
Provably Total Functions in
Bounded Arithmetic Theories Ri

3, U
i
2 and V i

2

Samuel R. Buss∗ †

Department of Mathematics

University of California, San Diego

Jan Kraj́ıček∗‡

Mathematics Institute
Czechoslovakian Academy of Sciences

Prague, Czechoslovakia

Gaisi Takeuti∗§

Department of Mathematics
University of Illinois, Urbana-Champaign

July 11, 2002

∗All three authors supported in part by NSF-ČSAV grant INT-8914569.
†Supported in part by NSF Grant DMS-8902480. Email address: sbuss@ucsd.edu.
‡Work performed while visiting San Diego and on leave at Urbana-Champaign. Email

address: krajicek@csearn.bitnet
§Supported in part by NSF grant DMS-8800314.

1

Abstract

This paper investigates the provably total functions of fragments
of first- and second-order Bounded Arithmetic. The (strongly)
Σb

i -definable functions of Si−1
3 and Ri

3 are precisely the (strong)

FP
Σp

i−1

3 [wit, logO(1)] functions. The Σ1,b
i -definable functions of V i−1

2

and U i
2 are the EXPTIMEΣ1,p

i−1 [wit, poly] functions and the Σ1,b
i -

definable functions of V i
2 are the EXPTIMEΣ1,p

i -functions. We give
witnessing theorems for these theories and prove conservation results
for Ri

3 over Si−1
3 and for U i

2 over V i−1
2 .

1 Introduction

This paper discusses the Σb
i -definable functions of the first-order theories Ri

3

and Si−1
3 and the closely related Σ1,b

i -definable functions of U i
2 and V i−1

2 . In
addition, we characterize the Σ1,b

i -definable functions of V i
2 . We give new

witnessing theorems for the appropriate fragments of these theories and prove
several conservation results.

Buss [2] provided a characterization of the Σb
i -definable functions of Si

2 as
the set of functions which are polynomial time computable with an oracle from
the class Σp

i−1 of the polynomial time hierarchy. Later, he characterized the
Σb

i -definable functions of T i−1
2 by showing that Si

2 is conservative over T i−1
2

with respect to ∀Σb
i -consequences [3]. In this paper we establish similar

characterizations of the Σb
i -definable functions of theories Si−1

3 and Ri
3 .

Recall that the theory Ri
3 was introduced in various forms by Allen [1],

Clote-Takeuti [7] and Takeuti [18]. In analogy with earlier results, we show
that Ri

3 and Si−1
3 have the same Σb

i -definable functions and that Ri
3 is

conservative over Si−1
3 with respect to ∀Σb

i -consequences.
The above characterization of provably total functions of Ri

3 uses the
witness function method but also requires the introduction a new notion of
oracle computation: we define a witness oracle to be an oracle which when
presented with an existential question, either responds ‘No’ or responds ‘Yes’
and provides a witness to the truth of the question; i.e., provides a instance

2

or value of the existential quantifier proving that the answer is ‘Yes’.1 It
is shown that the Σb

i -definable functions of Ri
3 and Si−1

3 are precisely the

functions that can be computed in time 2(log n)O(1)

time with witness oracle
from the class Σp

i−1 of the polynomial time hierarchy. In addition, we consider
a notion of ‘strongly Σb

i -definable’ functions and also characterize the strongly
Σb

i -definable functions of Ri
3 and Si−1

3 as being precisely the functions that

can be “strongly” computed in time 2(log n)O(1)

time with witness oracle from
the class Σp

i−1 of the polynomial time hierarchy. Unfortunately, we have
not been able to accomplish a similar result for Ri

2 with polynomial time
computations; it is open whether such a theorem holds. For Si−1

2 there is
such a theorem known: Krajicek [11] shows that the Σb

i -definable functions of
Si−1

2 are precisely the functions which can be computed in polynomial time
with a witness oracle from Σp

i−1 .
It turns out that this investigation of first-order systems is entirely

analogous to investigating the Σ1,b
i -definable functions of V i−1

2 and U i
2 . For

these systems, we prove a old conjecture of the first author [2] regarding the
class of functions with first-order values which can be Σ1,b

i -defined by U i
2 and

V i
2 ; however, the method of proof is rather different from what the first author

had in mind when making the conjecture. In addition we characterize the
Σ1,b

i -definable functions of these theories that have second-order values.
The outline of this paper is as follows: in section 2, we introduce the

computational complexity classes using witness oracles and prove several
fundamental closure properties for them. In section 3, we briefly review the
fragments of Bounded Arithmetic needed and prove that various complexity
classes of functions can be defined in these theories. In section 4, we review
the witness predicate and prove the witnessing lemma and various corollaries
for the first-order systems. Section 5 is a translation of the results of section 4
to the second-order systems. The reader who is interested primarily in first
order-systems may safely omit all the sections that pertain to second-order
objects and second order-systems (sections 2.2, 3.3 and 5). However, the
reader interested in second-order systems must read the entire paper since
we frequently omit proofs in the second-order case. A summary of the main
results can be found in sections 4.3 and 5.3. A couple of open questions are

1Our use of witness oracles is closely related to Kreisel’s nocounterexample interpreta-
tion as well as to the use of Herbrand’s theorem in [12, 15, 10]. See also [4, 9] for recent
applications of the the use of witness oracles to Peano arithmetic.

3

also mentioned in section 4.3.

2 Computational Complexity

2.1 Witness Oracles and Function Complexity Classes

Complexity classes such as P, NP, the polynomial time hierarchy classes Σp
i

and Πp
i , PSPACE, EXPTIME, and LOGSPACE are classes of predicates;

i.e., are classes of problems which are computed by resource-bounded Turing
machines which provide Yes/No answers. In this section we define related
classes of functions. The inputs and outputs of our functions are integers
which, by standard coding methods, is equivalent to using strings of characters
over a finite alphabet. The length of an integer x is the length of its binary
representation and is denoted |x| .

The classes of functions we define below are computed with Turing
machines with witness oracles. A witness oracle is a generalized form of
an oracle: when a witness oracle is asked an existential question “(∃x)ϕ(x)?”,
it responds either with the answer “No” or with a value for x making ϕ(x)
true. Since there may be multiple x ’s making ϕ(x) true this allows the witness
oracle of a degree of non-determinism. Because of this non-determinism we
shall allow our functions to be multivalued. A multivalued k -ary function is a
relation on Nk ×N ; we write f(~x) = y for (~x, y) ∈ f ; we shall always assume
f is total.

To motivate these complexity classes, let’s consider a couple of examples
of functions that use a witness oracle for an NP predicate. First, let f(x) be
the following multi-valued function of values x coding propositional formulas:

f(x) =

{
y if y codes a satisfying assignment for x
0 if x is not satisfiable

The function f(x) can be easily computed with a single call to a witness
oracle for SAT (the set of satisfiable propositional formulas). Second, let
g(x) be defined to the multivalued function such that if x codes a graph G
then g(x) codes a clique of maximal size in G . To compute g(x), find the
maximal clique size using binary search with O(log |x|) many queries to an
NP predicate; then ask a witness oracle for NP for a clique of that maximal
size. Both f(x) and g(x) are in the class FPΣp

1 [wit, log] defined next.

4

Loosely speaking, the class FPΣp
i [wit, log] contains the functions which

are polynomial time computable with a witness oracle for Σp
i and with the

restriction that the oracle may be queried only O(log n) times. Recall that
Σp

i and Πp
i are classes in the polynomial time hierarchy with Σp

0 = Πp
0 = P

and Σp
1 = NP and Πp

1 = coNP, etc.

Definition FPΣp
i [wit, log] is the class of multivalued functions f for which

there is a Turing machine M such that the following hold:

(1) M has an input x of length n and M runs in polynomial time. The
value x may be a single integer or a vector of integers.

(2) M has Σp
i witness oracle for (w.l.o.g.) a predicate of the form

Ω(q) ⇔ (∃z, |z| < |q|k)R(z, q)

where R ∈ Πp
i−1 and k is a constant. The oracle is accessed with a

query tape, an oracle response tape, a query state and oracle accept
and reject states. When M enters the query state with q written on
the query tape, the next configuration of M is either (i) in the oracle
reject state if Ω(q) is false or (ii) in the oracle accept state with a value
z written on the oracle response tape such that R(z, q) holds and such
that |z| < |q|k . In case (1) the response tape is blank and in case (2)
the tape head is at the leftmost symbol of z and the rest of the tape is
blank.

(3) M makes only O(log n) many queries in any computation.

(4) At the end of the computation M(x) outputs a value y such that
f(x) = y . However, it is not necessarily the case that for any value
y = f(x) there is some sequence of valid oracle answers such that M(x)
outputs y .

The restriction that the witness oracle only be called O(log n) many times is
necessary for the use of witness oracles to be meaningful: if polynomially (i.e.,
arbitrarily) many calls to the witness oracle were allowed, then M could use
an ordinary (non-witness) oracle to get witnesses by asking a witness value
one bit at a time.

5

Remark 1: That condition (4) allows f(x) = y even if it is impossible
for M(x) to output y may seem surprising at first — especially since this
allows the relation f(x) = y to be non-recursive.2 However, one should think
of the problem of computing f(x) as being the problem of searching for a y
such that f(x) = y . From this point of view, it makes sense to say that M
can compute f(x), i.e., solve the search problem, even though M may not
have the potential of outputting each y such that f(x) = y .

Let funcM be the multivalued problem defined by funcM(x) = y if and

only if M(x) can output y . An alternative definition of FPΣp
i [wit, log] is that

it is the class of functions f such that f ⊇ funcM for M satisfying (1)-(3). It
is also useful to consider the class of functions of the form funcM ; accordingly
we define:

Definition A function f is in strong-FPΣp
i [wit, log] if and only if there is a

Turing machine satisfying conditions (1)-(3) such that f = funcM .

Remark 2: It is possible to modify the definition of FPΣp
i [wit, log] so that

the witness oracle does not provide a witness until the final oracle call. This
would not change the power of the witness oracle since M as defined above
can be simulated by a Turing machine M ′ which runs the following algorithm:

2To construct a non-recursive f , pick A to be any non-recursive set and let f(x) = 0
hold for all x and let f(x) = 1 hold iff x ∈ A . The function f is clearly in FPΣp

i [wit, log]
since M need merely output 0 on all inputs.

6

Input: x

For k = 1, . . . , c · log n /∗ c · log n = max. number of queries ∗/
Ask oracle: “Is there a valid computation of M such that M ’s first

k − 1 queries are answered by α1, . . . , αk−1 and such that the
k -th query is answered ‘Yes’?”

If so, set αk =‘Yes’,

Else set αk =‘No’.

End for

Ask oracle for a witness to the true statement “There is a computation
of M in which the oracle answers are α1, . . . , αc·log n”.

Output the value y which is on the output tape of the final configuration
of the computation of M returned by the witness oracle.

To properly understand the above algorithm we must see why the oracle
queries are Σp

i queries. Suppose that αi1 , . . . , αir are the ones among
α1, . . . , αk−1 that are equal to ‘Yes’. Then the query for a computation
of M can be phrased as the following Σp

i query about x and i1, . . . , ir :

“Is there (an encoding of) a computation of M such that during
the computation M asks some oracle queries q1, . . . , qk−1, qk and
receives ‘Yes’ answers for exactly the queries qij for j = 1, . . . r
such that the witness responses βij to the queries with ‘Yes’
answers satisfy |βij | < |qij |k and R(βij , qij)?”

