G // Q πQ

::vvvv

commutes.
Thm. (Forger, Hess): A metaplectic structure exists iff c1(TMc) is
even, i.e. an element of H2(M, 2Z) iff w1(TM) = 0.



Suppl.: Ellipticity of the subcomplexes

Theorem: If ∇ is symplectic and Weyl flat, then(
Γ(E i+k,k),T i+k,k,+

)
−1≤k≤⌊ 2n−i

2 ⌋

i = 0, . . . , 2n − 2, and(
Γ(E⌊ i+1

2 ⌋+k,⌊ i
2 ⌋−k),T

⌊ i+1
2 ⌋+k,⌊ i

2 ⌋−k,−
)

0≤k≤⌊ i
2 ⌋+1

are elliptic for i = 2, . . . , 2n.
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