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In January, 1984, Alexander Grothendieck submitted to
CNRS his proposal "Esquisse d'un Programme”™. Soon
coples of this text started circulating among
mathematicians.

A few months later; as a first year undergraduate In
Moscow University, | was given a copy of it by George
Shabat, my first scientific advisor.

After learning some French with the sole purpose of
being able to read this text, | started to work on some of
the ideas outlined there.

In 1988 or 1989, | met Michael Kapranov who was, just
as |, fascinated by the perspectives of developing
mathematics of new “higher dimensional’ objects

inspired by the theory of categories and 2-categories.
P



The first paper that we published together

was called “oo-groupoids as a model for a
homotopy category”. In it we claimed to
provide a rigorous mathematical formulation
and a proof of Grothendieck’s idea
connecting two classes of mathematical

objects: 00-groupoids and homotopy types.

Later we decided that we could apply similar
ideas to another top mathematical problem
of that time: to construct motivic cohomology,
conjectured to exist in a 198/ paper by A.
Bellinson, R. MacPherson and V. Schechtman.
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«-Groupoids as a model for a homotopy category

V.A Voevodski: and M M. Kapranov

It is known [4] that CW-complexes X such that (1) = 0 for { > 2 can be described by grouposds
from the homotopy point of view. In the unpublished paper “Pursuing stacks” Grothendieck
proposed the idea of a multi-dimensional generalization of this comnection that used polycategories.
The present note is devoted to a reakzation of this idea,

L. A sphencal co-category C consists (sec [1)=[3]) of a collection of sets C,, ¢ «= .. maps

8, 00 Cpp=e Ciu§ # S22 €, == Cy defined for | « k, and partial composition operations

(a, b)=s aebon C, deflined for { & k1 in the case when 5,(a) = #(b). A bst of axioms for these
'

data is given i (1] (see also [2)=[3]), where D], D!, and E, are used instead of our notation 5. 1,

and Tx. It follows from these axioms, in particular, that for | & k=1 the operation « endows C,
i

with the structure of a category with the set C, of objects. If Cppyy = § (Cy) for i > 0, then C is
called an n-caregory. In particular, a l-category is the same as an ordinary category. All co-categores
form the (1-) category Cat,. For an co-category C the elements of C, are called i-morphizms of C
The O-morphisms are called objects,

2. An m-category C s called an x -gronpond of the followmg conditions (GRL) (GRI) hold for all
<A
(GRu, I < k=1), Foreveryaa Ciuy, b e Cy,and o, w € Cyy with 5,(a) = 2fw) = 1f0),

@e o g (), and ae v = fpy(b)there cxist an x ¢ C, and a @ « Cy. such that
i i

n(p) = aox, t(g)= b, sy (x) ™ w, and I, (2) » 1.
i

(GRi.1.a). Foreverya, be C, with 1y 4(a) = 1,_,(b) there exist an x ¢ C, and a ¢ ¢ Cy.y such
that 53 (@) = @ al: and & (¢) — b
K-

(GREG. I < k=1). Foreveryae C,. . be Cp, and v, we Coy with 5(a) = 5(u) = 5(0)
Wea= g ,(0), and veasw g, () there cxixst an v e C, and a @ € Oy, such tha
i .

sx (@) =xea, tp ()™ b1 ) = w and 1, _dx) = v
{

(CGR{-1.o) Forevery a ba Cowuh s, (a) = 5 (b) there cust an x & C, and a ¢ @ Cy. such
that 23 (@) » = = aand £y () » b,
k-1

In an informal sense, the conditions amount 1o weak (10 withan a “homotopy” @) sobabdity of all

equations of the form @ ¢ x == band z ¢ @ ™ b in the cases when such equations make sense  We
i i

define an n-groupodd 10 be an m-category that is an cc-groupodd. Let Gr, C Gr,, C Cat, be the full
subcategories of m-grouposds and co-growpoids,