This is a Σp
i query since the predicate R(−,−) is a Πp

i−1 property. Note
that the oracle does not have to check if the negative responses by the oracle
are correct (this would would make the query too complex anyway) since
the αj ’s are chosen greedily to be ‘Yes’ if possible. This is because the
sequence α1, . . . , αk−1 is the lexicographically largest possible sequence of
Yes/No oracle answers (taking ‘Yes’ as greater than ‘No’ for the lexicographic
ordering); hence if the ‘Yes’ answers are correct with correct witnesses βij

then the ‘No’ answers are necessarily correct.
One consequence of this remark is that the machine M may be restricted

to use only O(log n) space until the final witness oracle query (for the purposes
of measuring space, the query tape is write-only, is erased after each query,
and is not counted in the space computation); the response to the final query

7

is a polynomial size witness which w.l.o.g. contains the output of M as a
substring. Thus M may operate in O(log n) space until its final query, at
which point it merely copies the output from (part of) the response tape to the
output tape. Accordingly, another possible name for this function complexity
class is FLΣp

i [wit, log] . It can be shown using well-known techniques that
the restriction that only O(log n) queries may be made to the witness oracle
may be dropped for FL function classes, and thus this class is the same as
FLΣp

i [wit] (see [8, 6, 19] for these techniques).
It is interesting to note that funcM ′ may not be the same as funcM ;

since not every valid computation of M receives the lexicographically largest
sequence of possible Yes/No answers. Part of our reason for using the class

FPΣp
i [wit, log] instead of strong-FPΣp

i [wit, log] is to make Remark (2) hold.

Remark 3: It is also possible to allow M unlimited queries to a Σp
i−1 oracle

without changing the class FPΣp
i [wit, log] . This is because a polynomial time

computation with unlimited queries to Σp
i−1 may be simulated by making a

single query to a witness oracle for Σp
i ; namely, ask the witness oracle if there

is a correct computation of M with correct answers to the Σp
i−1 queries; of

course, there is always a unique correct computation and the witness oracle
returns it on its response tape.

Remark 4: It would be possible to define a class of predicates PΣp
i [wit, log]

by considering the class of 0/1-valued functions in FPΣp
i [wit, log] . However,

using the method of Remark 2, it is easy to see that this would be the
class PΣp

i [log] which uses a regular (non-witness) oracle. This is the class
of predicates polynomial time truth-table reducible to Σp

i (see Krentel [14],
Buss-Hay [6], Wagner [19]). Kraj́ıček [11] shows that these are precisely the
predicates ∆b

i+1 -definable in Si
2 .

Similar considerations show that if a function in FPΣp
i [wit, log] is con-

strained to output only values of length O(log n) bits, then it is in the class

FPΣp
i [log] which is defined as above but with a (non-witness) oracle for Σp

i .

Remark 5: Krentel [14] gave the original definition of the class FPΣp
i [log]

of functions. Our function class of strong-FPΣp
i [wit, log] with witness oracles

provides a seemingly different and possibly more natural function class. For
example, the multivalued function defined by f(x) = y if and only if either
y = 0 or x codes a Boolean formula with y a satisfying assignment, is

8

clearly in strong-FPNP[wit, log] since M can ask the witness oracle for a
satisfying assignment of x . However, Krentel showed that this function is in

FPNP[log] if and only if P = NP. On the other hand, our function class
defined in terms of witness oracles seems to have the inherent disadvantage of
containing multivalued functions.

For use with the theory Ri
3 , we need to a slight modification of the above

function class to reflect the presence of the #3 function in the language:

Definition FP
Σp

i
3 [wit, logO(1)] is the class of multivalued functions defined in

exactly the same way as FPΣp
i [wit, log] except that the runtime of the Turing

machine is bounded by 2(log |x|)k1
and the number of oracle queries is bounded

by (log |x|)k2 for some constants k1, k2 .

The runtime bound 2(log n)O(1)
on inputs of length n is called “#3 time”.

2.2 Functions of second-order objects

We next consider higher-order analogues of FP
Σp

i
3 [wit, logO(1)] . There are

essentially two modifications: first, the computational complexity will be
exponential time or polynomial space and, second, there will two different
kinds (called orders) of inputs — first-order inputs of length n and second-

order inputs of length 2nO(1)
. In our applications to second-order theories

U i
2 and V i

2 , these two kinds of inputs correspond to first- and second-order
variables.

The class Σ1,p
i is the class of predicates which can be defined by a Σ1,b

i

formula; in terms of Turing machines, this is the class of the predicates that
can be recognized by a 2nO(1)

-time Turing machine which has i blocks of
existential and universal alternations beginning with an existential block.

Definition EXPTIMEΣ1,p
i is the class of single-valued functions f which are

computed by a Turing machine M such that

1. M has first-order input x of length n (x may be a vector of values, in
which case n is the total length of the first-order inputs). And M has
second-order inputs ~ϕ . Each second-order input is a string of symbols
written on its own input tape.

9

2. M has run time bounded by 2nk
for some constant k . Thus M can

access only 2nk
many squares of the second-order input tapes and M

can ask oracle queries of length up to 2nk
symbols.

3. M has a (nonwitness) oracle for a predicate in Σp
i . Since exponentially

long queries are allowed, this corresponds to asking Σ1,p
i queries about

the first-order inputs.

4. M outputs either a second-order value or a first-order value. Any first-
order output must have length bounded by nk′

for some constant k′ .

The computational power EXPTIMEΣ1,p
i would not be significantly changed

if M was allowed to use a witness oracle; this is because the number of oracle
queries by M is not restricted and M can ask repeated oracle queries to
obtain witnesses one bit at a time.

Definition EXPTIMEΣ1,p
i [wit, poly] is a class of multivalued functions; it is

defined to be the set of functions such that there is a Turing machine satisfying
the conditions 1.-4. above, except that, firstly, the third condition is modified
so that M has a witness oracle for Σp

i and M may only make nk0 queries to
the witness oracle for some constant k0 , and secondly, if M(x, ~ϕ) can output
y or ψ then f(x, ~ϕ) = y or f(x, ~ϕ) = ψ (but not necessarily conversely).

Strong-EXPTIMEΣ1,p
i [wit, poly] is the class of functions funcM for M

satisfying the modified conditions 1.-4.

The remarks above about FPΣp
i [wit, log] above apply also to

EXPTIMEΣ1,p
i [wit, poly] . For example, the Turing machine M for

EXPTIMEΣ1,p
i [wit, poly] may be restricted so that only its final oracle query

returns a witness; likewise M may be restricted to use only polynomial
space until after the final witness query it copies part of the response
tape to the output tape. As before, the write-only query tape is erased
after each query and is not considered in the space computation. Also, an

EXPTIMEΣ1,p
i [wit, poly] Turing machine M may make unrestricted queries

to a Σp
i−1 oracle. If M outputs only first-order values then a usual oracle for

Σ1,b
i suffices and the use of the witness oracle is unnecessary.

Finally, it should be noted that EXPTIMEΣ1,p
i and EXPTIMEΣ1,p

i [wit, poly]

may be regarded as being the same classes as FP
Σp

i
3 and FP

Σp
i

3 [wit, logO(1)] if

10

the second-order inputs are reinterpreted as being first order inputs. This is
because #3 -time of inputs of length 2nO(1)

is the same thing as time 2nO(1)
.

This is related to the ‘RSUV isomorphism’ discussed in the next section.

3 Fragments of Bounded Arithmetic

3.1 Preliminaries

In this section we review the fragments of Bounded Arithmetic that are used
in this paper. We shall assume familiarity with Buss [2] and shall need
some theorems from Buss [3]. The systems we shall deal with are Ri

3 , Si
3 ,

Si
2 , T i

2 , U i
2 and V i

2 . The subscript indicates the growth rate of function
symbols in the language; the subscript 2 indicates that 0, S , +, · , #,
b1

2
xc and |x| are function symbols and the subscript 3 indicates that the

#3 function is also in the language where x#3y = 2|x|#|y| . The function #2

has polynomial growth rate and the growth rate of #3 is superpolynomial
and subexponential: the #2 function allows formation of terms with growth
rate 2|x|

O(1)
and the #3 function allows formation of terms with growth rate

22|(|x|)|
O(1)

. In addition Ri
3 has function symbols .− and MSP for subtraction

and “most significant part”. (This choice of functions symbols avoids problem
with bootstrapping and makes R0

3 a useful theory. We shall not discuss the
details of bootstrapping in this paper; since we are dealing primarily with Ri

3

with i > 1, it is only necessary to show that Ri
3 contains Si−1

3 and then the
well-known bootstrapping for S1

3 applies.)
The definition of the classes Σb

i and Πb
i of bounded formulas is as usual,

counting alternations of bounded quantifiers (Qx ≤ t) but ignoring sharply
bounded quantifiers of the form (Qx ≤ |t|). The terms in bounded quantifiers
may contain the #3 function if it is in the language. Recall that Σb

i and Πb
i

formulas represent precisely the predicates in the corresponding level of the
polynomial time hierarchy when the language does not contain #3 ; if the
language does contain #3 then these formulas can represent precisely the
predicates in the corresponding levels of the #3 -time hierachy.

Si
2 and Si

3 are axiomatized with the Σb
i -PIND rule and T i

2 is axiomatized
with the the Σb

i -IND rule. The definitions of Ri
2 and Ri

3 are based on the
work of Allen [1] who dealt with a theory Di which is equivalent to Ri

2 and
on the independent work of Clote-Takeuti [7]. This paper uses the definition

11

for Ri
2 and Ri

3 from Takeuti [18]. The axioms of Ri
2 and Ri

3 are the BASIC
axioms which define the function symbols and the Σb

i -LBIND rules:

A(b1
2
ac), Γ→∆, A(a)

A(0), Γ→∆, A(|t|)
where Γ and ∆ are arbitrary cedents of formulas and A ∈ Σb

i and the
eigenvariable a must not occur in the lower sequent. This is equivalent to the
Σb

i -LLIND rule
A(a), Γ→∆, A(Sa)
A(0), Γ→∆, A(||t||)

Allen [1] showed that Ri
2 and Ri

3 prove the ∆b
i -comprehension axioms. Clote-

Takeuti [7] and Takeuti [18] showed that Ri
2 and Ri

3 prove the Πb
i -separation

axioms. Takeuti and Allen also showed that Ri
3 contains the theory Si−1

2 ,
for i ≥ 1 (the method of proof is similar to the proof that Si

2 contains
T i−1

2). The next theorem, due to Allen, generalizes these three results since
Σb

i -replacement implies Si−1
2 is shown by Buss [2] and since it is easy to see

directly that Σb
i -replacement implies Πb

i -separation.

Theorem 1 (Allen [1]) Σb
i -replacement is a consequence of Ri

2 and Ri
3 .

Proof Recall that the Σb
i -replacement axioms can be stated as

(∀x ≤ |t|)(∃y ≤ s)A(x, y) →
(∃w ≤ SqBd(s, t))(∀x ≤ |t|)(A(x, β(Sx,w)) ∧ β(Sx,w) ≤ s)

where A(x, y) is a Σb
i -formula, possibly with other free variables besides x

and y , and where w.l.o.g. the term s does not contain x . Here SqBd(s, t)
is a term that bounds the size of a minimal Gödel number of a sequence of
|t| + 1 numbers of values ≤ s [2]. Let X and Y be the hypothesis and the
conclusion (respectively) of the above replacement axiom and let Z(j) be the
formula

(∀u ≤ |t|)(∃w ≤ SqBd(s, t))(∀x ≤ |t|)
[(x ≤ j ∧ u + x ≤ |t|) → A(u + x, β(Sx,w)) ∧ β(Sx,w) ≤ s].

