
The Quadratic Sieve - introduction to theory
with regard to implementation issues

RNDr. Marian Kechlibar, Ph.D.

April 15, 2005

Contents

I The Quadratic Sieve 3
1 Introduction 4

1.1 The Quadratic Sieve - short description 5
1.1.1 Polynomials and relations 5
1.1.2 Smooth and partial relations 7
1.1.3 The Double Large Prime Variation 8
1.1.4 Problems to solve . 10

2 Quadratic Sieve Implementation 12
2.1 The Factor Base . 12
2.2 The sieving process . 15

2.2.1 Interval sieving and solution of polynomials 16
2.2.2 Practical implementation 16

2.3 Generation of polynomials . 17
2.3.1 Desirable properties of polynomials 17
2.3.2 Assessment of magnitude of coe�cients 18
2.3.3 MPQS - The Silverman Method 20
2.3.4 SIQS principle . 21
2.3.5 Desirable properties of b 22
2.3.6 SIQS - Generation of the Bi's 23
2.3.7 Generation of b with Gray code formulas 24
2.3.8 SIQS - General remarks on a determination 26
2.3.9 SIQS - The bit method for a coe�cient 27
2.3.10 SIQS - The Carrier-Wagsta� method for a coe�cient . 28

2.4 Combination of the relations, partial relations and linear algebra 30
2.5 Linear algebra step . 31
2.6 The Singleton Gap . 32

1

3 Experimental Results 36
3.1 Sieving speed - dependence on FB size 36
3.2 Sieving speed - dependence on usage of 1-partials 38
3.3 Singletons - dependence on log(N) and FB size 39
3.4 Properties of the sieving matrices 42

2

Part I

The Quadratic Sieve

3

Chapter 1

Introduction

Question whether a given natural number has some nontrivial divisors is as
old as mathematics. A slightly modi�ed question - to determine the actual
divisors of a given non-prime number - seemed for a long time to be 'almost'
equivalent. Indeed, it still seems so for a man without training in number
theory or cryptography.

The question of primality is the easier one. As for the time of the writ-
ing, there already is an algorithm, that solves this question in polynomial
time (see [1]). Though having perfect asymptotic behavior, and an extensive
theoretical background, this algorithm is far from practical. Instead, much
faster probabilistic algorithms are used to tackle the primality problem in
the real world.

The question of divisors seems to be signi�cantly harder. Not only that
there is no polynomial-time algorithm for divisor determination, but there
is even lack of probabilistic ones. There are good algorithms to determine
small divisors, but all current algorithms fail to reliably determine divisors
of a number composed of two large primes in reasonable time.

This has led the famous RSA team to design of an asymmetric cipher (see
[21]), which exploits precisely this quality. This cipher is worldwide used in
encryption of communication, including transfers of top secrets and large
amounts of money.

During three decades following publication of RSA, there have been at-
tempts to attack the divisor problem from many sides. The most e�ective
approach so far has been to search for pairs X, Y ∈ ZN (N is the number to
be factored) such that

X2 = Y 2 mod N. (1.1)

4

This leads to congruence (X − Y)(X + Y) = 0 mod N , and unless X =
±Y mod N , the congruence immediately gives two proper divisors of N :
gcd(X−Y, N) and gcd(X+Y,N). The former case of trivial divisors happens
with probability at most 1/2. So, �nding k congruences X2

i = Y 2
i mod N

gives us a chance at least 1− (1/2)k to factor N .
A natural question "how to generate such congruences" has been solved in

several ways, the �rst being continued fraction algorithm, and the last being
the number �eld sieve (NFS). We will concentrate on the predecessor of the
NFS - the quadratic sieve, proposed by [20], with �rst major improvement
described in [24], and next one proposed independently by [19] and [2].

1.1 The Quadratic Sieve - short description
1.1.1 Polynomials and relations
From this article on, N will be the factored number.

Let us have polynomials Qj(x) = (2ajx + bj)
2 − N ∈ Z[x], j ∈ J, which

satisfy the following equation:

b2
j = N mod 4aj (1.2)

The quality 1.2 causes the following to be true:

(2ajx + bj)
2 −N = 4a2

jx
2 + 4ajbjx + b2

j −N = 4a2
jx

2 + 4ajbjx + 4ajcj =

= 4aj(ajx
2 + bjx + cj),

where cj is equal to b2j−N

4aj
. Speci�cally, we see that any value of Q(x) is

divisible by 4aj, which will be of good use.
Now, let us assume that some Qj(x) factors for some x into relatively

small primes (some of the exponents may be zero):

Q(x) = pk1
1 · pk2

2 · · · pkl
l

This equality holds in integers, so a fortiori modulo N . But modulo N , an
even more important equality holds:

(2ajx + bj)
2 = pk1

1 · pk2
2 · · · pkl

l mod N

5

De�nition 1.1.1. Any equality of type

X2 = pk1
1 · pk2

2 · · · pkl
l mod N

will be called a relation.
A number Y is called B−smooth, if its prime decomposition

Y = qm1
1 · qm2

2 · · · qmn
n

satis�es qi < B for all i = 1 . . . n.

Let us have two relations generated by functional values of polynomials
Qj and Qn, say

(2ajx + bj)
2 = pk1

1 · pk2
2 · · · pkl

l mod N

and
(2any + bn)2 = pm1

1 · pm2
2 · · · pml

l mod N.

Then their product is another relation:

((2ajx + bj)(2any + bn))2 = pk1+m1
1 · pk2+m2

2 · · · pkl+ml
l mod N

This principle generalizes to any �nite set of relations, not only two. The
way to factorization is now as follows: if we gather enough relations, we may
pick up a suitable subset of them, such that exponents of all primes on the
right side will be even. Such a relation

(∏
i

(2ar(i)xi + br(i))

)2

= p2s1
1 · p2s2

2 · · · p2sl
l mod N (1.3)

(where r(i) determines number of used polynomial) gives equality of two
squares modulo N :

(∏
i

(2ar(i)xi + br(i))

)2

= (ps1
1 · ps2

2 · · · psl
l)2 mod N,

and, setting X =
∏

i(2ar(i)xi + br(i)), Y = ps1
1 · ps2

2 · · · psl
l , we have an instance

of 1.1, which is what we wanted.

6

1.1.2 Smooth and partial relations
De�nition 1.1.2. Let B be an upper bound on primes pi acceptable in
factorization of Qj(x). Then:

X2 = pk1
1 · pk2

2 · · · pkl
l mod N,

where all pi < B, is called a smooth relation with respect to smoothness
bound B, and

X2 = pk1
1 · pk2

2 · · · pkl
l · P mod N,

where B ≤ P is a prime number, is called a partial relation with respect to
smoothness bound B. Sometimes, we will refer to a partial relation as to a
1-partial relation.

An expression

X2 = pk1
1 · pk2

2 · · · pkl
l · P ·Q mod N,

where P, Q > B are distinct primes, is called a partial-partial relation, or
2-partial relation.

3- and more partial relations are de�ned similarly.

If, in addition to smooth relations, we collect also 1-partial relations1, they
can be of good use. Any two partial relations which share the same variation
yield together a suitable combination:

(2ajx + bj)
2 = pk1

1 · pk2
2 · · · pkl

l · P mod N

and
(2any + bn)2 = pm1

1 · pm2
2 · · · pml

l · P mod N

give

((2ajx + bj)(2any + bn))2 = pk1+m1
1 · pk2+m2

2 · · · pkl+ml
l · P 2 mod N.

We see that such relation is usable instead of a smooth one, because presence
of a large square factor does not in�uence usability of a relation in 1.3.

How often does really occurence of two partial relations with the same
variation occur? This is an instance of so-called birthday paradox. Though
probability that two partial relations will have a concrete given variation

1This variant of the quadratic sieve is called The Single Large Prime Variation.

7

in common is small, the probability of some two relations sharing the same
variation is much larger. It can be seen that the more partial relations are
collected, the bigger chance for some two of them to have a common variation.

A thorough analysis of e�ect of collecting 1-partials on runtime can be
found in [14] and [4].

A more complicated situation emerges, if we attempt to use 2−, 3− and
more-partial relation. We will discuss it in the next subsection.

1.1.3 The Double Large Prime Variation
An instance of quadratic sieve collecting smooth, 1-partial and 2-partial re-
lations is called The Double Large Prime Variation. Unlike the Single LPV
case, implementations of the Double LPV are faced with serious issues con-
cerning used algorithms and techniques. These issues stem from the following
properties of the Double LPV:

• It is not trivial to combine the collected partial relations to smooth
ones e�ectively.

• The set of gathered relations, especially the 2-partial ones, is often too
big to �t in memory.

The question of memory-savvy representation of the gathered relations is
dependent on the way we choose to attack the �rst property; therefore, we
will discuss it later.

As for the combination of the collected partial relations, the problem can
be rede�ned in language of graph theory. Let us construct a graph having
the following properties:

1. All the large primes ever met in the set of 1-partial and 2-partial rela-
tions are vertices of the graph; moreover, there is one vertex represent-
ing the integer 1.