3 Let G e Gry, and kt x € Gy be an obpct. For § > 0 we denote by =2,(G. x) the quotient set of
{e @ Ginpny (3) ™ 1,4 (2) = 4,4 (2)) with respect to the following equivalence relation: = ~ w if
there is a v ¢ G,.y such that 5,(¥) = zand rn(y) = w. Also, let ngG) be the quotient of Gy with
respect to the following equivalemce relation: x ~ x' if there s a p ¢ G, sach that sg v) = x and
oA y) = X

Proposition 1. For i | the operation [, endows 2{G, x) with the structure of a group that is
commutative for i » 2

We denote by W (respectively, W) the class of morphesms /0 G — G of the category Gr,
(respectively, Gr,) that induce bijections agdG) — =(G") and =,(G, x) — 7,(G". f(x)) for all x ¢ G,
and { > 0. Let Gro[W ™) be the category of fractions [4].  Also, let Hot denole the homotopy
category of CW<omplexes, and Hot, . C Hot the full subcategory of complexes X' such that
X, x) =~ O0forall i > nand x & X




In the summer of 1990, Kapranov arranged for
me to be accepted to graduate school at
Harvard without applying.

After a few months, while he was at Cornell and
| was at Harvard, our mathematical paths
diverged.

| concentrated my efforts on motivic
cohomology and later on motivic homotopy
theory.

My notes on the right are dated Mar 29, 1991,
and start with the question “What is a homotopy
theory for algebraic varieties or schemes?”




The field of motivic conomology was considered at that
time to be highly speculative and lacking firm foundation.

The groundbreaking 1986 paper “Algebraic Cycles and
Higher K-theory by Spencer Bloch was soon after
publication found by Andrej Suslin to contain a mistake
in the proof of Lemma |.1.

The proof could not be fixed, and almost all of the
claims of the paper were left unsubstantiated.




A new proof, which replaced one paragraph from the original paper by 30 pages
of complex arguments, was not made public until 1993, and it took many more
years for it to be accepted as correct.

Interestingly, this new proof was based on an older result of Mark Spivakovsky,
who, at about the same time, announced a proof of the resolution of singularrties
conjecture. Spivakovsky's proof of resolution of singularities was believed to be

correct for several years before being found to contain a mistake. The conjecture
remains open.



The approach to motivic conomology developed by
Andrej Suslin, Eric Friedlander and me circumvented
Bloch’s moving lemma by relying instead on my paper
“Cohomological Theory of Presheaves with Transfers,” which

was written when | was a member at the |AS In 1992/93.

In 1999/2000, again at the IAS, | was giving a series of

lectures, and Pierre Deligne was taking notes and checking
every step of my arguments. Only then did | discover that

the proof of a key lemma in “Cohomological Theory™
contained a mistake and that the lemma, as stated, could
not be salvaged.

Fortunately, | was able to prove a weaker and more
complicated lemma which turned out to be sufficient for

all applications. A corrected sequence of arguments was
published in 2006.

LEMMA 22.10. Suppose that F is a homotopy invariant presheaf with trans-
fers. Then for any open covering S = Ug UV there is an open U C Uy such that
S = U UV and the sequence F(MV(Q)) is exact, where Q = Q(S,U,V):

0+F(S) = FU)RF(V)-FUNV) 0.

PROOF, We may assume that § is connected, since we can work separately
with each component. By assumption, there are open Up, V in X such that Uy =
SNy, V = SNV. Since Uy is open in X, there is an affine open I contained in
0, which contains the finite set of closed points of Uy. Setting U = SN0, we have
S=UUV. We will show that F(MV(Q)) is exact for the square Q = Q(S,U,V).

We first suppose that k is an infinite field. For each a, set Ug = Xo N0 and
Vi = X4 NV, The canonical map from Q to the square Qg = Q(Xq, Uy, Vi) induces
a morphism of Mayer-Victoris sequences, F(MV(Q,)) — F(MV(Q)). It suffices
to show that these morphisms are chain homotopic to zero, because F(MV(Q)) is
the direct limit of the F(MV(Qq)).