Now it is trivial that Ri
2 and Ri

3 can prove X → Z(0) and it is not hard to see
that they also prove Z(b1

2
jc) → Z(j) and also that they prove Z(|t|) → Y .

By Σb
i -LBIND on Z , they prove Z(0) → Z(|t|) and hence Ri

2 and Ri
3 prove

the Σb
i -replacement axiom. 2

12

U i
2 and V i

2 are second-order systems axiomatized with the comprehension
rule for bounded first-order (Σ1,b

0) properties and with induction rules Σ1,b
i -

PIND and Σ1,b
i -IND, respectively [2]. It is easy to see that U i+1

2 ⊇ V i
2 by

the well-known methods (analogously to the proof that Si+1
2 contains T i

2 , or
more precisely, to the proof that Ri+1

3 contains Si
3). There is a sharp analogy

between the second-order theories U i
2 and V i

2 and the first-order theories
Ri

3 and Si
3 , respectively. This analogy is called the “RSUV isomorphism

and is developed by [17, 18]. The basic idea of the RSUV isomorphism
is that bounded second-order objects in one of the second-order theories
correspond to first-order objects in the first-order theory and that first-order
objects in the second-order theory correspond to lengths of objects in the
appropriate first-order theory. By a bounded second-order object, we mean
a predicate ϕ on the integers < x for some first-order object x ; to make
the correspondence between a bounded second-order object ϕ and a first-
order object y , we interpret the truth values of ϕ(i) for i < x as the bits
in the binary representation of y . This makes a second-order quantifier
correspond to a (bounded) first-order quantifier and makes a bounded first-
order quantifier correspond to a sharply bounded quantifer. Since the second-
order theory has #2 , the corresponding first-order theory has the lengths of
integers closed under #2 , i.e., the first-order theory must have integers closed
under #3 . In addition, the Σ1,b

i -PIND axioms of the theory U i
2 correspond

to Σb
i -LBIND axioms of Ri

3 . Similarly, the Σ1,b
i -IND axioms of the theory U i

2

correspond to Σb
i -LIND axioms of Si

3 . The analogies are summarized by the
table below:

Second-order Theory First-order Theory
Second-order object (predicate) First-order object (integer)
First-order object (integer) Length of an integer
#2 on first-order objects #3 on first-order objects

Σ1,b
i Σb

i

PIND/LIND LBIND/LLIND
IND LIND/PIND

EXPTIMEΣ1,p
i FP

Σp
i

3

EXPTIMEΣ1,p
i [wit, poly] FP

Σp
i

3 [wit, logO(1)]
U i

2 Ri
3

V i
2 Si

3

13

The Σb
i -definable functions of some of these first-order theories can be

characterized: For Si
2 and T i−1

2 , the Σb
i -definable functions are precisely the

p
i functions, i.e., the FPΣb

i−1 functions [2, 3]. For R1
2 and i = 1, they

are precisely the NC functions, see Allen [1] and Clote-Takeuti [7]. The
Σ1,b

1 -definable functions of U1
2 and V 1

2 were shown by Buss [2] to be precisely
the polynomial space and exponential time computable functions, respec-
tively. Buss [2] made a conjecture about the Σ1,b

i -definable first-order-valued
functions of U i

2 and V i
2 . We prove this conjecture, and we also characterize

the functions with second-order values that can be Σ1,b
i -defined by U i

2 and V i
2 ;

namely, they are the EXPTIMEΣ1,p
i [wit, poly] and EXPTIMEΣ1,p

i functions,
respectively.

Also in this paper we characterize the Σb
i -definable functions of Si−1

3 and

Ri
3 as being precisely the FP

Σp
i

3 [wit, logO(1)] functions, for i > 1.
The prior characterizations for R1

2 , Si
2 , U1

2 and V 1
2 concerned the

definability of single-valued functions. However, to work with the classes

FP
Σp

i
3 [wit, logO(1)] we also require a notion of Σb

i -definition of a multivalued
function.

Definition Let f be a multivalued function (i.e. a relation). Then we say f
is Σb

i -defined by a theory T if and only if for some Σb
i -formula A(x, y),

(1) T ` (∀x)(∃y)A(x, y), and

(2) Whenever A(n,m) is true (in the standard model), then f(n) = m is
true.

The fact that condition (2) of the definition of Σb
i -definability is an “if . . . then

. . . ” is perhaps somewhat surprising; however, this matches the condition (4)

of the definition of FPΣp
i−1 [wit, log] . There is also a “strong” version of

Σb
i -definability:

Definition A multivalued function f is strongly Σb
i -definable iff f is Σb

i -
definable and for all m,~n , A(~n,m) holds iff f(~n) = m .

We shall prove that the class of functions strongly Σb
i -definable by Ri

3 (and

by Si−1
3) is precisely strong-FP

Σp
i−1

3 [wit, logO(1)] .

14

3.2 Some Σb
i -Definitions of Functions in Ri

3 and Si−1
3

As part of characterizing the Σb
i -definable functions of Ri

3 and Si−1
3 we need to

give some intensional Σb
i -definitions of functions in these two theories. Later,

we shall prove that all functions Σb
i -definable in Ri

3 and Si−1
3 are captured

by the next theorem. We say that M is an explicit FP
Σp

i
3 [wit, logO(1)] Turing

machine if M has built-in ‘clocks’ that limit the run time to 2(log n)k
steps

and the number of oracle queries to ≤ (log n)k on inputs of length n , for
some constant k . This means that if M exceeds the runtime or oracle
query limits then M aborts and outputs some constant (say 0). Given a
description of a Turing machine with a witness oracle for a Σb

i -predicate Ω
the property “w codes a valid execution of M on input x” can be expressed
as a Σb

i+1 ∩ Πb
i+1 formula RunM(x,w). Loosely speaking RunM(x,w) states

that w completely codes a computation of M(x) and that for each query q
made to the witness oracle ω either (1) Ω(q) is false and M entered the oracle
reject state after the query, or (2) M entered the oracle accept state with the
response tape containing a value z witnessing the truth of Ω(q).

Theorem 2 Fix i ≥ 1. Let M be an explicit FP
Σp

i
3 [wit, logO(1)] Turing

machine.

(a) Ri+1
3 ` (∀x)(∃w)RunM(x,w).

(b) Si
3 ` (∀x)(∃w)RunM(x,w).

Corollary 3 Let i > 1. Ri
3 and Si−1

3 can each Σb
i -define every

FP
Σp

i−1

3 [wit, logO(1)] function.

It is an open question whether R1
3 can Σb

1 -define all #3 -time functions (this
would be i = 1 of part (a) of the theorem). What is known is that R1

3 can
Σb

1 -define exactly the polylog-space computable functions; this follows from
the ‘RSUV isomorphism’ and from the characterization of the provably total
functions of U1

2 as the polynomial space functions.

Proof Since Ri+1
3 ` Si

3 it will suffice to prove (b). We fix M an

FP
Σp

i
3 [wit, logO(1)] machine, which has a fixed oracle Ω ∈ Σp

i and runs in
time 2(log n)k

and asks (log n)k queries on inputs of length n . The oracle Ω(q)

15

is of the form (∃z ≤ t(q))B(z, q) for some B ∈ Πp
i−1 and some term t

in the language of Si
3 . We reason inside Si

3 . We say that w codes a
precomputation of M if w is a sequence of configurations of M ’s execution
respect to an unspecified oracle; that is, w being a precomputation implies
nothing about whether the oracle answers in w are correct. A Q-computation
is a precomputation in which all the ‘Yes’ answers are correct for the oracle Ω
(but the ‘No’ answers may be incorrect). Let QCompM(w, x, v) be the
following formula which states that w codes a Q-computation of M on input
x such that all the ‘Yes’ answers are correct with a correct response tape
contents and such that, for all j , the j -th most significant bit of v is a “1” if
and only if the j -th query of M(x) to the witness oracle yields a ‘Yes’ answer.

QCompM(w, x, v) ⇔
w codes an precomputation of M(x) and
(∀j ≤ (log |x|)k)[Y esAns(w, j) → Bit((log |x|)k − j, v) = 1 and
(∀j ≤ (log |x|)k)[Bit((log |x|)k − j, v) = 1 → CorrectY es(w, j)]

where the formula Y esAns(w, j) asserts the j -th oracle query in the precom-
putation w receives a ‘Yes’ answer and the formula CorrectY es(w, j) asserts
that the j -th oracle query in the precomputation w yields a ‘Yes’ answer
and that B(z, q) ∧ z ≤ t(q) holds, where q is the j -th oracle query in w
and z is the response tape contents after the j -th oracle query. It is easy
to see that CorrectY es and QCompM are Πb

i−1 formulas, since B is (unless
i = 1 in which case, they are ∆b

1 formulas). Y esAns is, of course, always a
∆b

1 -formula.
By coding precomputations efficiently, it can be presumed that any

precomputation w for M(x) can be bounded by some term r(x); this is
because M runs in #3 time. Likewise the v in QCompM(w, x, v) has
length ≤ (log |x|)k and hence v ≤ |s(x)| for some term s in the language of
Si

3 . Thus the formula (∃w)QComp(w, x, v) is (equivalent to) a Σb
i -formula.

Since S1
3 can prove that deterministic, non-oracle, #3 -time Turing machines

always halt, it follows that Si
3 proves that (∃w)QComp(w, x, 0); namely,

Si
3 proves that there is precomputation of M(x) with all the oracle queries

answered ‘No’. And since Si
3 admits the “length maximization axioms”

Σb
i -LMAX, Si

3 can prove that there exists a maximum v < |s(x)| such that
(∃w)QComp(w, x, v). Let v now denote this maximum value; it follows that
Si

3 can prove that if QComp(w, x, v) then w codes a computation with all

16

witness oracle answers correct. To prove this in Si
3 , one argues that all ‘Yes’

answers must be correct since QCompM holds and that, for any j , if the
j -th ‘No’ answer were incorrect v would not be maximum since one could
obtain a larger value v′ by changing the j -th most significant bit of v to
“1” and setting all lower bits to zero. Then from (∃w)QComp(w, x, v), S1

3

proves that (∃w′)QComp(w′, x, v′) by letting w′ code the precomputation
corresponding to w up to the j -th query, then coding a ‘Yes’ answer with a
valid witness on the response tape for the j -th query and subsequently coding
M ’s computation with all oracle queries returning ‘No’ answers.

Thus Si
3 can prove that M(x) always has at least one valid computation

and Si
3 can Σb

i+1 -define the function which M computes. The formula which
Σb

i+1 -defines the function M(x) = y is the formula

(∃y)(∃w)[RunM(x,w) and computation w outputs y]

which asserts that there is a w encoding a valid computation of M(x) which
outputs the value y . Note that w and y can be bounded by terms involving x .
Q.E.D. Theorem 2

Corollary 4 Let i > 1. Ri
3 and Si−1

3 can each strongly Σb
i -define every

strong FP
Σp

i−1

3 [wit, logO(1)] function.

Proof This follows immediately from Theorem 2 since the Σb
i -definition of

funcM ,

(∃y)(∃w)[RunM(x,w) and computation w outputs y],

is also a strong Σb
i -definition of funcM . 2

It should be noted that the proof of Theorem 2 involved formalizing, in
Si

3 , the algorithm of Remark 2 above.