2. All the 2-partial relations will be represented as edges between the two
large primes.

3. All the 1-partial relations will be represented as edges between their
large prime and 1.

8

Having constructed this graph, we see that �nding a "good subset" of the
relations set, that is, a combination having all of the large primes in even
power, is equal to �nding a cycle in the constructed graph. Two facts must
be taken into account:

• It is necessary to include the 1-partials in the graph. If we try gener-
ating cycles from 2-partials only, we soon �nd out that their number is
orders of magnitude lower than number of cycles generated from both
1- and 2-partials - sometimes as much as 1:10000. This is caused by
the fact that there are many "almost perfect" subsets, which need only
one prime to be raised to even power - and that is where the 1-partials
help.

• We do not need all of the cycles. In fact, we must avoid many of
them. Let us say that C1 and C2 are two cycles with nonempty cycle
C3 as an intersection. It is clear that C1, C2, C3 are not independent;
together, they give three linearly dependent rows (mod 2), which is
strongly undesired. Occurrence of linearly dependent rows in the �nal
matrix would reduce the chance to �nd a nontrivial solution.

Therefore, in order to use Double LPV, we must use an algorithm which
will be memory-savvy, fast enough and which will detect only independent
cycles. Such algorithm is well-described in [14]; our current implementation
of MPQS/SIQS uses this algorithm with some minor variations.

By the Euler's theorem, number of independent cycles in a graph is equal
to e+c−v, where e is the number of edges, c the number of components and
v the number of vertices in the graph. Therefore, if we keep those values in
memory, and if our graph representation is accurate enough to re�ect them
precisely, we always know how many relations can be generated from the
large set of x-partials, and thus know when to stop collection of the relations
and start the construction of cycles.

Unlike in Single LPV, Double LPV requires also a method for distinguish-
ing the 2-partials from unusable values. In Single LPV, any remainder which
lasted after dividing out the factor base primes, and which was lower than
B2 (we usually impose a lower bound, say 128B), was automatically a prime;
in case of Double LPV, the remainder is between B2 and B3, and any of the
three possibilities may happen:

• The remainder is a prime, which rules the value out of further consid-
eration.

9

• The remainder is a product of two primes, but one of the primes is too
small (around B) and the other too large (close to B2), therefore the
value is discarded again.

• The remainder is a product of two primes of acceptable size, and there-
fore the value is regarded a 2-partial relation.

In order to �nd the truth about a "candidate value", the remainder must
be subject to primality testing (which is relatively fast, as the size of the
remainder seldom exceeds 50 bits), and if it turns out to be composite, then
it must be factored into its prime factors, using some factoring algorithm.
This is not a trivial process; in fact, it may take as much as 50% of the total
MPQS/SIQS runtime.

The situation of the programmer is even worsened by the fact that picking
up a fast factoring algorithm for purpose of factoring the remainders is more
of a guess than mathematics. The trial division is de�nitely out, but what
for other algorithms? Their asymptotic behavior is well-known, but it would
be a bad clue, since it only works in large numbers; in the realm of 40-50
bit numbers, the e�ectivity of factoring algorithms may be totally di�erent
from their asymptotic properties. The only "sensible" approach seems to be
to test several algorithms on particular data, watch their performance, and
then choose the fastest one. Such comparison can be programmed as well,
removing the need of a human in control.

There used to be general consent that while 2−partials are e�ective, col-
lection of 3−partials is too time�consuming to be outweighted by the increase
of amount of cycles in the graph. However, it has been referred ([8]), that
collection of 3−partials may be in some cases advantageous because of "non-
continuous" behavior of graphs. This �eld of research surely deserves more
attention.

1.1.4 Problems to solve
A succesful implementation of the described quadratic sieve algorithm has
to solve the following problems:

• How to pick up the set of "acceptable" primes for the right side? If they
are too many, a large set of relations is needed to yield some equalities
of type 1.1; on the other hand, if they are too few, it will be hard to
generate any suitable relations at all.

10

• How to �nd the relations fast enough?

• How to generate suitable polynomials Qj(x)? Intuitively, some choices
of coe�cients of Qj(x) will yield more relations than other ones.

• How, in the set of all gathered relations, to �nd some subset yielding
1.1? Preferrably, the method used for �nding a 'good' subset should
output several such subsets at a time, since each equality 1.1 gives some
chance, but not 100% one, to actually factor the number.

• Are there any mathematical 'traps' which must be avoided?

These questions will be answered in the next chapter.

11

Chapter 2

Quadratic Sieve Implementation

2.1 The Factor Base
The �rst tisk is to select a suitable set FB of primes, which will be allowed
to divide values of Qj(x). This set of primes will be called the factor base.
Beside prime numbers, it is convenient to insert −1 into the factor base - this
enables us to exploit negative values of Qj(x) in search for the relations.

First of all, we must notice a mathematical limitation of the factor base.
Imagine that prime p belongs to factor base, and that

(2ajx + bj)
2 −N = pk · q

is a relation where k > 0 and q is a product of some other primes (we
intentionally take the relation in integers, not mod N). From this, we see
that

p | (
(2ajx + bj)

2 −N
)

(2ajx + bj)
2 = N mod p,

which means that equation Z2 = N mod p has a solution (namely, Z =
2ajx + bj). But this it not the case for every prime p. Such situation cannot
happen when N is a quadratic nonresidue mod p, which will be for approxi-
mately half of all the primes. So our factor base will consist (at best) of −1
and those primes, for which N is a quadratic residue, limited in size by some
constant B.

The fact that for a given N , N mod p is a quadratic nonresidue mod p,
can be changed by changing the factorized value itself. It is especially desir-
able to have p = 2 in the factor base, and this is achievable by multiplying

12

the factored value N by small multiplier k, so that kN = 1 mod 8. A good
candidate for k is N mod 8 itself, because all odd numbers N have the qual-
ity N2 = 1 mod 8. This change enables us to insert 2 into the factor base.
This is important for two reasons: �rst, 2 will divide many of the Q(x)'s to a
high power; second, representation of numbers in a computer makes division
by any power of 2 a trivial operation (the right shift, in C represented by
operator > >), which is much faster than normal division.

In a similar way, we may multiply kN by another multipliers ki, in order
to insert 3, 5, 7 or other small primes into the factor base, but this e�ect is
negated by the fact that with increasing value of kN , the probability that an
average Q(x) factors into small primes (and thus gives a relation) decreases.
From this on, let us forget about the multiplier and consider N as already
multiplied by suitable number k.

Another question is to determine the optimal upper limit B for the factor
base. Let us say that we have collected enough relations, if the set of collected
relations (smooth and optionally n−partials), processed by a given algorithm
A for �nding combinations, is big enough to give rise to some combinations
of type 1.3. We see that for small B, fewer relations will be needed, but they
will be scarce - since very few numbers factor completely over a small set of
primes; for a large B, there will be many relations, but more of them will be
needed to generate some 1.3-like combinations. We will call the value of B,
for which the process of gathering relations takes the least time, the optimal
value of B.1

Optimal factor base size for a given N is usually determined by trial-and-
error. Exact determination in practice fails on the fact that implementations
vary in e�ciency of their steps. The fundamental mathematical quality that
will in�uence runtime is the probability that a randomly chosen value of some
size will produce a relation - and that is also the only part of this problem,
where we can rely on mathematical theory.

Theorem 2.1.1. Let x be a factorized value, B be the upper bound on prime
divisors of x and denote by r the ratio log x

log B
. Then, if r << B, we have

probability of x factorizing fully into primes smaller than B approximately
r−r.

Proof. Let us denote the number of primes smaller than B as π(B) and
1It is widely believed that the function representing the dependence of runtime of

gathering relations on size of B has only one minimal value, but this has not been proven.

13

number of numbers ≤ x such that they factor fully into primes smaller than
B as Ψ(x,B).

We see that Ψ(x,B) is in 1-to-1 relation with the set of all π(B)-tuples
of nonnegative integers αj such that

∏
j

p
αj

j ≤ x.

This equation can be logarithmed into
∑

j

αj log pj ≤ log x.

Now, we may make an approximation: for most of the primes ≤ B, we have
log p ≈ log B. The altered equation

∑
j

αj log B ≤ log x

is thus turned into ∑
j

αj ≤ r.

So, the question to solve is, how many such unique π(B)−tuples do really
exist.

The answer is
(
[r]+π(B)

π(B)

)
. This can be shown by the following combinatorial

argument: let us α1, . . . , απ(B) be one such π(B)−tuple. We will generate
sequence β1, . . . , βπ(B) such that β1 = α1 + 1 and βj+1 = βj + αj+1 + 1. This
clearly gives a 1-to-1 correspondence to the set of all π(B)−subsets of set
having [r] + π(B) elements.

Now, knowing that there are approximately
(
[r]+π(B)

π(B)

)
B−smooth num-

bers smaller than x, let us estimate the logarithm of the probability that a
randomly chosen number from this range will be B−smooth. With use of
Stirling formula log(n!) ≈ n log n− n, we get

log

(
Ψ(x,B)

x

)
= log(Ψ(x,B))− log x =

= log

(
([r] + π(B))!