Let Z C X denote the union of X — (0 NV) and the closed points of S. For
cach Xq, we know by 11.17 that there is an affine neighborhood X, of S in X and
a standard triple Ty = (Rar, X s Zer) With X/, 2 Ry — X o a0 Zy = Xp N Z. Set
Uy =XeNO and V;, = X;N V. Since Xz — (UL NV,) lies in X o UZqg, it lies
in an affine open subset of X (by definition 11.5). By 21.2, the Zariski square
Q. = Q(Xg, U}, V,,) comes from a covering morphism of triples 7, — 7.

By 11.14, the triple T, is split over an affine neighborhood X of S in X[,. Set
U = XINU and Vjy = X2 NV, and form the square O = Q(X4, U4, VYY), Since
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X/ and O are affine, so is U;. By theorem 21.6, the morphism F(MV(Q,,)) —
F(MV(Qp)) is chain homotopic to zero. Since F(MV(Qq)) — F(MV(Q)) factors
through this morphism, it too is chain homotopic to zero,

0 - F(xa) > F(Ug)®F(Vg) —= F(Uanva) -0

A ]
0 —— F(X}) —» F(Us) @F(Vy) — F(UxNVg) —= 0

A\ '

0 —— F(X) —= F(UD)®F(VS) — F(UINVY) —= 0

'
0 - F(S) . F(U)®F(V) —= F(UNV) —= 0

If k is finite, exactness follows by a transfer argument. Any ¢lement a in the
homology of F(MV(Q)) must vanish when we pass to Q @, k' for any infinite
algebraic extension k' of k. Since a must vanish for some finite subextension kj, a
has exponent [k, : k). Since [kj : k] can be chosen to be a power of any prime, we
conclude that a = 0. O

Lemma 22.10 corrects [CohTh, 4.23), which omitted the passage from Uy to U.



This story got me scared. Starting from 1993 multiple groups of mathematicians
studied the “Cohomological Theory’ paper at seminars and used It in their work
and none of them noticed the mistake.

And 1t clearly was not an accident. A technical argument by a trusted author, which
is hard to check and looks similar to arguments known to be correct, is hardly ever
checked in detail.



But this 1s not the only problem that makes
mistakes In mathematical texts persist.

In October; 1998, Carlos Simpson submitted
to the arXiv preprint server a paper called
"Homotopy types of strict 3-groupoids’. It
claimed to provide an argument that implied
that the main result of the “00-groupoids”
paper, which M. Kapranov and | had published
iR Scan notl be true.

However, Kapranov and | had considered a
similar critique ourselves and had convinced
each other that it did not apply. | was sure
that we were right until the Fall of 2013 ().

arXiv:math/9810059v1 [math.CT] 9 Oct 1998

Homotopy types of strict 3-groupoids

Carlos Simpson
CNRS, UMR 5580, Université de Toulouse 3

It has been difficult to see precisely the role played by strict n-categories in the nascent
theory of n-categories, particularly as related to n-truncated homotopy types of spaces.
We propose to show in a fairly general setting that one cannot obtain all 3-types by any
reasonable realization functor ' from strict 3-groupoids (i.e. groupoids in the sense of
[20]). More precisely we show that one does not obtain the 3-type of $%. The basic reason
is that the Whitehead bracket is nonzero. This phenomenon is actually well-known, but
in order to take into account the possibility of an arbitrary reasonable realization functor
we have to write the argument in a particular way.

We start by recalling the notion of strict n-category. Then we look at the notion of
strict n-groupoid as defined by Kapranov and Voevodsky [20]. We show that their defini-
tion is equivalent to a couple of other natural-looking definitions (one of these equivalences
was left as an exercise in [20]). At the end of these first sections, we have a picture of
strict 3-groupoids having only one object and one 1-morphism, as being equivalent to
abelian monoidal objects (G, +) in the category of groupoids, such that (7(G),+) is a
group. In the case in question, this group will be m3(S?) = Z. Then comes the main
part of the argument. We show that, up to inverting a few equivalences, such an object
has a morphism giving a splitting of the Postnikov tower (Propaosition 5.3. It follows
that for any realization functor respecting homotopy groups, the Postnikov tower of the
realization (which has two stages corresponding to 7, and m3) splits. This implies that
the 3-type of S? cannot occur as a realization,