It is easy to see that Ri
3 and Si−1

3 prove that the class FP
Σp

i
3 [wit, logO(1)]

is closed under composition. Next we show that Ri
3 and Si−1

3 are also able

to prove that the class FP
Σp

i
3 [wit, logO(1)] is closed under limited logarithmic

recursion on notation. We say that f is defined from g and h by limited
logarithmic recursion on notation with bound k if and only if f is defined by
the following:

f(x, ~y) = f ∗(|x|, ~y)

17

where

f∗(0, ~y) = g(~y)

f ∗(z, ~y) = min{h(z, ~y, f ∗(b1
2
zc, ~y)), k(~y)} for z 6= 0.

The definition of limited logarithmic recursion on notation is phrased so that
the only purpose of k is to bound the size of the values of f ∗(z, ~y). Thus we

shall henceforth consider only bounds k(~y) of the form kc(~y) = 22|(|~y|)|
c

where
c is a constant.

Theorem 5 Let i ≥ 1. Suppose Mg and Mh are explicitly FP
Σp

i
3 [wit, logO(1)]

Turing machines which compute multivalued functions g and h and suppose

c > 0. Then there is a canonical, explicitly FP
Σp

i
3 [wit, logO(1)] Turing machine

M computing the function f obtained by limited logarithmic recursion from g
and h with bound kc such that Si

3 can prove that the function computed by Mf

satisfies the defining equations for f in terms of g and h.

Proof It is easy enough for Si
3 to construct Mf from Mg , Mh and c so that

Mf computes f in the obvious straightforward manner. It is also easy for
Si

3 to prove that Mf has #3 -runtime and only asks (log(|x|+ |~y|))O(1) oracle
queries, since Mg and Mh also satisfy such bounds and the computation of f
consists of computing g once and iterating h only (log |x|) many times. 2

Next we show that FP
Σp

i
3 [wit, logO(1)] is closed under a form of parallel

computation.

Definition Suppose n ≥ 1 and f is an n-ary multivalued function. Then f
is the multivalued function defined by:

f(m,~x) = 〈f(0, ~x), f(1, ~x), . . . , f(|m| − 1, ~x)〉. (1)

Theorem 6 Fix i ≥ 1.

(a) Suppose f is a FP
Σp

i
3 [wit, logO(1)] function. Then f is also a

FP
Σp

i
3 [wit, logO(1)] function.

18

(b) Let Mf be an explicitly FP
Σp

i
3 [wit, logO(1)] Turing machine computing

a function f . Then there is a canonical FP
Σp

i
3 [wit, logO(1)] Turing

machine Mf computing the function f such that Si
3 can prove that for

every value of funcMf
(m,~x) there are values of f(0, ~x), . . . , f(|m|−1, ~x)

that satisfy equation (1).

Remark: Theorem 6 can be strengthened by additionally requiring in (b)
that Si

3 can prove that for all values of f(0, ~x), . . . , f(|m| − 1, ~x), there
is a value of funcMf

(m,~x) which makes equation (1) true. An indirect

way to prove this is to use Theorem 20 below and the fact that Ri
3 proves

Σb
i -replacement.

Proof (The main ideas of this proof may be found already in [8, 5, 19].) We
shall prove (a) and leave it to the reader to show that for fixed Mf , the proof

can be formalized in Si
3 . Let Mf be an FP

Σp
i

3 [wit, logO(1)] Turing machine

that runs in time 2(log n)k
and asks (log n)k queries to a Σp

i witness oracle
Ω(q) = (∃z ≤ t(q))B(q, z) on inputs of length n . Let M be the Turing
machine which computes f in the straightforward way by running M on the
inputs 0, ~x , the inputs 1, ~x , etc., up to |m| − 1, ~x . The runtime of M is
O(|m| · 2(log n)k

) which is O(2(log n)k+1
); however, the number of witness oracle

queries made by M is only bounded by |m| · (log n)k which is O(n(log n)k).
So M has the desired runtime but makes far too many oracle queries and
we need to devise a more sophisticated Turing machine Mf which is in

FP
Σp

i
3 [wit, logO(1)] and computes the same function as M (or, more correctly,

funcMf
⊆ funcM).

By Remark 2 we may assume that Mf ignores the contents of its oracle
response tape until after the final query to the witness oracle. It follows that,
for any fixed input values, there are at most 2(log n)k − 1 many possible oracle
queries which can be made in any precomputation of M on those inputs
(recall that a precomputation need not have correct oracle answers). This is
because the i-th query of M will depend only on the inputs and on the prior
Yes/No answers of the oracle and because M asks at most (log n)k many
oracle queries. Thus, for an fixed input values m,~x , there is a set containing
at most |m| · (2(log n)k − 1) queries which contains all the queries that M may
ask in any precomputation. This set of queries can be indexed by pairs (i, j)
where i < |m| and 0 < j < 2(log n)k

; namely, let ` = |j| − 1 and define qi,j to

19

be the (` + 1)-st query in a precomputation of M(i, ~x) if, for all k < ` , the
(k + 1)-st query in the pre-computation was answered ‘Yes’ iff Bit(k, j) = 1.
In other words, qi,j is the next query M(i, ~x) will ask if the prior queries were
answered as specified by the bits of the binary representation of j . Form the
array (

qi,j : 0 ≤ i < |m|, 0 < j < 2(log n)k
)

of all possible queries in any precomputation of M(m,~x).
We are now ready to describe the Turing machine Mf . First, Mf computes

all the entries (queries) qi,j in the array. Second, Mf uses a binary search
procedure to find the number of entries q in the array such that Ω(q) holds.
This is accomplished by asking queries of the following form, for p an integer:

“Do there exist at least p many entries q such that Ω(q)?”

Since Ω ∈ Σp
i , these queries are also Σp

i properties (of p and the array of
queries). The response to such a query either is a ‘No’ answer or is a ‘Yes’
answer and an array of values z which witness at least p of the queries
satisfying Ω. After |m| + (log n)k many queries, Mf has ascertained the
precise number of entries which for which Ω(q) is true and on the response
tape there is any array of values zi,j which either indicate that Ω(qi,j) is
false or which are a witness to the truth of Ω(qi,j). Third, Mf simulates the

execution of M except that whenever M would query the oracle, Mf instead
looks up the answer (which is already on Mf ’s response tape).

That completes the proof of part (a). The reader should convince him-
or herself that this argument can be formalized in Si

3 . It might be useful to
remember that Si

3 admits PIND for Σb
i+1 ∩ Πb

i+1 predicates [3]. For instance,
the formula expressing the property that there are ≥ p and < p′ many
entries qi,j which satisfy Ω(qi,j) is a Boolean combination of Σb

i -formulas and
Si

3 admits PIND for such a formula.
Q.E.D. Theorem 6

Theorem 6 is quite useful in a variety of situations. As one application,
let P (x, ~y, z) be a predicate; we say that h(~y, z) is defined by length-bounded
minimization from P if

h(~y, z) =

{
the least x ≤ |z| such that P (x, ~y, z) if such an x exists

|z| + 1 otherwise

20

We use h(~y, z) = (µx ≤ |z|)P (x, ~y, z) as a compact notation for definition by
length-bounded minimization.

Theorem 7 (i ≥ 1) Let P (x, ~y, z) be a Πp
i -predicate. Then the

function h(~y, z) defined from P by length-bounded minimization is

in FP
Σp

i
3 [wit, logO(1)]. Furthermore, there is a canonical, explicitly

FP
Σp

i
3 [wit, logO(1)] Turing machine M such that Si

3 can prove the the function
h computed by M satisfies the above defining equation for length-bounded
minimization.

Proof Let f(x, ~y, z) be the function which is equal to 1 if P (x, ~y, z) holds

and is equal to 0 otherwise. Clearly f is in FP
Σp

i
3 [wit, logO(1)] since it can be

computed with a single (non-witness) oracle query to the Πp
i -predicate P . By

Theorem 6, it follows that the function f is also in FP
Σp

i
3 [wit, logO(1)] . And h

can be easily computed in polynomial time without any further oracle queries
from f(2z + 1, ~x, z) since |2z + 1| = |z| + 1. 2

3.3 Some Function Definitions in U i
2 and V i

2

In this section we shall begin the investigation of the functions which are
Σ1,b

i+1 -definable in the three theories V i
2 , U i+1

2 and V i+1
2 where i ≥ 1. It is

shown in this section that every EXPTIMEΣ1,p
i function is Σ1,b

i+1 -definable in

V i+1
2 and that every EXPTIMEΣ1,p

i [wit, poly] function is Σ1,b
i+1 -definable in the

theories V i
2 and U i+1

2 . Recall that Buss [2] has shown that the Σ1,b
1 -definable

functions of U1
2 and V 1

2 are precisely the polynomial space and exponential
time computable functions, respectively (in [2], this was only shown for
functions with first-order values, but the methods immediately extend to
functions with second-order values). Because of the “RSUV isomorphism”,
the theories U i

2 and V i
2 are in some sense equivalent to Ri

3 and Si
3 ; thus we

shall often just outline or omit proofs because they will precisely parallel the
proofs already given for Ri

3 and Si
3 .

A Turing machine M is said to be an explicit EXPTIMEΣ1,p
i Turing

machine or an explicit EXPTIMEΣ1,p
i [wit, poly] Turing machine if it has

builtin ‘clocks’ that limit the run time to 2nk
step and, in the latter case, the

number of oracle queries to nk for some constant k . Here n is the total length

21

of the first-order inputs to M ; these runtime bounds will limit M to accessing
at most the first 2nk

symbols (i.e., bits) of its oracles; thus if a second-order
input has a length > 2nk

the excess symbols are ignored.
If M has a Σp

i (witness) oracle let the formula RunM(x, α, ζ) state that
the second-order object ζ codes a correct computation of M on input x, α :
it is easy to see that RunM is a Σ1,b

i+1 ∩Π1,b
i+1 formula. (In the sequel, x and α

may be vectors of first- and second-order objects, respectively.)

Theorem 8 For i ≥ 0 and M an explicit EXPTIMEΣ1,p
i Turing machine,

V i+1
2 ` (∀x)(∀α)(∃ζ)RunM(x, α, ζ)

Hence V i+1
2 can Σ1,b

i+1 -define every EXPTIMEΣ1,p
i -function.

The proof of Theorem 8 is entirely analogous to the proof of the the fact that
Si+1

3 can Σb
i+1 -define every function #3 -time computable with an oracle for

Σp
i . To prove this directly for V i+1

2 , one can modify the proof of Theorem
10.1 of [2].

Theorem 9 Let i ≥ 1 and M be an explicit EXPTIMEΣ1,p
i [wit, poly] Turing

machine. Then

(a) V i
2 ` (∀x)(∀α)(∃ζ)RunM(x, α, ζ)

(b) U i+1
2 ` (∀x)(∀α)(∃ζ)RunM(x, α, ζ)

Hence V i
2 and U i+1

2 can Σ1,b
i+1 -define every EXPTIMEΣ1,p

i [wit, poly]-function.

The proof of Theorem 9 is analogous to the proof of Theorem 2. It suffices
to prove the theorem for V i

2 since it is a subtheory of U i+1
2 . The notion of a

precompuation of M is defined analogously as before and likewise a formula
QCompM(ζ, x, α, v) is defined which says that ζ codes a precomputation
of M in which the i-th oracle query returns a (correct) yes answer iff the
i-th most significant bit of the binary representation of v is a “1”. Note that
since only polynomially many queries may be made by M , v is a first-order
object. Now V i

2 can prove that there exists a maximum value for v such that
(∃ζ)M(ζ, x, α, v); this maximum value must give a true, correct computation
of M . We leave it to the reader to supply the rest of the details of the proof.

22

It is obvious that the classes EXPTIMEΣ1,p
i and EXPTIMEΣ1,p

i [wit, poly]
are closed under composition, and provably so in the theories V i+1

2 and the
theories V i

2 and U i+1
2 , respectively. We next discuss the closure of these

classes under limited forms of primitive recursion.