[r]!π(B)!

)
− r log π(B)

14

≈ ([r] + π(B)) · log([r] + π(B))− ([r] + π(B))− ([r] log [r]− [r])−
−(π(B) log π(B)− π(B))− r log(π(B)).

After another approximations, namely [r] ≈ r and log(r+π(B)) ≈ log(π(B))
(the latter from assumption that r << B), most of the terms cancel out, and
we get

Ψ(x,B)

x
≈ r−r,

which was to be demonstrated.
Based on this calculation, we should make a computation to determine

the optimal value of B. However, this computation is practically useless, for
two reasons:

• the process of gathering relations, as we will see, depends more on the
speed of memory access than on the speed of arithmetic operations,

• the above calculation is very rough. It does not count with the fact
that only half of the primes can be used, neither with the fact that
generated values are not perfectly random; as a consequence, it does
not work as expected.

In practice, the optimal FB size does not seem to be sharply determined;
some experimental results are demonstrated in the next chapter. However,
one must remember that with increasing factor base size, not only the number
of relations needed to build an equality 1.1 increases, but also the time to
build such equality with help of algorithm A rises, and so, if two di�erent FB
sizes lead to similar results in runtime, it is always advantageous to choose
the smaller one.

2.2 The sieving process
The process of gathering relations is called sieving.

Sieving means taking an interval [−M, M] and determining, for which
x ∈ [−M,M] a given prime p ∈ FB divides Qj(x). This must be done for
all primes in the factor base. At the end of the sieving of an interval, we
know (partial or complete) factorizations of all Qj(x) values, from which we
choose smooth and n−partial relations.

This process is repeated for many pairwise di�erent polynomials Qj(x),
until enough relations have been found.

15

2.2.1 Interval sieving and solution of polynomials
The determining of x's, for which p |Qj(x), is done with use of this simple
principle:

p |Qj(x) ⇐⇒ p |Qj(x + kp), k ∈ Z.

Having solved the equation Qj(x) = 0 mod p (which usually leads to two
di�erent integer roots xp and x′p = p − xp), we walk through the sieving
interval, and mark numbers

. . . , xp − 2p, xp − p, xp, xp + p, xp + 2p, . . .

. . . , x′p − 2p, x′p − p, x′p, x
′
p + p, x′p + 2p, . . .

as having the quality p|Qj(x).
Solving the equation Qj(x) = 0 mod p is easy, since this equation reduces

to
(2ax + b)2 = N mod p

for all polynomials Qj(x).
At the start of the quadratic sieve, before any sieving is done, we compute

and save values of rp =
√

N mod p for all primes from the factor base. After
that we do not need to perform any further root extractions, and computation
of roots of Qj(x) reduces to the following two calculations:

xp =
−bj + rp

2aj

, x′p =
−bj − rp

2aj

.

The most computationally intensive part of this calculation is taking the
modular inverse (2aj)

−1 mod p for all primes p ∈ FB. Number aj is usually
a long integer, with size roughly half of size of N (see 2.3.2), and so the
modular inversions may take a high proportion of the entire factorization
process runtime. If aj is altered in every polynomial change, this proportion
may easily reach 50%! So, one of the desirable properties of polynomials will
be to keep the same value of aj for many of them.

2.2.2 Practical implementation
From practical point of view, saving of all intermediate factorizations of
Qj(x)'s in interval [−M, M] is not a good idea. These factorizations take
up memory space and their management costs time. A simpler system is

16

usually used: instead of saving the factorizations, we only maintain an array
of bytes, with one entry per one x (so, having 2M + 1 entries altogether),
and if some prime divides a value of Qj(x), we add its logarithm to the corre-
sponding entry of the array. At the end of the sieving process the x's, whose
entries exceed some bound, are chosen for more detailed processing. This
process is remarkably (up to 10 times) faster than saving of intermediate
factorizations, and its speed gain rises with size of the factored numbers, as
the incidence of relations grows smaller.

Surprisingly, this process can be still fastened by a clever trick of Contini
(see [7]). Say that E is the bound, at which the entry is considered a good
candidate for further processing. If the array of bytes is initialized with values
0x80−E (which costs the same time as initialization by zeros), the test for
being a suitable candidate changes into testing, whether the entry has reached
0x80. Now, in case of normal PCs, one can typecast the array to an array of
integers, and test entry_block & 0x80808080. Nonzero means that at least
one of the entries in a four-entry block is a candidate for processing; zero,
which happens much more often, means that this entire block may be safely
ignored.

2.3 Generation of polynomials
Another question to solve is the optimal choice of coe�cients.

A quadratic polynomial is close to optimum, if, on the interval [−M, M], it
generates as much smooth and n−partial relations, as possible. With growth
of the factored number, the frequency of smooth and n−partial relations
grows naturally smaller; we shall try to maximize the probability.

In this section, we drop the notation Qj(x), which is used in other sections
to underline the fact that there are many polynomials involved in sieving,
and switch to notation

Q(x) = (2ax + b)2 −N,

which will represent a polynomial satisfying 1.2.

2.3.1 Desirable properties of polynomials
From the implementation point of view it is easiest to factor values of Q(x)
in some sieving interval [−M,M] around zero. We know that Q(x) is always

17

divisible by 4a, and only the remainder r(x) after division Q(x)/4a needs
to be factored. We may take this remainder as a random number in inter-
val [min(Q(x)/4a),max(Q(x)/4a]. Assuming this, the goal is to reduce the
absolute value of r(x) as much as possible.

Before we go on, we should remark on the limitations of the shape of
the parabola Q(x). Assume that a ≥ 1 is an integer. Q(x) always has two
distinct real roots

r0 =
−b−√N

2a
< r1 =

−b +
√

N

2a
.

Let Q′(x) = 2a(2ax+b) be the �rst derivative of Q(x). The value of derivative
at the roots is

Q′(r0) = −2a
√

N < −
√

N, Q′(r1) = 2a
√

N >
√

N,

which means that the parabola cannot be 'too �at'.
It is desirable to incorporate both real roots of Q(x) into the sieving

interval [−M,M], since around them the values of Q(x) are small and have
a good chance to factor over the factor base. Also, it is desirable for Q(x) to
be symmetric, or at least "almost symmetric" - to have the axis of symmetry
close to x = 0. Then the 'good properties' from one side will be re�ected on
the other. The requirement of symmetry can be expressed as

|b| < |2a|,
which ensures position of axis of symmetry between x = 0 and x = 1. This is
not achievable in all polynomial instances (as we will see later in SIQS case),
but a 'moderate' shift, say between x = 0 and x = 30, is acceptable as well.

2.3.2 Assessment of magnitude of coe�cients
Minimization of average absolute values of an 'almost symmetric' Q(x) over
an interval [−M,M] can be roughly expressed as:

• minimization of sup |Q(x)| on [−M, M],

• or minimization of integral
∫ M

0

|Q(x)|dx,

18

both with regard to coe�cients a, b and condition that b2 − 4ac = N .
The �rst minimization task is easier, as we know that Q(x) reaches its

extremal values at the ends and in the middle of the interval. At the middle
of the interval, for x = 0, we have Q(x) = b2−N , which, unless b is quite large
(over

√
N), is close to −N . At the ends of the interval, the corresponding

value is approximately 4a2M2 − N . In order for these two values to be
approximately identical, we must have

4a2M2 −N = N

2a2M2 = N

a =

√
N

2M2
.

Of course, a must be an integer, so we cannot get the ideal value exactly. In
practice, di�erence of 0, 1% can be considered small enough.

The second minimization task is somewhat more complicated. It is easily
seen that the positive root of Q(x) is equal to r1 = −b+

√
N

2a
, and so

∫ M

0

|Q(x)|dx =

∫ M

r1

Q(x)dx−
∫ r1

0

Q(x)dx =

1

6a

[
(2ax + b)3 −Nx

]M

r1
−

− 1

6a

[
(2ax + b)3 −Nx

]r1

0
.

This yields a real function of two variables

F (a, b),

whose minimum is of our interest; in combination with the conditions 1 ≤
a ≤ N , b < 30|a|, the Lagrange multipliers become too complicated to be
solved by hand. A result given by Maple 7 is

a ≈ 0.7335 ·
√

N

M2
.

The results for both optimizations are thus quite similar (
√

2
2
≈ 0, 7071).

Let us, for simplicity, further assume that

a ≈
√

N

2M2
. (2.1)

19

The preceding paragraph raises the question of generating values of a
(and consequently b) compliant to 2.1.

2.3.3 MPQS - The Silverman Method
This method was described in [24]. Its principle is very straightforward - d
is chosen to be a prime number of magnitude

d ≈
√√

N

2M2
. (2.2)

We give a as d2.
Generation of b is limited by the requirement 1.2. This is achievable by

combination of two steps:

1. taking b0, b1 as solutions of quadratic equation x2 = N mod a,

2. picking the odd one of the pair b0, b1 as desired b.

The �rst step ensures that b2 − N is divisible by a. Now, as d is a large
prime, d2 = a is of course odd, and thus at least one of b0, b1 = a− b0 is odd,
so the second step is feasible.