The fact that strict n-groupoids are not appropriate for modelling all homotopy types
has in principle been known for some time. There are several papers by R. Brown and
coauthors on this subject, see (9], [10], [11], [12]; a recent paper by C. Berger [8]; and also
a discussion of this in various places in Grothendieck [18]. Other related examples are
given in Gordon-Power-Street [17). The novelty of our present treatment is that we have
written the argument in such a way that it applies to a wide class of possible realization
functors, and in particular it applies to the realization functor of Kapranov-Voevodsky
(1991) [20].

' Qur notion of “reasonable realization functor® (Definition 3.1) is any functor R from the category
of strict n-groupoids to Top, provided with a natural transformation r from the set of objects of G to
the points of R(G), and natural somorphisms =,(G) ™ x(R(G)) and =,(G,x) & =, (R(G),r(z)). This
axiom is fundamental to the question of whether one can realize homotopy types by strict n-groupoids,
because one wants to read off the homotopy groups of the space from the strict n-groupold. The standard

realization functors satisfy this property, and the somewhat different realization construction of [20] is
claimed there to have this property.




| can see two factors that contributed to this outrageous situation:

* Simpson claimed to have constructed a counterexample, but he was not able to show
where In our paper the mistake was. Because of this, it was not clear whether we made
a mistake somewhere In our paper or he made a mistake somewhere in his
counterexample.

» Mathematical research currently relies on a complex system of mutual trust based on
reputations. By the time Simpson’s paper appeared, both Kapranov and | had strong
reputations. Simpson’s paper created doubts In our result, which led to It being unused
by other researchers, but no one came forward and challenged us on it.



At about the same time as | discovered
the mistake in my motivic paper | was
working on a new development, which |
called 2-theories. The 3-dimensional
diagram on the right Is an example of the
kind of “formulas” that | would have to use
to support my arguments about 2-
theories.

satisfy the adjunction axiom.
Proof: We have to verify that the compaositions

Qs = UxnEixaUxs = Yxa
and
Eixz = Eixalixnixs = Lixz)

coincide with the corresponding identity 2-morphisms. One can easily see
that these two compositions are dual in the sense of 1.2.3 and therefore it
is sufficient to show that the first one equals identity. The main marked
diagram for the proof looks as follows:

§ —= > X — > 5

X — XX X
PO \ .// e n’//
X ¢ :
» x — —XxX X

For the convenience of further reference we numbered all the arrows. The
right vertical face of the diagram is the diagram (2) defining the 2-morphism
Id — ¥ and the upper horizontal face is the diagram (1) defining the 2-
morphism X0 — Id. The whole diagram is the union of the front part which

11




As | was working on these ideas | was getting more and more uncertain about
how to proceed. The mathematics of 2-theories Is an example of precisely that
kind of higher-dimensional mathematics that Kapranov and | had dreamed about

in 1989. And | really enjoyed discovering new structures there that were not
direct extensions of structures in lower “dimensions”.

But to do the work at the level of rigor and precision | felt was necessary would
take an enormous amount of effort and would produce a text that would be
very difficult to read. And who would ensure that | did not forget something and

did not make a mistake, If even the mistakes in much more simple arguments
take years to uncover?

| think It was at this moment that | largely stopped doing what is called “curiosity
driven research” and started to think seriously about the future.



[t soon became clear that the only real long-term
solution to the problems that | encountered is to start
using computers In the verification of mathematical
reasoning.

The software for doing this has been in development
since the sixties. [ he page on the right is from a very
interesting book called “Selected Papers on Automath™.
The number 68 In the title refers to 1968, the year when
Automath was created.