Definition Let g and h be (possibly multivalued) functions which have
second-order values. We say that f is defined from g and h by first-order
recursion iff f is defined by

f(0, ~y, ~α) = g(~y, ~α)

f(x + 1, ~y, ~α) = h(x, ~y, ~α, f(x, ~y, ~α))

We say f is defined by first-order recursion on notation iff f is defined by

f(0, ~y, ~α) = g(~y, ~α)

f(x, ~y, ~α) = h(x, ~y, ~α, f(b1
2
xc, ~y, ~α))

Because the second-order objects have length exponential in the length of
the first-order objects, one can think of “first-order” as a synonym for “loga-
rithmic”; hence the notion of first-order recursion on notation is analogous
to the notion of logarithmic recursion on notation. One important thing to
note about the definition of f by first-order recursion (on notation) is that g
and h and hence f must take on second-order values. Because of this there
is no need to limit to growth rate of the values of f by a function k as we
did in the definition of limited logarithmic recursion on notation. For this,
it is important that the runtime bounds and number of queries bounds for

computation in EXPTIMEΣ1,p
i and EXPTIMEΣ1,p

i [wit, poly] are in terms of
the total length n of the first-order inputs.

Theorem 10 Let i ≥ 0. Suppose Mg and Mh are explicit EXPTIMEΣ1,p
i

Turing machines computing functions of the appropriate number of first- and
second-order arguments with second-order outputs. Then there is a canonical

explicit EXPTIMEΣ1,p
i Turing machine Mf computing the function f defined

from g and h by first-order recursion such that V i+1
2 proves that the function

computed by Mf satisfies the defining equation for f in terms of g and h.

23

Theorem 11 Let i ≥ 0. Suppose Mg and Mh are explicit

EXPTIMEΣ1,p
i [wit, poly] Turing machines computing multivalued functions

g and h of the appropriate number of first- and second-order argu-
ments with second-order outputs. Then there is a canonical explicit

EXPTIMEΣ1,p
i [wit, poly] Turing machine Mf computing the multivalued func-

tion f defined from g and h by first-order recursion on notation such that V i
2

proves that the function computed by Mf satisfies the defining equation for f
in terms of g and h.

The proofs of Theorems 10 and 11 are based on the fact that the straight-
forward computation of f in terms of g and h satisfies the proper runtime
bounds and, for the second theorem, makes only polynomially many oracle
queries.

Next we shall define a new version of f and prove an analogue of
Theorem 6. Since f will generally have second-order values, we need to
define a notion of sequences of second-order object; a sequence of second-order
objects can be coded by a single second-order object using the ββ and 〈 · · · 〉
conventions from [2]. Recall that ββ (a, α) is the abstract {x}α(〈a, x〉) and
that if αi are second-order objects then

〈α1, . . . , αn〉
is the second-order object such that ββ (a, 〈~α〉) is αa for all a ≤ n .

Definition Let f(x, ~y, ~α) be a function which takes second-order values.
The function f is defined by

f(x, ~y, ~α) = 〈f(0, ~y, ~α), f(1, ~y, ~α), . . . , f(x, ~y, ~α)〉. (2)

Note that f may be multivalued if f is.

Theorem 12 Fix i ≥ 0.

(a) Suppose f is a EXPTIMEΣ1,p
i -function. Then f is also a EXPTIMEΣ1,p

i -
function.

(b) Suppose Mf is an explicit EXPTIMEΣ1,p
i Turing machine computing a

function f . There there is a canonical EXPTIMEΣ1,p
i Turing machine

that computes the function f such that V i+1
2 can prove that the function

computed by the Turing machine satisfies equation (2).

24

Theorem 12 is proved by noting that f can be computed from f by
straightforwardly computing each requisite value of f — this can be easily
formalized in V i+1

2 .

Theorem 13 Fix i ≥ 1.

(a) Suppose f is a EXPTIMEΣ1,p
i [wit, poly]-function (multivalued). Then f

is also a EXPTIMEΣ1,p
i [wit, poly]-function (multivalued).

(b) Suppose Mf is an explicit EXPTIMEΣ1,p
i [wit, poly] Turing machine com-

puting a function f . There there is a canonical EXPTIMEΣ1,p
i [wit, poly]

Turing machine that computes the function f such that V i
2 can prove

that the function computed by the Turing machine satisfies equation (2).

Theorem 13 is proved by a rather complicated construction analogous to the
proof of Theorem 6. We omit this proof.

Finally we consider first-order minimization. Let P (x, ~y, z, ~α) be a
predicate where x, ~y, z are first-order arguments; h(~y, z, ~α) is defined by
first-order minimization from P if

h(~y, z, ~α) =

{
the least x ≤ z such that P (x, ~y, z, ~α) if such an x exists

z + 1 otherwise

Note the function h defined by first-order minimization has a first-order value.
We use h(~y, z, ~α) = (µx ≤ z)P (x, ~y, z, ~α) as a compact notation for definition
by first-order minimization.

Theorem 14 (i ≥ 1) Let P (x, ~y, z, ~α) be a Π1,p
i -predicate. Then the

function h(~y, z, ~α) defined from P by first-order minimization is in

EXPTIMEΣ1,p
i [wit, poly]. Furthermore, there is a canonical, explicitly

FP
Σp

i
3 [wit, logO(1)] Turing machine M such that V i

2 can prove the the func-
tion h computed by M satisfies the above defining equation for first-order
minimization.

Theorem 14 is proved similarly to Theorem 7; namely, apply Theorem 13 to
the characteristic function of P .

25

4 The Σb
i -Definable Functions of Ri

3 and Si−1
3

In this section, the Σb
i -definable functions of Ri

3 and Si−1
3 are character-

ized. We have already shown that every FP
Σp

i−1

3 [wit, logO(1)] function is
Σb

i -definable in these theories. It will suffice to establish the converse for the
stronger theory Ri

3 : we shall do this by proving a ‘witnessing theorem’ which
states that every sequent of Σb

i -formulas provable in Ri
3 is ‘witnessed’ by a

FP
Σp

i−1

3 [wit, logO(1)] function (provably in Si
3). This not only characterizes the

Σb
i -definable functions of Ri

3 and Si−1
3 , but also gives a conservation result

between the two theories and proves that Si−1
3 admits ∆b

i -PIND.

4.1 The Witness Formula

We next review briefly a definition from [2] which is necessary for the the
characterization of the Σb

i -definable functions of Si−1
3 and Ri

3 . For the rest of
this section, i ≥ 1 will be a fixed integer; the applications in this paper only
need i > 1. Let A(~a) be a Σb

i -formula. A formula Witnessi,~a
A (w,~a) is defined

which has limited quantifier complexity and which states that w is a number
‘witnessing’ the truth of A(~a).

Definition Suppose A(~a) ∈ Σb
i and ~a is a vector of variables including all

those free in A . The formula Witnessi,~a
A is defined below, inductively on the

complexity of A :

(1) If A ∈ Πb
i−1 then Witnessi,~a

A is just A itself.

(2) If A is B ∧ C then define

Witnessi,~a
A (w,~a) ⇐⇒ Witnessi,~a

B (β(1, w),~a) ∧ Witnessi,~a
C (β(2, w),~a).

(3) If A is B ∨ C then define

Witnessi,~a
A (w,~a) ⇐⇒ Witnessi,~a

B (β(1, w),~a) ∨ Witnessi,~a
C (β(2, w),~a).

(4) If A is B → C and is not in Π1,b
i−1 then we define

Witnessi,~a
A (w,~a) ⇐⇒ Witnessi,~a

¬B(β(1, w),~a) ∨ Witnessi,~a
C (β(2, w),~a).

26

(5) If A /∈ Πb
i−1 and A(~a) is (∀x ≤ |s(~a)|)B(~a, x) then define

Witnessi,~a
A (w,~a) ⇐⇒ Seq(w) ∧ Len(w) = |s(~a)| + 1∧

∧(∀x ≤ |s(~a)|)Witnessi,~a,b
B(~a,b)(β(x + 1, w),~a, x).

In words, w witnesses A(~a) if w = 〈w0, . . . , w|s|〉 and each wi witnesses
B(~a, i). The formula Seq(w) says w is a valid Gödel number of a
sequence and Len(w) is a function giving the number of entries in the
sequence w .

(6) If A /∈ Πb
i−1 and A is (∃x ≤ t(~a))B(~a, x) then define

Witnessi,~a
A (w,~a) ⇐⇒ Seq(w) ∧ Len(w) = 2 ∧ β(1, w) ≤ t(~a)∧

∧Witnessi,~a,b
B(~a,b)(β(2, w),~a, β(1, w)).

So w witnesses A(~a) if w = 〈n, v〉 where n ≤ t(~a) and v witnesses
B(~a, n).

(7) If A /∈ Πb
i−1 and A is ¬B then use prenex operations to push the negation

sign into the formula so that it can be handled by cases (1)–(6).

The purpose of defining Witness is to give a canonical way of verifying
that A(~a) is true. It is easy to see that (∃w)Witnessi,~a

A (w,~a) is equivalent to
A(~a). The next propositions express some properties of Witness ; these are
proved mostly by induction on the complexity of A .

Proposition 15 For i ≥ 2, and A ∈ Σb
i , Witnessi,~a

A is a Πb
i−1 -formula.

Proposition 16 (i ≥ 1). Let A(~a) be a Σb
i -formula. Then

Si−1
3 ` Witnessi,~a

A (w,~a) → A(~a)

and there is a term tA(~a) such that

Si−1
3 + Σb

i -replacement ` A(~a) ↔ (∃w ≤ tA)Witnessi,~a
A (w,~a).

Also there is a Σb
1 -defined function gA(w) such that

S1
2 ` Witnessi,~a

A (w,~a) → Witnessi,~a
A (gA(w),~a) ∧ gA(w) ≤ tA.

27

Proposition 16 also holds for Si−1
2 and is proved by induction on the

complexity of A exactly as in the proofs of the corresponding theorems
in Buss [2, 3].

Proposition 17 (i ≥ 1). Let A be a Σb
i -formula. The predicate Witnessi,~a

A

is a Πp
i−1 -predicate.

4.2 The Witnessing Theorem for Si−1
3 and Ri

3

In this section we give the proof that every Σb
i -definable function of Si−1

3

and Ri
3 is in FP

Σp
i−1

3 [wit, logO(1)] . The proof is a proof-theoretic ‘witnessing
theorem’ and hence is constructive; however, it uses cut elimination and is not
feasibly constructive (since cut-elimination involves superexponential growth
rate). We now consider the theories of Bounded Arithmetic formalized in a
Gentzen-style sequent calculus: each line in a proof is a sequent of the form

A1, . . . , Ak→B1, . . . , B`

where each Aj and Bj is a formula. The intended meaning of this sequent
is that the conjunction of the antecedent A1, . . . , Ak implies the disjunction
of the succedent B1, . . . , B` . Note that the sequent connective symbol → is
distinct from the logical connective → . Capital Greek letters Γ, ∆, Π, Λ, . . .
will be used to denote a series of formulae separated by commas, these are
called cedents.