In the second step, assuming that N = 1 mod 4 (this is achieved by
use of a multiplier, see section 2.1), we get b = ±1 mod 4 =⇒ b2 = 1
mod 4, and so b2 −N = 0 mod 4. As gcd(4, a) = 1, this already yields 1.2.
Moreover, we see that 0 < b < a, which means that the resulting parabola
will have its axis of symmetry between 0 and 1

2
.

E�ective performing of step 1 is very important. Solving of a general
modular quadratic equation uses Shanks-Tonelli algorithm for all prime di-
visors of the modulus, lifting the result by Hensel lemma to higher prime
powers and �nally Chinese Remainder Theorem to combine the results for
distinct modulus divisors. Here a = d2, so we do not need the CRT. Still, if
d were general, there would be need to run the Shanks-Tonelli algorithm. Of
course, N must be a quadratic residue mod d.

Such operation must be performed at each polynomial change, which
happens several times per second. The Shanks-Tonelli algorithm is quite
computationally heavy: its main loop contains modular exponentiation with
the desired prime as the modulus, and number of iteration of the main loop
is proportional to the binary length of the prime as well. In our case, the

20

prime is quite large, with size approximately one quarter of size of N . So,
the aim is to avoid Shanks-Tonelli entirely, if possible.

This can be achieved by further restriction on d (this idea is due to Sil-
verman, see [24]): in addition to size requirements, we furthermore assume
that d = 3 mod 4. In this situation, we can cut down the computational
expenses for Shanks-Tonelli to just one modular exponentiation, since then

h0 = N
d+1
4 mod d

is the required solution of x2 = N mod d. Indeed (mod d),

h2
0 = N

d+1
2 = N ·N d−1

2 = N ·
(

N

d

)
= N.

Desired solution for d2 = a is then easily gained by use of Hensel lemma,
which requires one more modular inversion modulo d. So we have reduced the
need to perform modular inversions from several to two, at cost of shrinking
the eligible set of primes d to approximately a half.

When estimating the runtime, we must not forget the fact that at �rst
we have to generate the candidate prime d itself. This is usually done by
Miller-Rabin or similar tests, which themselves perform many modular ex-
ponentiations with large exponent.

2.3.4 SIQS principle
From the reason that we have seen in section 2.2, changing of a with every
polynomial change is not optimal. If we were able to generate multiple b's
satisfying 1.2 for a single a value, our situation would be much better -
instead of calculating modular inverses in every polynomial change, we would
calculate and store them just once, and for all the subsequent b's the root
calculation would turn into several integer operations.

This is infeasible when a is a square of another prime, but it can be done
if a is a product

a =
s∏

i=1

qi

of odd primes satisfying
(

N
qi

)
= 1. Then, according to the Chinese Remain-

der Theorem, the equation x2 = N mod a has 2s solutions, which yields
much more candidates for b than the approach from subsection 2.3.3.

21

This approach to a generation is known as the SIQS, and was proposed
independently in [2] and [19]. Three major questions arise:

1. How to determine suitable a divisors for optimal value of a?

2. How to generate the b's fast enough?

3. Which of the b's generated are suitable for use in a new polynomial?

The latter two questions can be solved without speci�c knowledge about
the answer to the �rst one.

2.3.5 Desirable properties of b

As far as the suitability of b values is concerned, we must take into consider-
ation the following facts:

• value of b must be odd, in order to satisfy 1.2,

• if b1, b2 are two values such that b1 = ±b2 mod a, then only one of
them should be used.

The second fact is needed because Q(x) = (2ax + b)2 − N and R(x) =
(2ax− b)2 −N are mutually symmetric with axis of symmetry x = 0. Thus
they would generate the same relations twice. This is unwanted: two identical
relations, when combined together, yield a trivial equality of type 1.1. If
there were identical relations in our big set of relations, the number of trivial
equalities of type 1.1 would thus increase and our chance to actually factor
the number would get low.

From the Chinese Remainder Theorem we see that if q1, . . . , qs are pair-
wise distinct divisors of a, and if ±B1,±B2, . . . ,±Bs are integers such that

B2
i = δijN mod qj,

then any linear combination
b = e1B1 + e2B2 + · · ·+ esBs, ei ∈ {−1, 1},

yields an integer such that b2 = N mod a. There is 2s such combinations,
which are precisely all the candidates for b values.

By �xing the value of es as 1, we reduce our set to 2s−1 combinations.
One easily sees that no two distinct combinations bi, bj in this reduced set
satisfy bi = ±bj mod a. On the other side, the combinations in this set

22

• do not generally satisfy |b| < |2a|,
• and are not all odd.

The �rst problem is not fatal. As we will see further, values Bi themselves
satisfy |Bi| < |a|, and so at worst |b| < s · |a|, which is not too bad; it means
shift of the parabola such that the axis of symmetry lies between 0 and s,
which is tolerable (a typical value of s is from 8 to 12, while a typical length
of the sieving interval exceeds 100000).

The second problem must be solved, for otherwise the requirement 1.2
would not be satis�ed. However, if b is even and a is a product of odd
primes, then b′ = a + b is odd and still satis�es other requirements for b; this
leads to another shift of axis of symmetry, at worst |b| < (s + 1) · |a|.

Taking the above calculations into account, we see that in order to get
all possible 2s−1 combinations, we have at �rst to generate all Bi's, and
then walk through all (s − 1)-tuples (e1, . . . , es−1) ∈ {−1, 1}s−1. We would
also like to cycle through these (s − 1)-tuples in such way, that di�erence
between successors would be small - preferrably, an addition or subtraction
of one number only. From this, recalculation of the polynomial's roots would
bene�t.

2.3.6 SIQS - Generation of the Bi's
In order to exploit the Gray code algorithm described in subsection 2.3.7, we
must be able to generate the corresponding values of Bi, which should satisfy
the following:

B2
i = N mod qi, qi | a,

B2
i = 0 mod qj, qj | a, j 6= i.

Then we have
(±B1 ±B2 · · · ±Bs)

2 = N mod a,

since all the intermediate product terms BkBl are divisible by all primes
dividing a, and thus by a itself.

A fast method for doing this can be derived from the Chinese Remainder
Theorem. Let us choose a qk dividing a and solve x2 = N mod qk (for
solving, we may use either Shanks-Tonelli algorithm, or, in case of qk = 3
mod 4, a simpler method described in 2.3.4). Let this solution be tk; now,

23

let us calculate ak = a
qk
; this number is relatively prime to qk and thus may

be inverted modularly with respect to qk. Now, the product

Bk = tk · ak · (ak)
−1

(the inversion with respect to qk) is equal to tk mod qk, and to zero mod all
other divisors of a. Its square mod qi is, of course, either N or 0, depending
on whether i = k.

This calculation has to be performed at every change of a and includes
several multiple-precision operations (namely computation of ak and mod-
ular reduction of ak with respect to qk, preceding the inversion) in amount
proportional to number of divisors of a; still, this takes place at every 2s−1-th
polynomial, which is, for larger values of s, rare enough not to slow down the
entire program run.

2.3.7 Generation of b with Gray code formulas
Having calculated all of the Bi's, we generate all b's with use of the following
theorem, which was �rst stated in [2], and which is derived from the theory
of Gray codes.

Theorem 2.3.1. All the b's are generated by the following inductive formula:

b1 =
s∑

i=1

Bi

bi+1 = bi + 2(−1)di/2νeBν , i = 1 . . . 2s−1 − 1

where 2ν is the maximal power of 2 dividing 2i.

Proof. To prove correctness of the formulas, we must show that in 2s−1 iter-
ations we really get 2s−1 distinct combinations. This is done by the following
induction.

For s = 2, the situation is trivial: b1 = B1 + B2 and b2 = −B1 + B2.
For the second step, let us assume that the proposition is valid for s and

we want to extend it to s + 1.
At �rst, realize that in the s-case, we got combinations ±B1+±B2+ · · ·+

±Bs−1 + Bs. But that is very similar to the s + 1 case - in the s + 1 case, in
the �rst 2s−1 +1 iterations we get combinations ±B1 +±B2 + · · ·+±Bs−1 +

24

Bs + Bs+1. That is because sign of Bs changes if and only if 2s divides 2i,
and this does not happen before i = 2s−1. So we may say that induction
assumption gives us 'good behaviour' of the �rst 2s−1 − 1 iterations.

It is easy to see that on the 2s−1−th iteration, the sign of Bs changes, and
it stays for the rest of the iterations. Now, we proclaim that the remaining
2s−1−1 iterations cycle through the same combination set as the �rst 2s−1−1
iterations, only in reverse order, and of course with Bs sign negative. So, our
aim is to show, that signs of Bj in b2s−i are the same as signs of Bj in bi for
i = 1, . . . , 2s−1 − 1, j = 1, . . . , s− 2.

For this, let us use induction again. We know that signs of Bj, j =
1, . . . , s− 2, are the same in b2s−1−1 and b2s−1 . Now, it su�ces to show that
the change of sign in calculation of b2s−i+1 takes place at the same Bν that
change of sign in calculation of bi+1, and that these changes are opposite.

