Lefschetz map on symplectic spinor-valued forms

Svatopluk Krýsl

Charles University Prague, Czech Republic, Faculty of Mathematics and Physics

DGA, Brno, Sept. 12th

Content

- 1) Symplectic manifolds and symplectic connections
- 2) Model for the complex of symplectic spinor valued forms
- 3) Primitive forms
- 4) Cohomology and Lefschetz-type map

1) Symplectic manifolds and symplectic connections

Let (M,ω) be a symplectic manifold, i.e., ω point-wise non-degenerate antisymmetric differential 2-form and closed $(d\omega=0)$

Let ∇ be symplectic ($\nabla \omega = 0$) and torsion-free connection: Fedosov connection

Non-unique in contrary to Riemannian geometry. Form affine space modeled on smooth sections $\Gamma(Sym^3(T^*M))$ of the bundle $Sym^3(T^*M)$ (Libermann; Tondeur; see also Gelfand, Retakh, Shubin)

Used for *deformation quantization* (of Poisson algebra of smooth functions on M, an L_{∞} -morphism)

Curvature R of ∇ : $R = \Sigma + W$, no scalar curvature, Σ constructed only by ω and Ric.

<u>Symplectic</u> Weyl-flat manifolds (M, ω, ∇)

We always suppose that $T^{\nabla} = 0$ so we speak about Fedosov connections

Definition: **Symplectic Weyl-flat** $\iff W = 0$ (called also symplectic Ricci type)

Examples of symplectic Weyl-flat manifolds:

- 1) Kähler with constant holomorphic sectional curvature: If geodesically complete, they are covered by $\mathbb{C}P^n$, open balls B^n , or Euclidean \mathbb{C}^n with their standard Riemannian structures and their constant multiples [Igusa].
- 2) Bipolarized, bi-Lagrangian (=para-Kähler by [Alexeevskii, Medori, Tomassini], see also [Etayo et al.]) both satisfying specific PDEs [Vais]
- 3) Local models: symplectic Weyl-flat arise locally by descent from $(\mathbb{R}^{2n+2}, \omega_0)$: Bieliavsky, Cahen, Gutt, Schwachhöfer
- 4) also the Kodaira-Thurston manifold with a flat symplectic connection [Fox]

Symplectic spinors

 (V,ω_0) real symplectic vector space of dimension 2n, G the symmetry group - symplectic group $Sp(V,\omega_0)$ of maps of V preserving the bilinear form ω_0 .

Can choose $V = \mathbb{R}^{2n}$ for simplicity.

G is non-compact; maximal compact in G: $K=G\cap SO(2n,R)\simeq U(n).$ Fundamental group $\pi_1(G)\simeq \pi_1(U(n))\simeq \mathbb{Z}.$

 $\Longrightarrow \exists \ \lambda : \widetilde{G} \to G \subseteq \operatorname{Aut}(V)$, connected Lie group double cover of G; $\widetilde{G} = Mp(V, \omega_0)$ - the **metaplectic group**: non-matrix Lie group, 2:1 covering as $Spin(m) \to SO(m)$ λ is also a representation of \widetilde{G} on V

Symplectic spinors - properties

U be a maximal ω_0 -isotropic subspace of $(V, \omega_0), \ U \simeq \mathbb{R}^n$ Let $L : \widetilde{G} \to \mathcal{U}(L^2(U))$ be the so called **symplectic spinor representation**.

Hilbert space $S = L^2(U)$ called space of **symplectic spinors**

Unitary, faith-full, infinite dimensional; decomposes into two non-equivalent irreducible representations; $S = S_+ \oplus S_-$ Its 'infinitesimal structure' (i.e., Harish-Chandra module) is $\bigoplus_{i=0}^{\infty} Sym^i(U) \simeq Pol(x_1, \ldots, x_n)$ [Kirillov]

Also known as Segal–Shale–Weil, metaplectic, oscillator representation: [Shale], [Weil], [Howe]

Discovered by quantization of Klein–Gordon fields (David Shale and Irving Segal), symmetries of ϑ -functions (Weil)

2) Model for the symplectic spinor complex

$$E^i = \bigwedge^i V^* \otimes S$$
 - symplectic spinor-valued wedge *i*-forms $E = \bigoplus_{i=0}^{2n} \bigwedge^i V^* \otimes S$ - symplectic spinor-valued wedge forms

$$\rho(g)(\alpha \otimes s) = \lambda(g)^* \alpha \otimes L(g)s, \alpha \otimes s \in E^i, g \in \widetilde{G}$$

Remark: Similar - model for Dolbeault complex. $U(T_xM, J_x, g_x)$ -module $\bigoplus_{0 \le p+q \le 2n} \bigwedge^p (T_xM^{1,0})^* \otimes \bigwedge^q (T_xM^{0,1})^*$, (T_xM, J_x, g_x) hermitian vector space and (M, J, g) is a complex hermitian manifold.