There are about 23 rules of inference for the sequent calculus; in addition,
there are induction rules which replace the induction axioms. The initial
sequents (i.e., axioms) of a sequent calculus proof must be equality axioms,
logical axioms or non-logical axioms. The theories Si−1

3 and Ri
3 each have a

finite set of open (i.e., quantifier free) sequents as initial sequents. There are
no induction axioms as initial sequents since induction rules are used instead.
An important theorem (due to Gentzen, but see also Takeuti [16]) concerning
the sequent calculus is that many instances of the cut rule may be eliminated
from proofs — more precisely, all free cuts may be eliminated from a proof.
Rather than define precisely what a free cut is, let us merely say that for
a proof of a Σb

i -formula in a theory Si−1
3 or Ri

2 , we may assume that every
formula appearing in the proof is a Σb

i - or a Πb
i -formula. For more information

28

on the sequent calculus see Takeuti [16] and for information on the sequent
calculus for theories of Bounded Arithmetic, consult chapter 4 of [2].

If Γ is a cedent we write
∧

Γ and
∨

Γ to denote the conjunction and
disjunction, respectively, of the formulae in Γ. Conjunction and disjunction
associate from right to left; for example, if Γ is A,B,C then

∧
Γ denotes

A ∧ (B ∧ C).
The theory Ri

3 has the function and predicate symbols β , Seq , and Len
which manipulate Gödel numbers of sequences (i > 1). These function
symbols can be Σb

1 -defined by Si−1
3 , for i > 1, and w.l.o.g. we assume that

the language of Si−1
3 is enlarged to contain these function symbols. We use

〈a1, . . . , an〉 to denote the Gödel number of the sequence a1, . . . , an . Also,
∗ is a binary function defined so that

〈a1, . . . , an〉 ∗ an+1 = 〈a1, . . . , an, an+1〉.
Finally 〈〈a1, . . . , an〉〉 is equal to 〈a1, 〈a2, . . . , 〈an−1, an〉 . . .〉 〉 .

These conventions allow us to conveniently discuss witnessing a cedent.
For example, suppose Γ is A1, . . . , An and that w = 〈〈w1, . . . , wn〉〉 . Then
Witnessi,~a∧Γ

(w,~a) holds if and only if Witnessi,~a
Aj

(wj,~a) holds for all 1 ≤ j ≤ n .

Theorem 18 (The Witnessing Lemma for Si−1
3 and Ri

3)
Fix i > 1. Suppose the sequent Γ, Π→∆, Λ is a theorem of Ri

3 and each
formula in Γ∪∆ is Σb

i and each formula in Π∪Λ is Πb
i . Let c1, . . . , cp be the

free variables in the sequent and let G and H be the formulae

G =
(∧

Γ
)
∧

∧
{¬C : C ∈ Λ}

and
H =

(∨
∆

)
∨

∨
{¬C : C ∈ Π}.

Then there is a FP
Σp

i−1

3 [wit, logO(1)] function f which is Σb
i -defined by Si−1

3

such that
Si−1

3 ` Witnessi,~c
G (w,~c) → Witnessi,~c

H (f(w,~c),~c).

Furthermore, Si−1
3 defines f as being equal to funcM for some explicit

FP
Σp

i−1

3 [wit, logO(1)] Turing machine.

29

Proof
A formula is said to be in negation normal form if every negation sign (¬)

has an atomic formula in its scope. Since any formula is logically equivalent to
a formula in negation normal form, we may, without loss of generality, restrict
our attention to proofs in which every formula is in negation normal form.
In particular, the induction formulas and every formula in the endsequent
are restricted to being in negation normal form. This simplifies the notation
considerably since now Π and Λ may, without loss of generality, be presumed
to be the empty cedent.

By the free-cut elimination theorem there is a Ri
3 -proof P of Γ→∆ such

that every formula in the proof is in negation normal form and every cut
in P has a Σb

i principal formula and such that P is in free variable normal
form (see [2] for definitions). The proof of Theorem 18 is by induction on the
number of sequents in the proof P .

To begin, consider the case where P has no inferences and consists of a
single sequent. This sequent must be a nonlogical axiom of Ri

3 or a logical
axiom or an equality axiom. In any event, it contains only atomic formulae
and is also a consequence of Si−1

3 . For atomic formulae A , Witnessi,~c
A is just

A itself; hence this case is completely trivial.
The argument for the induction step splits into thirteen cases depending

on the final inference of P . Since the general form of this induction is by
now quite familiar, we shall omit the easier cases and discuss only the more
difficult cases of the induction step.

Case (1): (∨ :left) Suppose the last inference of P is

B, Γ∗→∆ C, Γ∗→∆

B ∨ C, Γ∗→∆

Let D be the formula B ∧ (
∧

Γ∗) and let E be C ∧ (
∧

Γ∗) and let F be

(B ∨C)∧ (
∧

Γ∗). By the induction hypothesis, there are FP
Σp

i−1

3 [wit, logO(1)]
functions g and h such that

Si−1
3 ` Witnessi,~c

D (w,~c) → Witnessi,~c∨∆
(g(w,~c),~c)

and
Si−1

3 ` Witnessi,~c
E (w,~c) → Witnessi,~c∨∆

(h(w,~c),~c).

30

Let the function k be defined by

k(v, w,~c) =

{
v if Witnessi,~c∨∆

(v,~c)
w otherwise

By Proposition 17, k(w, a, b,~c) can be computed with a single call to a

Σp
i−1 -oracle; thus k is a FP

Σp
i−1

3 [wit, logO(1)] function. Let f be the function

f(w,~c) = k(g∗(w,~c), h∗(w,~c),~c)

where
g∗(w,~c) = g(〈β(1, β(1, w)), β(2, w)〉,~c)

and
h∗(w,~c) = h(〈β(2, β(1, w)), β(2, w)〉,~c).

Since f is defined as the composition of FP
Σp

i−1

3 [wit, logO(1)] functions, f is

itself in FP
Σp

i−1

3 [wit, logO(1)] . Clearly f can be intensionally defined by Si−1
3

and the conditions of Theorem 18 are satisfied.

Case (2): (∧ :right). Suppose the last inference of P is

Γ→B, ∆∗ Γ→C, ∆∗

Γ→B ∧ C, ∆∗

The argument for this case is similar to that of case (1). Let D be the formula
B ∨ (

∨
∆∗), let E be C ∨ (

∨
∆∗) and let F be (B ∧ C) ∨ (

∨
∆∗). The

induction hypothesis is that there are FP
Σp

i−1

3 [wit, logO(1)] functions g and h
so that

Si−1
3 ` Witnessi,~c∧Γ

(w,~c) → Witnessi,~c
D (g(w,~c),~c)

and
Si−1

3 ` Witnessi,~c∧Γ
(w,~c) → Witnessi,~c

E (h(w,~c),~c).

Let k be the function such that

k(v, w,~c) =

{
v if Witnessi,~c∨∆∗(v,~c)
w otherwise.

By Proposition 17, Witnessi,~c∨∆∗ is a Πb
i−1 -predicate; hence k is a

FP
Σp

i−1

3 [wit, logO(1)] function. Let f be the function

f(w,~c) = 〈 〈β(1, g(w,~c)), β(1, h(w,~c))〉, k(β(2, g(w,~c)), β(2, h(w,~c)),~c)〉.
As in case (1), it is clear that f satisfies the desired conditions.

31

Case (3): (∃ ≤ :left). Suppose the last inference of P is

a ≤ s,B(a), Γ∗→∆
(∃x ≤ s)B(x), Γ∗→∆

The free variable a is the eigenvariable and appears only as indicated. Let D
be the formula a ≤ s∧ (B(a)∧ (

∧
Γ∗)) and let E be (∃x ≤ s)B(x)∧ (

∧
Γ∗).

By the induction hypothesis, there is a FP
Σp

i−1

3 [wit, logO(1)] function g such
that

Si−1
3 ` Witnessi,~c,a

D (w,~c, a) → Witnessi,~c∨∆
(g(w,~c, a),~c).

(Note that the variable a can be omitted from the right hand side of the
implication since it does not appear free in ∆.)

We wish to define a function h(w,~c) which produces a value for a such
that B(a) holds: we can apply the function g to this to get a witness for∨

Γ. To define h , we must consider three subcases: first, if (∃x ≤ s)B
is in Σb

i \ Πb
i−1 , let h(w,~c) = β(1, β(1, w)); if w is a witness for E then

h(w,~c) is a value for a such that B(a) holds and such that β(2, β(1, w))
is a witness for B(a). Second, if (∃x ≤ s)B ∈ Σb

i−1 ∩ Πb
i−1 , h(w,~c) is

the (possibily multivalued) function which is computed by asking a witness
oracle for (∃x ≤ s)B(x) for a value for x ; i.e., h(w,~c) = a iff a ≤ s
and B(a) holds. Third, if (∃x ≤ s)B ∈ Πb

i−1 \ Σb
i−1 , then the quantifier

(∃x ≤ s) must be sharply bounded with s = |r| for some term r . Define

h by h(w,~c) = (µx ≤ |r|)B(x,~c); by Theorem 7, h is a FP
Σp

i−1

3 [wit, logO(1)]
function definable by Si−1

3 .
In each case, we have that

Si−1
3 ` Witnessi,~c

E (w,~c) → B(h(w,~c),~c) ∧ h(w,~c) ≤ s(~c)

and, indeed, that

Si−1
3 ` Witnessi,~c

E (w,~c) → Witnessi,~c,a
B (β(2, β(1, w)),~c, h(w,~c)).

The desired FP
Σp

i−1

3 [wit, logO(1)] function f(w,~c) is given by

f(w,~c) = g(〈〈0, β(2, β(1, w)), β(2, w)〉〉,~c, h(w,~c))

and it is can easily be checked that all the conditions of Theorem 18 hold.

32

Case (4): (∀ ≤ :right). Suppose the last inference of P is:

a ≤ s, Γ→B(a), ∆∗

Γ→(∀x ≤ s)B(x), ∆∗

(As usual this is one of the hardest cases.) The free variable a is the
eigenvariable and must appear only as indicated. Let D be the formula
a ≤ s∧ (

∧
Γ), let E be B(a)∨ (

∨
∆∗) and let F be (∀x ≤ s)B(x)∨ (

∨
∆∗).

The induction hypothesis is that there is a FP
Σp

i−1

3 [wit, logO(1)] function g
such that

Si−1
3 ` Witnessi,~c,a

D (w,~c, a) → Witnessi,~c,a
E (g(w,~c, a),~c, a).

First, consider the case where (∀x ≤ s)B(x) is in Πb
i−1 . We shall define a

function f such that

Si−1
3 ` Witnessi,~c

D (w,~c) → Witnessi,~c
F (f(w,~c),~c).

by informally describing how to compute f . It will be clear that f is a

FP
Σp

i−1

3 [wit, logO(1)] function since g is. To compute f(w,~c), first ask a Σp
i−1

witness oracle if there exists a value a ≤ s(~c) such that ¬B(a,~c) holds. If such
an value exists, the oracle returns a value a , and f(w,~c) = g(〈0, w〉,~c, a). If no
such value exists, then f(w,~c) = 〈0, 0〉 . In the latter case, 〈0, 0〉 is a witness
for F (~c, s) since 0 is a witness for the true Πb

i−1 formula (∀x ≤ s)B(x).
Second, consider the case where (∀x ≤ s)B(x) is in Σb

i \ Πb
i−1 . Then it

must be that (∀x ≤ s) is sharply bounded and s = |r| for some term r . Let
k be the function defined by

k(w,~c, a) =

{
〈0, β(1, g(w,~c, a))〉 if Witnessi,~c,a

B (β(1, g(w,~c, a)),~c, a)

〈1, β(2, g(w,~c, a))〉 otherwise.