To show this, we must at �rst realize that these two changes really do
have common value of ν: but this is easy. 2ν is the maximal power of 2
dividing 2i if and only if it is the maximal power of 2 dividing 2(2s − i).

As for the opposition of the changes: sign of the change is determined by
oddity or evenness di/2νe. But i/2ν is nothing than a right shift of i by ν
bits: and so the sign of the change depends on the value of ν + 1-th bit of i
from the right. So, our task is to show that 2s− i and i have di�erent bits at
the ν +1-th position. To show this, realize at �rst that 2ν divides maximally
both 2i and 2(2s − i), which means that ν−th bits of both i and 2s − i are
equal to 1. The sum i+(2s− i) = 2s has all bits zero except the leading one;
but we have just shown that in summation of these two numbers, a carry
occurs on the ν-th bit. This means that sum of the ν + 1-th bits must be 1
to yield 0 with the carry; and this precisely means that the ν + 1-th bits in
i and 2s − i are di�erent. So the changes of sign are opposite and the proof
is �nished.

It is easy to see that this method of b's generation is very advantageous
from the solution point of view. Say that we have solutions of a preceding
polynomial

xpbi
=
−bi + rp

2a
mod p, x′pbi

=
−bi − rp

2a
mod p.

Now, let bi+1 = bi + 2(−1)kBν . Then recalculation of the solutions is as easy
as multiplying

sν = 2Bν × (2a)−1 mod p

25

and summing
xpbi+1

= xpbi
− (−1)ksν , x′pbi+1

= x′pbi
− (−1)ksν ,

again modulo p. These operations do not include multiple precision computa-
tion, because, though 2Bν are rather large (of the same order of magnitude
as a), we can precompute and store their values mod all primes from the
factor base, and these are ordinary integers. The same applies to modular
inverses (2a)−1.

However, in practical PC programming, there is a small problem with
some OSes: if two 32-bit numbers like 2Bν mod p and (2a)−1 mod p are
multiplied together mod p, the intermediate result may over�ow 32 bits (un-
less we limit ourselves to p < 216, which is too restricting for most 'real'
factorizations). So, an intermediate ordinal data type with 64 bits of size is
needed; such data type is provided in both Linux and Win32 platforms for C
language, but under di�erent names, and such code raises portability issues.

2.3.8 SIQS - General remarks on a determination
The sieving phase of MPQS/SIQS is ideal for massive paralellization; each
machine may sieve on some given interval with dedicated polynomials, and
then send the gathered relations to the central node for processing. In this,
it is strongly desirable that no two distinct machines sieve with the same
polynomial; otherwise the generated relations would be duplicate, and one
machine's work thus useless.

As the polynomials change many times a second, it is better to generate
suitable polynomials on each machine itself, instead of having them precal-
culated by some dedicated node and sent them to the appropriate computer
altogether with other synchronization data.

In standard SIQS, this problem is soluble by leaving a special interval in
the factor base (say from M1 = 35-th to M2 = 100th prime) for so-called
"machine-speci�c divisors". Each of the nodes in the sieving network obtains
a unique number and from this number deduces a unique subset of indices
between M1 and M2. Primes on these indices will be chosen among divisors
of a for all polynomials generated by this machine. Uniqueness of the triple
guarantees that no two machines will sieve on the same polynomial. The
values of M2 and M1 can be adjusted with regard to the expected number of
sieving computers. It is reasonable to have 2 − 4 machine speci�c divisors;
we will denote their number as md.

26

Having determined the machine-speci�c divisors, the task is to determine
a good value of s.

The limitation from the downside is given by the fact that having too
small numbers dividing a leads to decrease of number of relations: one must
realize that by putting p into the set of divisors of a, the original quadratic
equation Q(x) reduces to a linear equation. So, instead of two series of
numbers divisible by p:

. . . , xp − 2p, xp − p, xp, xp + p, xp + 2p, . . .

. . . , x′p − 2p, x′p − p, x′p, x
′
p + p, x′p + 2p, . . .

we have just one. This, of course, means smaller logarithm sums gathered
during sieving.

The limitation on the upper side is given by two facts. First of all, it
is desirable to have bigger s, because this reduces the frequency of "heavy"
polynomial changes (those with recomputation of a). Second, it is desirable
to approach the ideal value of a as close as possible, and this is hard to do
with too big divisors.

Having determined the md machine-speci�c divisors and a suitable value
of s, we must determine the range, from which to choose the remaining a
divisors. This is usually done by the following method: at �rst, divide the
ideal value of a by all the machine-speci�c divisors, and then take s−md-th
root of the quotient. Its value pid will be close to an "ideal" divisor of a; by
choosing an appropriately long interval within the factor base, with centre
in bpidc, we have a set of primes suitable for being divisors of a. From this
set, actual a divisors are chosen.

Currently, s is usually chosen between 8 and 12 for factorization of 70−
to 90−dec numbers, with satisfying results. Question of optimal s value does
not seem to be crucial in the whole sieving process.

2.3.9 SIQS - The bit method for a coe�cient
This is a relatively easy method for choosing divisors of a, suitable for factor-
ization of smaller numbers (say, 60 decimal digits) on a PC. At the beginning,
32 primes from the determined "divisor interval" are chosen and they are
given indices from 0 to 31. Then, binary numbers in range 0 . . . 232 − 1 (this
is the range of an unsigned int type in most current PCs) are generated,

27

and if a number of binary weight equal to s−md is found, the corresponding
s−md-tuple of the primes is chosen.

This approach has very modest system requirements - basically, only
RAM for 32 primes is needed, and the computations of binary weights are
very cheap. On the other hand, the generated products of primes are biased
- at the beginning towards zero and at the end towards in�nity. This can
be remedied a little by starting the iterations not from zero, but from 231.
Then, every generated s−md-tuple is guaranteed to have at least one bigger
divisor, which reduces the bias towards zero at the beginning.

A good use of this method is in distributed sieving, if current instance
of sieve runs on a machine with limited hardware capabilities. Low memory
and processor usage are a great bene�t in such situation.

This method, with several minor changes, is used in computer algebra
package LiDIA (see [15]).

2.3.10 SIQS - The Carrier-Wagsta� method for a coef-
�cient

Method developed by Carrier and Wagsta� is much more sophisticated than
previous one, at a cost of greater hardware requirements.

A determined set of divisor candidates is split into two disjoint subsets
- one consists of primes with odd indices in factor base, the other of primes
with even indices.

Of all the primes with even indices, all possible triples are formed, and
a table is constructed. This table contains two entries per triple: the �rst
entry is list of primes which build this triple, and the second is logarithm
of the product of these primes. It is advantageous to sort this table with
respect to the value of the logarithm, because this reduces the search time
greatly, and the table will be searched through at every change of a. The
generation process takes both time and memory. If there are 100 primes with
even indices, all triples are

(
100
3

)
- altogether 161700, which means (with 16

bytes of memory per table row) more than 2 megabytes of RAM - an amount
easily tolerable by PCs, but usually unavailable in smaller (handheld etc.)
devices.

Of all the primes with odd indices, all possible s − md − 3-tuples are
constructed. Authors of the method propose using NEXKSB algorithm for
this purpose (for description of the NEXKSB algorithm, see [18]); it is fast

28

and does not require much memory (surely not over 100 bytes). After each
s −md − 3-tuple is generated, its product and the corresponding logarithm
are calculated. Then, both the logarithms of the machine-speci�c divisor
product and of the current s−md− 3-tuple product are subtracted from the
logarithm of ideal value of a, and the table of "even triples" is searched for
the closest possible value. This triple is then chosen to complete the set of
divisors of a, yielding a value very close to the optimum.

As the NEXKSB algorithm generates unique subset at each iteration, unicity
of a is guaranteed. Subsets in NEXKSB are generated in lexicographical order,
and so there is an inevitable bias: we see that �rst subsets will have smaller
corresponding product then subsets generated later. It is possible that several
millions of the �rst combinations will not have a matching triple in the set
of even-indexed triples, because products of those �rst combinations are too
small to be outweighted by any triple from the given interval. Of course,
iterating through these unusable combinations is a loss of time.

This problem can be removed. There is no need to pick the odd-indexed
and even-indexed primes from the same interval; the only thing we have to
satisfy is the oddity and evenness of indices, which ensures disjointness of
the two sets. So, we may at �rst generate the set of all even-indexed triples
in some interval, and then shift the interval of odd-indexed primes upwards,
until the �rst generated s−md − 3-tuple has a product large enough; there,
we stop the shift, because we know that if already the �rst s − k − 3-tuple
has a complement in set of even-indexed triples, the same must be true for
the following s−md − 3-tuples, whose products are greater.

There is a dual problem, where even the last s− k − 3-tuple is too small
to have a complement in set of even-indexed primes, and it is analogously
soluble by shifting the interval of odd-indexed primes downwards.

With reasonable choice of s, these two problems should never occur at
the same time.