Theorem 1 [KryJLieThy]: The module E decomposes as a \widetilde{G} -module into a finite direct sum

$$\bigoplus_{(i,j)\in P} E^{ij}, \text{ where } P \text{ is a finite subset of } \mathbb{Z}\times\mathbb{Z}.$$

 $E^{ij}=E^{ij,+}\oplus E^{ij,-}\subseteq E^i$ and $E^{ij,\pm}$ are non-equivalent irreducible \widetilde{G} -modules. (E^{ij} not irreducible.)

Decomposition of symplectic spinor-valued wedge forms

Dim M = 6

$$\mathbf{E^0}$$
 $\mathbf{E^1}$ $\mathbf{E^2}$ $\mathbf{E^3}$ $\mathbf{E^4}$ $\mathbf{E^5}$ $\mathbf{E^6}$
 E^{00} E^{10} E^{20} E^{30} E^{40} E^{50} E^{60}
 E^{11} E^{21} E^{31} E^{41} E^{51}
 E^{22} E^{32} E^{42}
 E^{33}

 $p^{ij}: E^i \to E^{ij}$ the unique projection according to the splitting above

Inducing the model to the metaplectic structures

If a symplectic manifold (M, ω) admits a metaplectic structure (symplectic analogue of the riemannian or pseudoriemannian spin structure, specific principal bundle that double-covers the bundle of symplectic frames), denoted by $\mathcal{P}, \Longrightarrow$ form

associated bundles $\mathcal{E}=\mathcal{P}\times_{\rho}E$ - bundle of symplectic spinor valued wedge forms

and associated bundles $\mathcal{E}^{ij} = \mathcal{P} imes_{
ho} E^{ij}$

For a symplectic connection, construct the exterior covariant derivatives $d_i^{\nabla}: \Gamma(\mathcal{E}^i) = \Omega^i(M) \widehat{\otimes}_{\epsilon} S \to \Gamma(\mathcal{E}^{i+1}) = \Omega^{i+1}(M) \widehat{\otimes}_{\epsilon} S$

Sequences of symplectic twistor operators

Definition: Let ∇ be a symplectic connection on (M,ω) . Then $T^{ij}_{\pm}=p^{i+1,j\pm 1}d^{\nabla}_{|\Gamma(\mathcal{E}^{ij})}$ is called the (\pm) -symplectic twistor operator, or (i,j)-th (\pm) -symplectic twistor operator.

Symplectic Dirac operators introduced by Habermann [KHMathNachr].

Dim M = 4

Complexes for (M, ω, ∇) with a metaplectic structure

Theorem 2: If ∇ is symplectic, torsion-free and symplectic Weyl flat, then for any i,j, the sequence $\left(\Gamma(E^{i+k,j\pm k}),\,T_{\pm}^{i+k,j\pm k}\right)_{k\in\mathbb{Z}}$ is a complex, i.e., $T_{\pm}^{i+k+1,j\pm k\pm 1}T_{\pm}^{i+k,j\pm k}=0$.

Proof. [KryCliffAlg].

3) Primitive forms and symplectic twistor cohomology

Let $(e_i)_{i=1}^{2n}$ be a symplectic basis of (V, ω_0) such that $(e_i)_{i=1}^n \subseteq U$. For $s \in \mathcal{S}(U)$ (Schwartz functions on $U, \mathcal{S}(U) \subseteq_{dense} S = L^2(U)$), set

$$(e_i \cdot s)(x) := \imath x^i s(x) \text{ and } (e_{i+n} \cdot s)(x) := \frac{\partial s}{\partial x^i}(x),$$

where $U \ni x = \sum_{i=1}^{n} x^{i} e_{i}$. Extend linearly to V, getting $v \cdot s$ $(v = \sum_{i=1}^{2n} x^{i} e_{i})$. It is the **canonical quantization prescription** up a constant.

Set
$$Y(\alpha \otimes s) := \sum_{i,j=1}^{2n} \omega^{ij} \iota_{e_i} \alpha \otimes e_j \cdot s$$
,

where ι denotes insertion. Extend linearly. (Motivation [Slupinski].)

Remark: Extension $\cdot: V \times S \to S$ to the map $V \otimes S \to S$ is \widetilde{G} -equivariant w.r.t. representations $\lambda \otimes L$ and L,

Primitive forms

Definition: Symplectic spinor-valued *i*-form $\phi = \sum_k \alpha_k \otimes s_k$ is called **primitive** if it is an element of the kernel of Y.