To understand the defintion of k ; note that the function g(w,~c, a) provides
a witness for E ; such a witness is an ordered pair 〈v1, v2〉 such that either v1

is a witness for B(a) or v2 is a witness for
∨

∆∗ . By definition, k(w,~c, a) is
equal to 〈0, v1〉 in the former case and to 〈1, v2〉 otherwise. It is clear that k

is a FP
Σp

i−1

3 [wit, logO(1)] function since g is and by Proposition 17. Now let

33

k(w,~c, a) be the FP
Σp

i−1

3 [wit, logO(1)] function defined from k as in Theorem 6.
And define the function f(w,~c) in terms of k by letting

f(w,~c) =

{ 〈〈w0, . . . , w|s|〉, 0〉 if ai = 0 for all i
〈0, wi〉 for the least i s.t. ai = 1, otherwise

where k(2s(~c) + 1, ~x, a) = 〈〈a0, w0〉, . . . , 〈a|s|, w|s|〉〉 . Clearly f is defined by

a polynomial function of the value of k and, by construction, f satisfies the
desired conditions for Theorem 18.

Case (5): (Σb
i -LLIND). Suppose the last inference of P is

B(b1
2
ac), Γ∗→B(a), ∆∗

B(0), Γ∗→B(|t|), ∆∗

where a is the eigenvariable and must not appear in the lower sequent.
Let D be the formula B(b1

2
ac)∧ (

∧
Γ∗), let E(~c, a) be B(a)∨ (

∨
∆∗), let

F be B(0) ∧ (
∧

Γ∗) and let A be B(|t|) ∨ (
∨

∆∗). The induction hypothesis

is that there is a FP
Σp

i−1

3 [wit, logO(1)] function g such that

Si−1
2 ` Witnessi+1,~c,a

D (w,~c, a) → Witnessi+1,~c,a
E (g(w,~c, a),~c, a).

By Proposition 16 there is a polynomial time computable function gE which
is Σb

1 -definable in Si−1
3 and a term tE such that Si−1

3 can prove that if w is a
witness for E(~c, a) then gE(w) is ≤ tE(~c, a) and is also a witness for E(~c, a).
Define the function h by

h(0, w,~c) = gE(〈β(1, w), 0〉)

h(a, w,~c) =

{
h(b1

2
ac, w,~c) if Witnessi,~c,a

E (h(b1
2
ac, w,~c),~c, a)

gE(g(〈β(1, h(b1
2
ac, w,~c)), β(2, w)〉,~c, a)) otherwise

for a > 0. Also define f(w,~c) = h(|t|, w,~c). Because of the use of the
function gE , the values of h(a, w,~c) are bounded by tE(~c, a) and thus
f is defined by limited logarithmic recursion on notation from functions

inFP
Σp

i−1

3 [wit, logO(1)] and by Theorem 5, f is also in FP
Σp

i−1

3 [wit, logO(1)] and
Si−1

2 can prove that f can be computed by a canonical Turing machine.

34

Thus, Si−1
3 can prove that, for any computation of the value of f(w,~c),

there is a sequence of values

h(0, w,~c), · · · , h(
⌊|t|/2j

⌋
, w,~c), · · · , h(|t|, w,~c)

obtained during the computation. Now it is easy for Si−1
3 to prove that

h(b|t|/2jc , w,~c) is a witness for E(~c, b|t|/2jc) by Σb
i−1 -LBIND since the

formula Witnessi,~c,a
E is Πb

i−1 (in fact, Σb
i−1 -LIND is available). Thus

Si−1
3 ` Witnessi,~c

F (w,~c) → Witnessi,~c
A (f(w,~c),~c).

Q.E.D. Theorem 18

4.3 Some Corollaries

Theorem 19 (i > 1) The Σb
i -definable functions of Ri

3 and of Si−1
3 are

precisely the FP
Σp

i−1

3 [wit, logO(1)] functions.

Proof It is immediate from Theorem 18 that every Σb
i -definable function of

Ri
3 is an FP

Σp
i−1

3 [wit, logO(1)] function. Since Ri
3 ` Si−1

3 , the same is true of
every function Σb

i -definable function of Si−1
3 . Finally, by Theorem 3, every

FP
Σp

i−1

3 [wit, logO(1)] function is Σb
i -definable by Si−1

3 . 2

Theorem 20 The functions which are strongly Σb
i -definable by Ri

3 (or,

by Si−1
3) are precisely the strong FP

Σp
i−1

3 [wit, logO(1)] functions.

Proof Corollary 4 gives one direction. Conversely, suppose
Ri

3 ` (∀~x)(∃y)A(~x, y) where A ∈ Σb
i and let f be the function such that

f(~x) = y iff A(~x, y). We need to show that f is in strong FP
Σp

i−1

3 [wit, logO(1)] .

By Theorem 18, there is an explicit FP
Σp

i−1

3 [wit, logO(1)] Turing machine M
such that Si−1

3 ` (∀~x)A(~x, funcM(~x)). Without loss of generality, assume
A(~x, y) is of the form (∃z ≤ t′)B(~x, y, z) with B ∈ Πb

i−1 and with t′ a term
in the variables ~x only. Construct a Turing machine M ′ which runs the
following algorithm:

Input: ~x

35

(1) Simulate M(~x) until an output y0 is obtained.

(2) Ask the witness oracle query “(∃y ≤ t)(y = y)?”;
Then ask the witness oracle query “(∃z ≤ t′)(z = z)?”
Let y1 and z1 be the oracle responses.

(3) Ask the Σb
i−1 -query “¬B(~x, y1, z1)?”

If answer is Yes (so B is false), then output y0 and halt.
Otherwise, answer is No: output y1 and halt.

Clearly M ′ is explicitly FP
Σp

i−1

3 [wit, logO(1)] since M is. Step (2) of the
algorithm consists of asking known-to-be-true queries for the sole purpose
of generating nondeterministically values for y1 and z1 . If these values for
y1 and z1 happen to witness the truth of (∃y ≤ t)A , then y1 is output,
otherwise y0 is output. Having y0 ensures that at least one value of f(~x) can
be found; and nondeterministically guessing y1 and z1 makes it possible for
any y = f(~x) to be output. 2

Theorem 21 (i > 1) Ri
3 is ∀Σb

i -conservative over Si−1
3 .

Proof This is also immediate from Theorem 18: if Ri
3 proves a (∀~x)A(~x)

with A ∈ Σb
i , then Ri

3 proves the sequent →A(~c) and, by Theorem 18, Si−1
3

proves (∃w)Witnessi,~c
A (w,~c). Thus, Proposition 16, Si−1

3 proves (∀~x)A(~x). 2

The class of formulas which are Boolean combinations of Σb
i -formulas is

denoted B(Σb
i); and ∀B(Σb

i) is the set of universal generalizations of Boolean
combinations of Σb

i -formulas.

Theorem 22 Ri
3 is ∀B(Σb

i)-conservative over Si−1
3 + Σb

i -replacement.

Recall that Ri
3 ⊇ Si−1

3 + Σb
i -replacement; however, we have no indication as

to whether these theories are distinct.

Proof It suffices, of course, to show that any Boolean combina-
tion of Σb

i -formulas (with free variables) provable by Ri
3 is provable in

Si−1
3 + Σb

i -replacement. Since any Boolean combination can be written in
conjunctive normal form, it suffices to show that any disjunction of Σb

i -
and Πb

i -formulas provable in Ri
3 is provable in Si−1

3 + Σb
i -replacement. By

rewriting a disjunction as an implication in the form
∧

Aj →
∨

Bj with each

36

Aj and Bj in Σb
i , it suffices to show that if Ri

3 proves a sequent A→B with
A,B ∈ Σb

i then Si−1
3 + Σb

i -replacement proves the sequent too. If the sequent
is provable by Ri

3 then by Theorem 18, Si−1
3 proves

(∃w)Witnessi,~c
A (w,~c)→(∃w)Witnessi,~c

B (c,~c).

By Proposition 16, Si−1
3 + Σb

i -replacement proves (∃x)Witnessi,~c
A (w,~c) is

equivalent to A(~c) and likewise for B . Thus Si−1
3 + Σb

i -replacement proves
A → B . 2

Recall that a formula is ∆b
i+1 with respect to a theory if and only if the theory

proves that the formula is equivalent to a Σb
i+1 -formula and to a Πb

i+1 -formula.

Theorem 23 (i ≥ 1) Si
3 admits ∆b

i+1 -PIND.

Proof For any formula A which is ∆b
i+1 w.r.t. Si

3 , the induction axiom for A
is a ∀Σb

i+1 -sentence. Since Ri+1
3 proves ∆b

i+1 -PIND, it follows that Si
3 does

too. 2

Actually there is another proof of the previous theorem which also applies
to Si

2 ; this gives the following stronger result which answers a question from
Buss [3].

Theorem 24 (i ≥ 1) Si
2 admits ∆b

i+1 -PIND.

Proof Based on a theorem of Ressayre it was shown in [3] that
Si

2 + Σb
i+1 -replacement is Σb

i+1 -conservative over Si
2 . Since the ∆b

i+1 -
PIND axioms are equivalent to ∀Σb

i+1 -formulas, it suffices to show that
Si

2 + Σb
i+1 -replacement proves the ∆b

i+1 -PIND axioms. It is easy to see that
Σb

i+1 -replacement implies ‘comprehension’ for ∆b
i+1 formulas; i.e., if A(u) is

∆b
i+1 then Si

2 + Σb
i+1 -replacement proves

(∃w)(∀u ≤ |t|)(Bit(u,w) = 1 ↔ A(u))

where t may be any term not involving u,w and A(u) may have other
variables besides u as parameters. Now LIND for A follows easily from the
existence of w (just do LIND on Bit(u,w) = 1). 2

37

We conclude this section with a couple open questions regarding the
theories above results.

First, it would be interesting to know if any Σb
i -defined function of

Ri
3 (equivalently, Si−1

3) can be strenthened to be a provably single-valued
function. That is, if Ri

3 proves (∀x)(∃y)A(x, y) with A ∈ Σb
i , must there be a

formula A∗(x, y) ∈ Σb
i such that Ri

3 proves A∗(x, y) → A(x, y) and such that
Ri

3 proves (∀x)(∃!y)A∗(x, y)? It would also be nice to know this for Si−1
3 as

well (this does not seem to automatically follow from the statement for Ri
3).

Note that this capability of strenthening a function definition does exist for
prior-studied theories such as Si

2 .
Second, it is open whether the conservation results of Theorems 21 and 22

hold for the theories Ri
2 and Si−1

2 in place of Ri
3 and Si−1

3 . Likewise, it would
be quite interesting to know what the Σb

i -definable functions of Ri
2 are. It

seems that Ri
3 is somehow a much more natural theory than Ri

2 ; as if the
growth rate of the #3 function is somehow naturally linked to the LLIND
and LBIND axioms (at least at our present state of knowledge). Note that
Kraj́ıček [11] has shown that the Σb

i -definable functions of Si−1
2 are precisely

the functions in FPΣp
i [wit, log] .

5 The Σ1,b
i -Definable Functions of Three

Second-Order Systems

In this section, the Σ1,b
i -definable functions of the theories V i−1

2 ,
U i

2 and V i
2 are characterized. We have already shown that every

EXPTIMEΣ1,p
i−1 [wit, poly] function is Σ1,b

i -definable in these theories in the

first two theories and that every EXPTIMEΣ1,p
i function is Σ1,b

i -definable in
the third theory. To prove the converses, we shall prove ‘witnessing theorems’
regarding sequents of Σ1,b

i -formulas provable in these theories.