251

Description of AUT-68

L.S. van Benthem Jutting

This is an informal description of the first Automath language, AUT-68. The
first section contains an introduction sketching the motivation for the language,
and giving a short historical survey. In Sections 2 to 5 a simple (untyped) ver-
sion of the language is presented. After that, in Sections 6 to 9, types are added.
Section 10 contains an overview of the results of the language theory. Users may
find some useful hints in Section 11. Finally Section 12 contains an AUT-68 text
which could serve as a start for an introduction into predicate logic, and Section
13 gives a comment on this text,

1. INTRODUCTION

Automath is a language for describing mathematics in such a precise way
that texts in that language can be checked mechanically (i.e. by a computer).
Such a language could be useful for several purposes:

(i) The language increases our conviction that long and tedious proofs of the-
orems which are not very obvious, are formally correct.

(ii) The language exposes difficult steps in proofs. Some difficulties in proofs
might be caused by the language itself (which has its limitations), but
sometimes we get an insight in the structure of a proof by using a very
formal language.

(i) The language might be useful in the didactics of mathematics. It forces a
user to concentrate on the structure of proofs (cf. (ii)) and allows us to see
which axioms and deduction rules have been used in a proof.

(iv) It could be possible to write in the language a kind of “data bank of
mathematics”, containing a library of books and papers on mathematics
referring to each other.

The Automath languages differ in their design from most systems which
have the aim to formalize mathematics. Such systems usually presuppose the
axioms and rules of predicate logic. To this system axioms are added, describing



At the time when | started to look for a practical proof assistant around
2000, | could not find any.

Among mathematicians computer proof verification was almost a forbidden
subject. A conversation started about the need for computer proof
assistants would invariably drift to the Goedel Incompleteness Theorem
(which has nothing to do with the actual problem) or to one or two cases
of verification of already existing proofs, which were used only to
demonstrate how impractical the whole idea was.

Some of the very few mathematicians who persisted In trying to advance
the field of computer verification in mathematics during this time were
Tom Hales and Carlos Simpson.



Today, only a few years later, computer verification of proofs and of mathematical reasoning in

general looks completely practical to many people who work on Univalent Foundation anad
Homotopy Type Theory.

The roadblock that prevented generations of interested mathematicians and computer scientists
from solving the problem of computer verification of mathematical reasoning was the
unpreparedness of foundations of mathematics for the requirements of this task.



Formulating mathematical reasoning in a language precise enough for a computer to follow
meant using a foundational system of mathematics not as a standard of consistency applied only

to establish a few fundamental theorems, but as a tool that can be employed in everyday
mathematical work.

There were two main problems with the existing foundational systems which made them
inadequate.

Firstly, existing foundations of mathematics were based on the languages of Predicate Logic and
languages of this class are too limited.

Secondly, existing foundations could not be used to directly express statements about such
objects as, for example, the ones that my work on 2-theories was about.



[t I1s extremely difficult to accept that mathematics I1s in need of a completely new foundation.
Even many of the people who are directly connected with the advances in Homotopy Type

Theory are struggling with this idea.

There Is a good reason 1t Is difficult: the existing foundation of mathematics - ZFC, and rts main
contender for a new foundation - category theory, have been very successful.

It was overcoming the appeal of category theory as a candidate for new foundation of mathematics
that was for me personally most difficult.



The story starts with ZFC: the Zermelo-Fraenkel theory with the Axiom of Choice.

Since the first half of the 20th century mathematics has been presented as a science based on
/FC and ZFC was introduced as a particular theory in Predicate Logic.

Therefore someone who wanted to get to the bottom of things iIn mathematics had a simple
road to follow - learn what Predicate Logic is, then learn a particular theory called ZFC, then
learn how to translate propositions about a few basic mathematical concepts into formulas of
/FC, and then learn to believe, through examples, that the rest of mathematics can be reduced
to these few basic concepts.
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[t Is the i1dea that categories are “sets in the next dimension’™ that was the most difficult roadblock
for me. | clearly recall the feeling of a breakthrough, which | experienced when | understood that
this idea Is wrong. Categories are not “'sets in the next dimension™. They are “partially ordered
sets In the next dimension,” and “'sets In the next dimension” are groupoids.