Set $X(\alpha \otimes s) = \sum_{i=1}^{2n} \epsilon^i \wedge \alpha \otimes e_i \cdot s$ (extend linearly), where α is a differential form and s is a symplectic spinor field.

Lemma 3 (Rep-thy-Lemma): Let $0 \le i \le n$. Symplectic spinor-valued *i*-form is primitive if and only if it is a section of \mathcal{E}^{ij} for i=j. It is primitive if it is in the kernel of $X^{2n-2i+1}$.

Proof. Follows from [KrJLieThy].

4) Decomposition into primitive forms and map [X]

Theorem 4 (Lefschetz type decomposition): For a symplectic manifold (M, ω, ∇) with symplectic Weyl-flat connection and $0 \le i \le n$

$$\mathcal{E}^i = \bigoplus_{j=0}^i X^{i-j} \mathcal{E}^{jj}$$

and also $\Gamma(\mathcal{E}^i) = \bigoplus_{i=0}^i X^{i-j} \Gamma(\mathcal{E}^{jj})$.

Proof. Schur lemma, G-equivariance of X and decomposition structure of E (see also Lemma 1).

Definition: The (+)-twistor cohomology group is the quotient

$$H_T^{i,j}(M) = \operatorname{Ker} \, T_+^{i,j} / \operatorname{Im} \, T_+^{i-1,j-1}.$$

The +-case is for simplicity.

Lefschetz map on twistor cohomology

Theorem 5: If (M, ω, ∇) is a symplectic manifold with a symplectic Weyl-flat connection, then X descends to the twistor cohomology groups, i.e., $[X]: H^{i,j}_T(M) \to H^{i+1,j}_T(M)$, $[X][\phi]:=[X(\phi)]$, is a well defined linear map.

Proof.
$$[\psi] = 0 \Longrightarrow \psi \in \operatorname{Im} T_+^{i-1,j-1} \Longrightarrow \psi = p^{i,j} d^{\nabla} \phi \Longrightarrow X\psi = Xp^{i,j} d^{\nabla} \phi.$$

Since X is G-equivariant. By Schur lemma for intertwining operators: $Xp^{i,j} = -\mu p^{i+1,j}X$ for a constant μ , possibly zero. Thus $X\psi = -\mu p^{i+1,j}Xd^{\nabla}\phi$.

It is easy to compute that $Xd^{\nabla}=-d^{\nabla}X$ using the torsion-free property.

Conclude: $X\psi = -\mu p^{i+1,j} X d^{\nabla} \phi = p^{i+1,j} d^{\nabla} X (\mu \phi) = T_+^{i,j-1} (\mu \phi),$ thus it is in the image of $T_+^{i,j-1}$. \square

Lefschetz map and hard Lefschetz property

Assumptions:

Let ∇ be Fedosov (torsion-free and symplectic) and flat. Then we have $d_{i+1}^{\nabla}d_{i}^{\nabla}=0$. Thus $(\Gamma(\mathcal{E}^{i}),d_{i}^{\nabla})_{i}$ is a complex.

Form symplectic spinor cohomology:

$$H^i_{sys}(M,S) = \operatorname{Ker} d_i^{\nabla}/\operatorname{Im} d_{i-1}^{\nabla}$$

Easy to derive action of $\omega = X \circ X$.

Definition: Set $[\omega^{\wedge k}] = [X^{2k} \wedge] : H^{n-k}_{sys}(M,S) \to H^{n+k}_{sys}(M,S)$ is called the (symplectic spinor) **Lefschetz map**.

Lefschetz property for symplectic spinors

Theorem 6: Let (M, ω, ∇) be compact symplectic and flat, then $[\omega^{\wedge k}]: H^{n-k}_{sys}(M, S) \to H^{n+k}_{sys}(M, S)$ is an isomorphism for each $0 \le k \le n$.

Idea of proof: $H^{n-k}_{sys}(M,S)\simeq K_{harm}:=\mathrm{Ker}\Delta_{n-k}$ (by harmonic theory), where $\Delta_i=(d_i^{\nabla})^*d_i^{\nabla}+d_{i-1}^{\nabla}(d_{i-1}^{\nabla})^*$, where the adjoints are with respect to a hermitian metric compatible with ω . ω commutes with Δ_i , and moreover with $\delta_i^{\nabla}=(d_i^{\nabla})^*$. Problems: Commuting $\omega^{\wedge k}\wedge$ with the adjoints of derivatives is difficult. (Codifferentials do not have an easy Leibniz property). Escape by divergence formula:

$$d^{
abla^*}(lpha\otimes s)=\sum_{i,j}-
abla_{e_i}(lpha(e_{ij})\epsilon^j\otimes s)+\mathit{div}(e_i)lpha(e_{ij})\epsilon^j\otimes s$$

Not necessary $[J,d^{\nabla}]=0$ (the Kähler property in the considered case).