Carrier-Wagsta� method is well usable if s −md − 3 ≥ 3, but for lower
values it cannot be used e�ectively. Having 3 divisors from even-indexed
triples does not leave much space for the odd-indexed combinations. As
values of s ≤ 8 are usually used in factorization of smaller numbers, a viable
idea is to get rid of "machine-speci�c divisors" entirely - for factorization of
60-70 dec numbers, one contemporary PC more than su�ces, and so there is
no need for parallelization. Another idea is to reduce triples to couples.

29

2.4 Combination of the relations, partial rela-
tions and linear algebra

The problem of �nding combinations of relations yielding 1.3-like combina-
tions can be transformed into a linear algebraic problem in the following
way.

Let us form a set of vectors, each of the vectors having one coordinate for
each member of the factor base. For each relation, we will have one vector.
This vector will consist of zeros, except for the locations, where a prime
number is, that divides the relation with odd exponent. In these coordinates
we put a 1.

The aim now is to �nd a combination (or, preferrably, more combina-
tions at a time) of the vectors that yields zero mod 2. This precisely means
that the combination has all divisors with even exponent. Finding of the
combination is now equivalent to a search for a solution of a system of lin-
ear equations, with operations performed modulo 2; this is a linear algebraic
problem. Solution exists whenever number of vectors exceeds number of their
coordinates; to be sure, we rather generate a little more (say, 1%) relations
than this limit.

The rows in matrix representing the linear system mod 2 are very sparse,
having only several 1's in thousands of 0's. Moreover, this matrix is not
"balanced" - at the edge corresponding to smaller primes, nonzero elements
arise quite often, while at the edge corresponding to large primes, nonzero
elements are extremely rare. So the matrix consists of heavy columns on the
left, gradually getting more sparse, and very sparse columns on the right.

From the runtime point of view, there is a great disproportion between
gathering only smooth relations and gathering also partials. If only smooth
values are gathered, the probability of their occurence remains roughly con-
stant. The generated polynomials are (or at least should be) of roughly the
same mathematical characteristics, which, most of all, in�uence the incidence
of relations. On the other hand, though the partial relations also emerge with
constant frequency, their contribution to the total relation pool is noncon-
stant. In the �rst moments of sieving, when only a few partial relations have
been collected, the percentage of them having a common variation is negli-
gible - typically under 1% of the total number of partials collected so far.
In the last moment, the set of gathered partial relations is large, with much
higher probability for birthday paradox phenomenon, which is re�ected in the

30

fact that from the collected partial relations, as much as 30%-40% actually
combine into usable relations.

2.5 Linear algebra step
Bit matrix resulting from the sieving process is usually large, having more
than 5000 rows and columns. In case of large numbers (exceeding 100 dec),
it may have well over 100 000 rows and columns; this is too big to be solved
by ordinary Gaussian elimination. Moreover, Gaussian elimination does not
take any advantage of sparsity of the matrix.

The answer is the block Lanczos method, an algorithm designed with
a single purpose - to solve sparse binary linear systems e�ciently. Block
Lanczos method is an iterative algorithm, whose output is a block of linear
dependencies. Block nature of the algorithm (large matrices are multiplied
in blocks) enables parallelization of the process, though not as easily as the
sieving process itself.

A detailed description of the algorithm can be found in [16]. From our
point of view, it has two important features:

1. The runtime is indirectly proportional to density of the matrix. That
is, a very sparse matrix will be solved in shorter time than a matrix
not-so-sparse.

2. Block Lanczos is only able to solve symmetric linear systems. Matrix
B resulting from the sieving step is far from symmetric.

The �rst feature should manifest itself in factorizations using, vs. not us-
ing, partial relations. The di�erence cannot however be measured directly,
because removal of singletons (see later) behaves very di�erently in those
two situations. Especially, number of singletons and zero-occurrence primes
is much lower when using partial relations, which means that the resulting
matrix is not only denser, but also larger.

The second feature is very limiting and must be circumvent. Approach
proposed by Montgomery (see [16]) is following: take B as the bit matrix
generated by sieving process, transpose it and form a symmetric matrix A =
BT B. Now, any solution of Bx = 0 automatically satis�es Ax = 0; this is
not true in the opposite direction. For more problems in this, see section 2.6.

A practical implementation issue is how to represent matrix A. In nor-
mal conditions, product of two sparse matrices should be relatively sparse as

31

well, because average incidence of nonzeros is small and chance, that in two
randomly chosen vectors of low weight, at least one position of nonzero will
be common, is small. So, theoretically, for a product of two sparse matrices,
averagely no more space than for the factors itself should be needed. Unluck-
ily, this is not the case of the sieving matrix and its transpose. Distribution
of nonzeros in the sieving matrix is very uneven, with heavy columns on
the left, and so the probability that within two randomly chosen vectors at
least one of their nonzeros will be common, is much higher than in average
case. This was shown in practice, where, though the initial sieving matrix B
had density between 0, 01−0, 0001%, the density of the symmetric matrix A
usually exceeded 40%, with a tendency to settle around 45%. This, at least,
was the case for relatively small sieving matrices (less than 10000x10000 in
size). For larger matrices, the measuring was complicated by the fact that
big nonsparse matrices take up too much memory.

2.6 The Singleton Gap
One of the strangest properties of the sieving matrix was discovered by the
author in practical testing. This property hindered further development of
the implementation for several weeks, until it was avoided by improving the
post-sieving and pre-algebra step, which sorts and preprocesses the gathered
relations.

As it was already mentioned in the previous paragraph, the block Lanczos
method accepts only symmetric matrix as an input. Montgomery's method of
generating A = BT B had success in worldwide implementations. Obviously,
no one of the developers had a serious problem with the fact that rank(A) ≤
rank(B); mostly because the ranks usually turned out the same.

This was not the case of the author's implementation. In this implemen-
tation, the gap between rank(A) and rank(B) started as relatively narrow,
and slowly widened (with respect to total size of B), reaching over 32, when
B had around 5000 rows. Seriousness of the problem was imminent; block
Lanczos generates in normal PC 32 random dependences from the zero space
of matrix A; now, chance that a randomly chosen dependence of matrix A
also belongs to the zero space of B, is in case of matrices over Z2 proportional
to 1/2rank(A)−rank(B). Thus, with the gap exceeding 32, almost none or none
of the generated dependences were usable for actual factorization.

Peter Montgomery observed a similar problem, though not to such extent.

32

In his implementation, a smooth relation, or a combination of partial rela-
tions with all exponents even sometimes occurred. This, of course, yielded
a zero row in the sieving matrix. On the �rst look, one should be happy
about occurrence of such row, because it immediately gives us an instance of
1.1. However, these instances almost never give anything more than trivial
divisors. This is de�nitely true in case, when such zero row originates from
a suitable smooth relation, because a single smooth relation cannot give us
any further information on N . Surprisingly, this is usually also case of such
a row originating from two partial relations, where this is not an automatic
law.

Situation as the one described above may also occur, when two rows of
the matrix are equal. This does not necessarily mean their total equality,
because all the exponents are taken modulo 2; however, this means that by
summing the rows together, we get an instance of 1.1. This is essentially (at
least from the rank-related point of view) equivalent to a situation with one
row being the same as before and the other being zero.

Rows identical mod 2 occur more often than entirely zero rows, and must
be removed before start of linear algebra processing. However, detection
of a duplicite pair is not so trivial. A viable method is the following: while
reading the relations (smooth, partial or combined), a hashcode of the binary
vector is calculated and inserted into a binary tree of hashcodes together with
number of the relation. If some hashcode is detected again, the two rows are
identical mod 2; their product is calculated, which gives an instance of 1.1,
and this instance is tested for triviality. So far, none of such combinations
in any of the test runs has been nontrivial (which would mean an instant
factorization of N). In the trivial case, one of the relations is accepted and
the other discarded.

Frequence of occurrence of duplicite rows is very low, getting lower with
expansion of the factor base (which is natural, as longer vectors have lower
probability of being equal). The frequency should be greater if no *-partials
are used; then, an overall average binary weight of relations is lower. If
reality, 0 or 1 duplicities occur in the whole sieving; the only situation, when
number of duplicities is signi�cant, is in SIQS, when two polynomials with
almost the same (varying only imn 1 prime divisor) coe�cient a are used.
This can be avoided easily.

Nevertheless, neither zero vectors nor identical vectors were at root of
the rank gap problem. When revealed, the reason of the rank gap problem
turned out to be in singletons.

33

By a singleton we mean such a prime from the factor base, which occurs to
an odd exponent in only one of the collected relations. This prime manifests
itself in the sieving matrix as a column with precisely one nonzero bit. There
are two obvious e�ects of singletons on the sieving matrix:

• Occurrence of a singleton raises the rank of the sieving matrix by 1,
because the corresponding line is linearly independent of the others
mod 2.

• A relation with a singleton cannot be used to build any dependen-
cies, because any nontrivial combination of this relation has a 1 on the
singleton's position.

Removal of singletons looks useful, because it reduces dimensions of the siev-
ing matrix B. With every removed relation containing a singleton, we may at
the same time expunge the corresponding prime from the factor base. This
leads to shrinking the sieving matrix in both dimensions, and such action
is desirable - like any other linear algebra method, block Lanczos also runs
more swiftly on smaller matrices.