One of the things that made the “categories’ versus “groupoids’ choice so difficult for me Is that |
remember it being emphasized by people | learned mathematics from that the great
Grothendieck in his wisdom broke with the old-schoolers and insisted on the importance of
considering all morphisms and not only isomorphisms and that this was one of the things that
made his approach to algebraic geometry so successtul.

(Groupoids are often made of set-level objects and their isomorphisms, while categories are often
made of set-level objects and “all” morphisms.)

20



Univalent Foundations, like ZFC-based foundations and unlike category theory, is a
complete foundational system, but It is very different from ZFC. To provide a
format for comparison let me suppose that any foundation for mathematics
adequate both for human reasoning and for computer verification should have the

following three components.

i



The first component is a formal deduction system: a language and rules of
manipulating sentences in this language that are purely formal, such that a
record of such manipulations can be verified by a computer program.

The second component is a structure that provides a meaning to the
sentences of this language in terms of mental objects inturtively
comprehensible to humans.

The third component Is a structure that enables humans to encode
mathematical ideas in terms of the objects directly associated with the
language.

ik



In ZFC-based foundations the first component has two “layers’. The first layer Is a general
mechanism for building deduction systems which s called Predicate Logic and the second a
particular deduction system called ZFC obtained by applying this mechanism to a set of
operations and axioms.

The second component in ZFC Is based on the human ability to inturtively comprehend
hierarchies. In fact, the axioms of ZFC can be seen as a collection of properties that all
hierarchies satisty, together with the axiom of infinity, which postulates the existence of an
infinite hierarchy.

The third component Is a way to encode mathematical notions in terms of hierarchies that
starts with rules for encoding mathematical properties of sets. That is why ZFC is often called
a set theory.

LS



The original formal deduction system of Univalent Foundations is called the Calculus of
Inductive Constructions, or CIC. It was developed by Thierry Coguand and Christine Pauline
around 988 and was based on a combination of ideas from the theory and practice of
computer languages with ideas In constructive mathematics. The key names associated with
these Ideas are de Brujin, Per Martin-Lof and Jean-Yves Girard.

The formal deduction system of the proof assistant Coq is a direct descendant of CI|C.

D



The second component of Univalent Foundations, the structure that

provides a direct meaning to the sentences of CIC, Is based on Univalent
Models.

The objects directly associated with sentences of CIC by these models are
called homotopy types. The world of homotopy types Is stratified by what

we call h-levels, with types of h-level | corresponding to logical propositions
and types of h-level 2 corresponding to sets. Our inturtion about types of
higher levels comes mostly from their connection with multidimensional
shapes, which was studied by ZFC-based mathematics for several decades.

L5



The third component of Univalent Foundations, a way to encode general
mathematical notions in terms of homotopy types, Is based on the reversal

of Grothendieck’s idea from the late seventies considered in our ‘‘o0o-
groupoids’ paper.

Both mathematically and philosophically, this Is the deepest and least
understood part of the story.

26



have been working on the ideas that led to the discovery of Univalent

Models since 2005 and gave the first public presentation on this subject at
| MU (Munich) in November 2009.

While | have constructed my models independently, advances in this

direction started to appear as early as 1995 and are associated with the

names of Martin Hofmann, Thomas Streicher, Steve Awodey and Michael
VWarren.

L



In the Spring of 2010 | suggested to the School of Mathematics that | will
organize a special program on new foundations of mathematics in 2012/1 3,
despite the fact that at this time it was not clear that the field would be
ready for such a program by then.

| now do my mathematics with a proof assistant and do not have to worry
all the time about mistakes in my arguments or about how to convince
others that my arguments are correct.

But | think that the sense of urgency that pushed me to hurry with the
program remains. Sooner or later computer proof assistants will become
the norm, but the longer this process takes the more misery associated
with mistakes and with unnecessary self-verification the practitioners of the

field will have to endure.
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| would like to thank all of those who are trying to understand the ideas of
Univalent Foundations, to develop these ideas and to communicate these
ideas to others. | know It is difficult.
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