Hodge theories - partial algebraic point of view

- 1) Forms on Riemannian and Kählerian manifolds quite known
- 2) Forms on Symplectic: Symplectic Laplacian is zero \Longrightarrow replace $K'_{harm,symp} := \operatorname{Ker} d \cap \operatorname{Ker} \delta_{symp}, \ \delta_{symp} = *d *, * symplectic star.$

Mathieu: Symplectic manifold has hard Lefschetz property iff $K'_{harm,symp} \simeq H_{dRham}(M)$ (Brylinsky condition).

Suppl.: Definition of metaplectic structure

 (M,ω) symplectic manifold $\mathcal{Q}=\{A:V o T_mM | \, \omega_0(u,v)=\omega_m(Au,Av), \, u,v \in V, \, m \in M\}$ is a principal G-bundle, bundle of symplectic frames, $\pi_{\mathcal{Q}}:\mathcal{Q} o M$ If $\pi_{\mathcal{P}}:\mathcal{P} o M$ is principal \widetilde{G} -bundle and $\Lambda:\mathcal{P} o \mathcal{Q}$ is a fibre bundle map, (\mathcal{P},Λ) is called **metaplectic structure** on (M,ω) if the diagram

$$P \times \widetilde{G} \to P$$

$$\downarrow^{\Lambda \times \lambda} \qquad \uparrow^{\pi_P}$$

$$Q \times G \to Q$$

commutes.

Thm. (Forger, Hess): A metaplectic structure exists iff $c_1(TM^c)$ is even, i.e. an element of $H^2(M, 2\mathbb{Z})$ iff $w_1(TM) = 0$.

Suppl.: Ellipticity of the subcomplexes

Theorem: If ∇ is symplectic and Weyl flat, then

$$\left(\Gamma(\mathcal{E}^{i+k,k}), T^{i+k,k,+}\right)_{-1 \le k \le \lfloor \frac{2n-i}{2} \rfloor}$$

 $i = 0, \ldots, 2n - 2$, and

$$\left(\Gamma(\mathcal{E}_{\lfloor\frac{i+1}{2}\rfloor+k,\lfloor\frac{i}{2}\rfloor-k}),\,T^{\lfloor\frac{i+1}{2}\rfloor+k,\lfloor\frac{i}{2}\rfloor-k,-}\right)_{0\leq k\leq \lfloor\frac{i}{2}\rfloor+1}$$

are elliptic for $i = 2, \ldots, 2n$.

- [CMP79] Forger, M., Hess, H., Universal metaplectic structures and geometric quantization, Commun. Math. Phys. 67 (1979), 267–278.
- [Hab] Habermann, K., The Dirac operator on symplectic spinors, Ann. Global Anal. Geom. 13 (1995), no. 2, 155–168.
- [Habs] Habermann, K., Habermann, L., Introduction to symplectic Dirac operators, Lecture Notes in Mathematics 1887. Springer-Verlag, 2006.
- [Haw] Hawley, N., Constant holomorphic curvature. Canad. J. Math. 5 (1953), 53-56.
- [Ig] Igusa, J., On the structure of a certain class of Kaehler varieties, Amer. J. Math. 76 (1954), 669-678.
- [Kos] Kostant, B., Symplectic spinors. Symposia Mathematica, Vol. XIV (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973), 139–152, Academic Press, London, 1974.

- [KrMon] Krýsl, S., Complex of twistor operators in spin symplectic geometry, Monatshefte für Mathematik, Vol. 161 (2010), no.4, 381–398.
- [KrJLieThy] Krýsl, S., Howe duality for the metaplectic group acting on symplectic spinor valued forms, Journal of Lie theory, Vol. 22 (2012), no. 4, 1049–1063; arxiv 2008.
- [KryCliffAlg] Krýsl, S., Complexes of symplectic twistor operators, Cliff. Anal. Alg., 2022.
- [Sh] Shale, D., Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962), 149–167.
- [Slup] Slupinski, M., A Hodge type decomposition for spinor valued forms, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 1, 23–48.
- [Vais] Vaisman, I., Symplectic curvature tensors, Monatshefte für Mathematik 100 (1985), 299–327.

[Weil] Weil, A., Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143–211.