Process of removal of singletons must be iterative. If we remove a sin-
gleton-bearing relation from set of the collected relations, we might have
created another singleton - from a prime, who had only two occurences of
odd exponent, and one of them was in the removed relation. So another
iteration of singleton removal is needed, and thus further, until no other
singletons are found. The numbers of singletons removed in each iteration
form an interesting sequence, with roughly exponential decline (see chapter
3)

Oddly enough, the lack of singleton removal was at the root of the rank
gap problem. Singleton removal was originally omitted from the relation
processing stage, with intention to rise the overall rank of B as much as
possible; that was, because with higher rank of B, the rank of BT B might
be closer to the rank of B itself. After inclusion of the singleton removal
process, the Lanczos method started working, and since this time, the gap
of ranks has never exhibited itself again.

The reasons for this behaviour do not lie in the singletons themselves, but
rather in removal of the unusable primes from the factor base. Remember
that not only singleton primes, but also primes with no occurrence at all may
be safely removed from the FB; and these form a substantial number of the

34

primes removed at the �rst iteration of the singleton removal process. See
the results in chapter 3.

Their removal means omission of many zero columns from the matrix B,
which leads to a dramatic increase of the overall rank. If, for instance, a factor
base has m elements, and we have generated 5% extra relations, we have a
matrix of dimensions m×1, 05m. If 10% of the primes of the factor base never
occur with an odd exponent, the matrix is instantly reduced to 0, 9m×1, 05m,
with the rank being the same; so, the new matrix is signi�cantly closer to a
full-rank matrix than the old one at no real cost.

The e�ect of singleton removal is clearly illustrated by the measurings in
subsection 3.4.

35

Chapter 3

Experimental Results

3.1 Sieving speed - dependence on FB size
In the next two tables, B means the upper limit of the factor base, |FB| is
the size of factor base itself, and columns SIQS and MPQS contain times of
collecting the relations, according to the sieving method. All times are given
in mm : ss notation. The sieving has been done with use of 1-partials.

Measuring was done with author's implementation of MPQS and SIQS,
Mobile Athlon XP 2000+, Mandrake Linux 10.0. The process consumed
98-99% of the processor time.

It is clear that the optimal size of the factor base is not very sharply
determined.

It can be seen that the di�erence between MPQS ans SIQS is rather low
in case of 50-digit number and higher in case of 62-digit number. This can
be explained easily.

In case of a 50-digit number, candidates for smooth and 1-partial values
occur with high frequency, and for each polynomial Qj(x), 20-50 values must
be trial-factored (of which, at least half is actually suitable). This factoring
involves many multiple-precision operations and, in terms of runtime, dom-
inates the whole process. With such frequency of relation occurence, the
sieving ends after several hundred polynomial switches. The cost of poly-
nomial switching represents only a moderate per cent of the total sieving
runtime.

In case of a 62-digit number, candidates are much more sparser and the
process of factoring shrinks down to 10-12% of the overall runtime. This

36

lets the di�erence in costs of polynomial switching become more visible. The
di�erence observed is of factor 3, which exceeds the di�erence described by
Contini ([7]), whose value was 2. The probable reason is in Carrier-Wagsta�
method of generating the a coe�cient - it is very e�ective in generating
Qj(x)′s close to the theoretic optimum. A signi�cant speed gain due to this
method has been already observed by the authors of this method in their
paper [6].

B |FB| SIQS MPQS
10000 628 0:12 0:20
15000 898 0:08 0:14
20000 1171 0:07 0:12
25000 1422 0:07 0:11
30000 1650 0:07 0:11
35000 1893 0:07 0:11
40000 2127 0:08 0:11
45000 2362 0:08 0:12
50000 2596 0:09 0:11
55000 2818 0:09 0:13
60000 3040 0:10 0:14
65000 3262 0:11 0:14
70000 3472 0:13 0:16
75000 3717 0:13 0:17
80000 3942 0:14 0:18
85000 4153 0:16 0:19
90000 4372 0:17 0:20
95000 4588 0:17 0:21
100000 4809 0:19 0:22
50dec digit - table of dependence

of sieving time upon factor base size.
Sieving interval: [−80000, 80000].

37

B |FB| SIQS MPQS
40000 2115 1:51 5:22
50000 2577 1:34 4:43
60000 3038 1:29 4:22
70000 3486 1:19 3:57
80000 3945 1:16 3:53
90000 4414 1:13 3:50
100000 4870 1:14 3:49
110000 5297 1:15 3:52
120000 5728 1:15 3:55
130000 6172 1:17 3:57
140000 6603 1:16 3:51
150000 7014 1:19 3:55
160000 7434 1:23 4:00
170000 7823 1:27 4:05
180000 8269 1:28 4:10
190000 8691 1:30 4:13
200000 9093 1:34 4:20
210000 9482 1:37 4:24
220000 9872 1:40 4:28
230000 10292 1:45 4:37
240000 10679 1:48 4:41
250000 11082 1:52 4:49
62dec digit - table of dependence

of sieving time upon factor base size.
Sieving interval: [−80000, 80000].

3.2 Sieving speed - dependence on usage of 1-
partials

This table shows the e�ect of using vs. not using 1-partials on the runtime
of the sieving process.

The sieving has been done in the same conditions as in previous section.
There was di�erence in the "sieving threshold" - the value, at which we
consider a value in interval [−M,M] promising enough to be trial-factorized.
If 1-partials are to be collected, we must reduce the threshold by logarithm

38

of the maximal acceptable large prime divisor.
Testing has been done on 6 numbers having 50 to 65 decimal digits,

with two factor bases - one of them limited by B = 50000, the other by
B = 120000. Abbreviations lpv. and sm. mean "large prime variation" and
"smooth only", respectively. Time is given in mm : ss format. There was
no testing of the 62 and 65 dec number with the smaller factor base, because
the sieving time would be probably too long.

The advantage of "smooth only" method over "large prime variation" in
50 and 53 decimal numbers and B = 120000 is caused by the fact that in case
of such small numbers, occurence of 1-partials is enormous (several thousand
per each polynomial), and the process of their trial-factoring takes majority
of the sieving time. This is not re�ected in case of B = 50000, because the
limit for maximal large prime divisor is much smaller and 1-partials do not
occur so often.

Dec size 50K - lpv. 50K - sm. 120K - lpv. 120K - sm.
50 0:09 0:17 0:24 0:13
53 0:19 0:49 0:33 0:30
56 0:41 3:16 0:44 1:40
59 2:32 12:49 1:48 5:16
62 � � 1:27 7:08
65 � � 6:12 23:49

The e�ect of large prime
variation on the sieving time.

Sieving interval: [−80000, 80000].

3.3 Singletons - dependence on log(N) and FB
size

This table of measurings shows the dependence of number of removed sin-
gletons upon three parameters. These are:

1. Size of N in digits, where growth of N should result in decrease of
number of singletons. That is because for a longer N , the factorized
values Qj(x) are longer, include more divisors - and more divisors mean
decrease of chance of a prime to become a singleton.

39

2. Usage of 1-partials, where usage should result in slight decrease of
number of singletons. That is because combination of two 1-partials
has more divisors than an ordinary smooth relation, and more divisors
mean decrease of chance of a prime to become a singleton.

3. Size of the FB, where growth of B should result in increase of number
of singletons. That is because the large primes around 2 ·105 seldom �t
into the sieving interval, and are found very infrequently in relations.

The fourth obvious parameter, length of the sieving interval, was constant
(80000 for all numbers, except for 71dec, where it is 120000). Prolonging
of the interval means that more large primes will have chance to get into
factorization of some Qj(x) value, and thus reduce the number of singletons
removed.

Measuring was done with author's implementation of SIQS, Desktop
Athlon XP 1600+, Mandrake Linux 10.0.

B Upper bound of the factor base (K =thousand).
|FB| Number of elements of the factor base.
Rel. Total number of relations used in Lanczos method.
x+y (In relations) smooth rels vs. rels gained from 1-partials.
Zero Number of primes with zero occur.
Sing. Number of true singletons removed.
a+b+c+ Number of singletons removed in each iteration.
Rest Size of the FB after removal of singletons and 0-occ. primes.
Iter. Number of block Lanczos iterations.

The larger two numbers were factorized with use of large prime variation
only, since run on smooth numbers would take too much time.

40

B |FB| Rel. Zero Sing. Rest Iter.
60K 3004 3322 = 1924 + 1398 55 103 + 25 + 3 2759 92
75K 3654 3971 = 2322 + 1649 68 142 + 43 + 8 + 4 + 1 + 1 + 1 + 1 3312 110
90K 4334 4733 = 2822 + 1911 90 195 + 75 + 11 + 4 + 2 3857 128
105K 4982 5379 = 3285 + 2094 121 244 + 78 + 18 + 6 4385 145

53 dec number with large prime variation

B |FB| Rel. Zero Sing. Rest Iter.
60K 3004 3164 70 162 + 44 + 12 + 30 2638 88
75K 3654 3813 123 207 + 70 + 19 + 3 + 1 3095 103
90K 4334 4533 171 214 + 86 + 20 + 4 3646 121
105K 4982 5182 189 309 + 136 + 33 + 10 + 3 + 1 4087 135

53 dec number with smooth relations only

B |FB| Rel. Zero Sing. Rest Iter.
60K 3005 3322 = 1740 + 1582 23 34 + 4 2921 97
75K 3665 3982 = 2088 + 1894 28 79 + 7 + 2 3518 117
90K 4302 4699 = 2555 + 2144 41 124 + 24 + 2 + 1 + 1 4064 135
105K 4950 5348 = 2959 + 2389 55 174 + 32 + 9 + 1 + 1 + 1 4627 153

59 dec number with large prime variation

B |FB| Rel. Zero Sing. Rest Iter.
60K 3005 3164 31 115 + 13 + 6 + 1 2804 93
75K 3665 3824 64 124 + 35 + 4 + 1 + 1 + 1 + 1 3365 112
90K 4302 4501 92 157 + 33 + 9 + 1 3910 130
105K 4950 5149 129 213 + 80 + 19 + 6 + 1 4362 145

59 dec number with smooth relations only

B |FB| Rel. Zero Sing. Rest Iter.
60K 3027 3345 = 1787 + 1558 9 49 + 3 2955 98
75K 3713 4031 = 2105 + 1926 25 75 + 11 + 1 3574 119
90K 4379 4777 = 2551 + 2226 37 78 + 11 + 1 + 1 4212 140
105K 5052 5530 = 2998 + 2532 47 119 + 21 + 4 + 1 4811 160

65 dec number with large prime variation

B |FB| Rel. Zero Sing. Rest Iter.
60K 3049 3367 = 1975 + 1392 15 32 + 1 2985 99
75K 3724 4042 = 2308 + 1734 9 66 + 3 3635 120
90K 4390 4788 = 2759 + 2029 14 87 + 23 + 1 4260 142
105K 5055 5533 = 3258 + 2275 40 88 + 11 + 2 4874 162

71 dec number with large prime variation

41

3.4 Properties of the sieving matrices
In this section we demonstrate the behavior of the sieving matrix B (mod 2)
and of the symmetric matrix A = BT B used as input for the block Lanczos
algorithm, with regard to two properties.

The �rst table concerns measurings of the total density of matrices B
and A, and demonstrates the fact that product of two very sparse matrices
need not be sparse at all. The measuring has been done for matrices up to
105 × 105, greater sizes being infeasible because of memory size limitations.
It is clear that while the sieving matrix is very sparse, having less than 1%
nonzero entries, the symmetric matrix is close to 50% of nonzero entries.

The second and third table demonstrate the singleton gap. Instances
of the same factorization task are being run, once with and once without
removal of the singletons and zero�occurence primes. We see that if singletons
are removed, ranks of A and B stay similar, while without the removal they
tend to diverge.

Legend:

B Upper bound of the factor base (K =thousand).
|FB| Number of elements of the factor base.
Size Size of the sieving matrix
Zero Number of primes with zero occur. removed
Sing. Number of true singletons removed.
r(A) Rank of matrix BT B.
r(B) Rank of matrix B.

Measuring was done with author's implementation of SIQS, Desktop
Athlon XP 1600+, Mandrake Linux 10.0. The common settings were: fac-
torization of a 60-dec (198-bit) number, M = 80000, using 1−partials.

|FB| Density(A) Density(B)
4950 49.94% 0.43%
6695 49.93% 0.38%
8420 49.95% 0.26%
10522 49.99% 0.20%
Density of sieving matrix and its symmetrization

42

B |FB| Size(A) Size(B) Zero Sing. r(A) r(B) r(B)-r(A)
105K 4950 5064× 5064 5064× 5064 90 194 4562 4562 0
135K 6695 6712× 6712 6712× 5995 136 405 5991 5993 2
185K 8420 8333× 8333 8333× 7358 230 575 7355 7356 1
245K 10883 10522× 10522 10522× 9249 345 894 9247 9247 0

Removal of singletons - normal situation

B |FB| Size(A) Size(B) r(A) r(B) r(B)-r(A)
105K 4950 5348× 5348 5348× 4950 4842 4846 4
135K 6695 7253× 7253 7253× 6695 6519 6534 15
185K 8420 8985× 8985 8985× 8420 8143 8161 18
245K 10883 11761× 11761 11761× 10883 10450 10486 36

No singleton removal - manifestation of the singleton gap

43

Bibliography

[1] M. Agrawal, N. Kayal and N. Saxena, `PRIMES is in P', preprint
http://www.cse.iitk.ac.in/news/primality_v3.pdf

[2] W. Alford, C. Pomerance, `Implementing the self initializing quadratic
sieve on a distributed network', Number Theoretic and Algebraic Meth-
ods in Computer Science, Proc. of Int'l Moscow Conference, June-July
1993 (1995), A. J. van der Poorten, I. Shparlinski, H. G. Zimmer, eds.,
World Scienti�c, 163�174.
Unavailable for public download.

[3] R. Baer: 'Polyminimaxgruppen', Math. Annal. 175 (1968), 1�43.
Unavailable for public download.

[4] H. Boender, H. J. J. te Riele, 'Factoring Integers with Large�Prime
Variation of the Quadratic Sieve', Department of Numerical Mathe-
matics, Centrum voor Wiskunde en Informatica, Amsterdam (1995)
Available by search at http://citeseer.ist.psu.edu/.

[5] N. Bourbaki, 'Algèbre commutative', Hermann, 1965
Unavailable for public download.

[6] B. Carrier, S. Wagsta�: 'Implementing the Hypercube Quadratic Sieve
with Two Large Primes', Proceedings of the International Conference
on Number Theory for Secure Communications, 2003.
https://www.cerias.purdue.edu/tools_and_resources/bibtex_
archive/archive/2001-45.pdf

44

[7] S. Contini, `Factoring Integers with the Self-Initializing Quadratic
Sieve', Diploma Thesis (1996)
http://www.crypto-world.com/documents/siqs.ps.gz

[8] B. Dodson, 'Filtering NFS relations: weeding, cycles and clique-deletes'
(lecture), CWI Workshop on Factoring Large Numbers (2003)
Unavailable for public download.

[9] D. Eisenbud, 'Commutative Algebra with a View Toward Algebraic
Geometry', Springer-Verlag, New York, 1995
Unavailable for public download.

[10] P. Hall, 'On the �niteness of certain soluble groups', Proc. London
Math. Soc. 9, (1959), 595�622
Unavailable for public download.

[11] I. Kaplansky, 'Commutative Rings', Allyn and Bacon, Boston, 1970
Unavailable for public download.

[12] M. Kechlibar, T. Kepka, J. Kortelainen, 'Notes on commutative semilo-
cal rings', (preprint)
Unavailable for public download.

[13] T. Kepka, P. Nìmec, 'Basic properties of radical rings', (preprint)
Unavailable for public download.

[14] A. K. Lenstra, M. S. Manasser, 'Factoring with two large primes',
Math. Comp.93 (1194), 785�798
Available for subscribers of http://www.jstor.org

[15] LiDIA - the computer algebra package
http://www.informatik.tu-darmstadt.de/TI/LiDIA/

[16] P. Montgomery, 'A Block Lanczos Algorithm for Finding Dependencies
Over GF(2)'. EUROCRYPT 1995, (1994) 106�120.
http://202.115.65.116/Cipher/HTML/PDF/E95/106.PDF

45

[17] M. Nagata, 'Local Rings'. John Wiley & Sons, Inc (1962)
Unavailable for public download.

[18] A. Nijenhuis, H. Wilf, 'Combinatorial Algorithms for Computers and
Calculators'. Academic Press, Orlando FL, second edition (1978)
http://www.cs.sunysb.edu/~algorith/implement/wilf/
implement.shtml

[19] R. Peralta, `Implementation of the Hypercube Multiple Polynomial
Quadratic Sieve', preprint.
http://cs-www.cs.yale.edu/homes/peralta/papers/HMPQS.ps

[20] C. Pomerance, `The Quadratic Sieve Factoring Algorithm', Advances in
Cryptology: Proceedings of EUROCRYPT 84 Springer�Verlag (1985),
169�182.
Unavailable for public download.

[21] R. L. Rivest, A. Shamir and L. M. Adleman, `A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems', Comm. ACM 21
(1978), 120�126.
http://theory.lcs.mit.edu/~cis/pubs/rivest/rsapaper.ps

[22] P. Samuel, 'Méthodes d'algèbre abstraite en géométrie algébrique',
Springer-Verlag, Berlin, 194 Unavailable for public download.

[23] I. Shafarevich, 'Basic Algebraic Geometry', Springer-Verlag, New York,
1994
Unavailable for public download.

[24] R.D. Silverman, `The Multiple Polynomial Quadratic Sieve', Math.
Comput. 48, (1987), 329�339.
Available for subscribers of http://www.jstor.org

[25] O. Zariski, P. Samuel, 'Commutative Algebra', D. van Nostrand,
Princeton, 1958

46