5.1 The Witness Formula

In [2] a predicate Witness2 was defined for the purpose of witnessing
Σ1,b

1 -formulas; we must generalize this definition to handle witnessing Σ1,b
i -

formulas. For the rest of this section, i ≥ 1 will be a fixed integer; the
applications in this paper only need i > 1. Let A(~a, ~α) be a Σ1,b

i -formula.

38

A formula Witness2 i,~a,~α
A (γ,~a, ~α) is defined which has limited quantifier com-

plexity and which states that γ is a second-order object ‘witnessing’ the truth
of A(~a, ~α).

Definition Suppose A(~a, ~α) ∈ Σ1,b
i and ~a, ~α is a vector of variables including

all those free in A . The formula Witness2 i,~a,~α
A is defined below, inductively

on the complexity of A :

(1) If A ∈ Π1,b
i−1 then Witness2 i,~a,~α

A is just A itself.

(2) If A is B ∧ C then define

Witness2 i,~a,~α
A (γ,~a, ~α) ⇐⇒
Witness2 i,~a,~α

B (ββ(1, γ),~a, ~α) ∧ Witness2 i,~a,~α
C (ββ(2, γ),~a, ~α).

(3) If A is B ∨ C then define

Witness2 i,~a,~α
A (γ,~a, ~α) ⇐⇒
Witness2 i,~a,~α

B (ββ(1, γ),~a, ~α) ∨ Witness2 i,~a,~α
C (ββ(2, γ),~a, ~α).

(4) If A is B → C and is not in Π1,b
i−1 , then we define

Witness2 i,~a,~α
A (γ,~a, ~α) ⇐⇒
Witness2 i,~a,~α

¬B (ββ(1, γ),~a, ~α) ∨ Witness2 i,~a,~α
C (ββ(2, γ),~a, ~α).

(5) If A /∈ Π1,b
i−1 and A(~a, ~α) is (∀x ≤ s)B(x,~a, ~α) then define

Witness2 i,~a,~α
A (γ,~a, ~α) ⇐⇒
(∀x ≤ s)Witness2i,b,~a,~α

B(b,~a,~α)(ββ(x + 1, γ), x,~a, ~α).

(6) If A /∈ Π1,b
i−1 and A(~a, ~α) is (∃x ≤ s)B(x,~a, ~α) then define

Witness2 i,~a,~α
A (γ,~a, ~α) ⇐⇒ (∃x ≤ s)Witness2i,b,~a,~α

B(b,~a,~α)(γ, x,~a, ~α).

39

(7) If A /∈ Π1,b
i−1 and A is (∃ϕ)B(~a, ~α, x) where ϕ is a unary second-order

predicate, then define

Witness2 i,~a,~α
A (γ,~a, ~α) ⇐⇒ Witness2i,~a,~α,ϕ

B(b,~a,~α)(ββ(2, γ),~a, ~α,ββ(1, γ)).

The assumption that ϕ is unary is sufficient for proving the witnessing
lemmas below. For k -ary predicates we would replace ββ (1, γ) with
ARYk(ββ (1, γ)) as in [2].

(8) If A /∈ Π1,b
i−1 and A is ¬B then use prenex operations to push the negation

sign “into” the formula so that it can be handled by cases (1)–(6).

The purpose of defining Witness2 is to give a canonical way of verifying
that A(~a, ~α) is true. It is easy to see that (∃γ)Witness2 i,~a,~α

A (γ,~a, ~α) is
equivalent to A(~a, ~α). The next propositions express some properties of
Witness ; these are are analogous to Propositions 15-17 and are proved
similarly.

Proposition 25 For i ≥ 1, and A ∈ Σ1,b
i , Witness2 i,~a,~α

A is a Π1,b
i−1 -formula.

Proposition 26 (i ≥ 1). Let A(~a, ~α) be a Σ1,b
i -formula. Then

V i−1
2 ` Witness2 i,~a,~α

A (γ,~a) → A(~a)

and

V i−1
2 + Σ1,b

i -replacement ` A(~a, ~α) ↔ (∃γ)Witness2 i,~a,~α
A (γ,~a, ~α).

Recall that V i−1
2 + Σ1,b

i -replacement is a subtheory of U i
2 (by Theorem 9.16

of [2]).

Proposition 27 (i ≥ 1). Let A be a Σ1,b
i -formula. The predicate represented

by Witness2 i,~a,~α
A is a Π1,p

i−1 -predicate.

40

5.2 Two Witnessing Theorems for Second-Order
Theories

In this section we state two witnessing theorems regarding the definability
and computability of witness functions for sequents of Σ1,b

i -formulas. The
first, for V i

2 , is the easiest to prove since it does not depend on the use of
witness oracles.

Theorem 28 (The Witnessing Lemma for V i
2)

Fix i ≥ 1. Suppose the sequent Γ, Π→∆, Λ is a theorem of V i
2 and each

formula in Γ ∪ ∆ is Σ1,b
i and each formula in Π ∪ Λ is Π1,b

i . Let ~c, ~α be the
free variables in the sequent and let G and H be the formulae

G =
(∧

Γ
)
∧

∧
{¬C : C ∈ Λ}

and
H =

(∨
∆

)
∨

∨
{¬C : C ∈ Π}.

Then there is a EXPTIMEΣ1,p
i−1 function f which is Σ1,b

i -defined by V i
2 such

that
V i

2 ` Witness2 i,~c,~α
G (w,~c, ~α) → Witness2 i,~c,~α

H (f(w,~c, ~α),~c, ~α).

The case i = 1 of Theorem 28 is already proved in Buss [2]; the proof of the
general case is exactly the same as the proof of the case i = 1 except that all
exponential time computations are relative to an oracle which is a complete
predicate of Σp

i−1 .3 Another way to think about Theorem 28 is to use the
‘RSUV isomorphism’ to see that the theorem corresponds to a witnessing
theorem for Si

3 — the witnessing theorem for Si
3 is completely idential to the

witnessing theorem for Si
2 except that #3 -time is used in place of polynomial

time. Because the proof of Theorem 28 is so similar to earlier proofs, we omit
it here.

Theorem 29 (The Witnessing Lemma for V i−1
2 and U i

2)
Fix i > 1. Suppose the sequent Γ, Π→∆, Λ is a theorem of U i

2 and each

3Recall that exponentially long queries may be made to the Σp
i−1 -oracle so, effectively,

the computation may ask any Σ1,p
i -query.

41

formula in Γ ∪ ∆ is Σ1,b
i and each formula in Π ∪ Λ is Π1,b

i . Let ~c, ~α be the
free variables in the sequent and let G and H be the formulae

G =
(∧

Γ
)
∧

∧
{¬C : C ∈ Λ}

and
H =

(∨
∆

)
∨

∨
{¬C : C ∈ Π}.

Then there is a EXPTIMEΣ1,p
i−1 [wit, poly] function f which is Σ1,b

i -defined by
V i−1

2 such that

V i−1
2 ` Witness2 i,~c,~α

G (w,~c, ~α) → Witness2 i,~c,~α
H (f(w,~c, ~α),~c, ~α).

The proof of Theorem 29 is entirely analogous to the proof of Theorem 18. For
the case of ∀:left inferences, we use the definability of first-order minimization
in place of length-bounded minimization; and for the case of Σ1,b

i -PIND,

we use the closure of EXPTIMEΣ1,p
i−1 [wit, poly] under first-order recursion

on notation in place of the closure of FP
Σp

i−1

3 [wit, logO(1)] under limited,
logarithmic recursion on notation. We omit the details. It is also possible to
prove Theorem 29 as a corollary of Theorem 18 using the RSUV isomorphism.

5.3 Main Results for Second-Order Theories

The following theorems are all corollaries of the witnessing lemmas; these
are proved similarly to the corresponding theorems for first-order theories in
section 4.3 above.

Theorem 30 (See [2]) (i ≥ 1) The Σ1,b
i -definable functions of V i

2 are

precisely the EXPTIMEΣ1,p
i−1 functions.

Theorem 31 (i > 1) The Σ1,b
i -definable functions of U i

2 and of V i−1
2 are

precisely the EXPTIMEΣ1,p
i−1 [wit, poly] functions.

The strongly Σ1,b
i -definable functions of U i

2 and of V i−1
2 are precisely the

strong EXPTIMEΣ1,p
i−1 [wit, poly] functions.

The Σ1,b
i -definable functions of U i

2 and of V i−1
2 which have first-

order values are precisely the functions in PSPACEΣ1,p
i−1 (equivalently, in

EXPTIMEΣ1,p
i−1 [poly]).

42

Theorem 32 (i > 1) U i
2 is ∀Σ1,b

i -conservative over V i−1
2 .

Theorem 33 U i
2 is ∀B(Σ1,b

i)-conservative over V i−1
2 + Σ1,b

i -replacement.

A formula is ∆1,b
i+1 with respect to a theory if and only if the theory proves

that the formula is equivalent to a Σ1,b
i+1 -formula and to a Π1,b

i+1 -formula.

Theorem 34 (i ≥ 1) V i
2 admits ∆1,b

i+1 -PIND.

Theorem 34 follows from Theorem 32 since a ∆1,b
i+1 -formula is equivalent to a

∀Σ1,b
i+1 -formula.

The bounded ∆1,b
i+1 comprehension axioms are the formulas

(∀a)(∃ϕ)(∀x ≤ a) (ϕ(x) ↔ A(x))

where A is ∆1,b
i+1 and may contain other free variables in addition to x .

Theorem 35 (i ≥ 1) V i
2 ` bounded ∆1,b

i+1 comprehension.

Theorem 35 improves a result of Takeuti that V i
2 proves Σ1,b

i -bounded
comprehension [17].

Proof First we show that, for i ≥ 0, U i+1
2 proves bounded ∆1,b

i+1 comprehen-

sion (this extends Theorem 2.1 of [13]). Let A be ∆1,b
i+1 with respect to U i+1

2

and let B(z, a) be the formula

(∀x ≤ a)(∃ϕ)(∀y ≤ z)(ϕ(x + y) ↔ A(x + y));

note that B is a Σ1,b
i+1 -formula. Now we can use the usual “dou-

bling trick” (see Theorems 2.22 or 9.16 of [2]): it is easy to see that
U i+1

2 ` B(b1
2
zc, a) → B(z, a), from whence, by Σ1,b

i+1 -PIND, U i+1
2 ` B(a, a),

which readily implies that U i+1
2 proves the bounded ∆1,b

i+1 -comprehension
axiom for A(x).

Now suppose i ≥ 1 and A(x) is ∆1,b
i+1 with respect to V i

2 . The bounded

∆1,b
i+1 comprehension axiom for A is a ∀Σ1,b

i+1 -formula and is provable in U i+1
2 .

Hence, by Theorem 32, it is provable also by V i
2 .

43

References

[1] B. Allen, Arithmetizing uniform NC, Annals of Pure and Applied Logic,
53 (1991), pp. 1–50.

[2] S. R. Buss, Bounded Arithmetic, Bibliopolis, 1986. Revision of 1985
Princeton University Ph.D. thesis.

[3] , Axiomatizations and conservation results for fragments of bounded
arithmetic, in Logic and Computation, proceedings of a Workshop held
Carnegie-Mellon University, 1987, vol. 106 of Contemporary Mathemat-
ics, American Mathematical Society, 1990, pp. 57–84.

[4] , The witness function method and fragments of Peano arithmetic,
in Logic, Methodology and Philosophy of Science IX, D. Prawitz,
B. Skyrms, and D. Westerst̊ahl, eds., Amsterdam, 1994, North-Holland,
pp. 29–68.

[5] S. R. Buss and L. Hay, On truth-table reducibility to SAT and
the difference hierarchy over NP, in Proceedings of the Structure in
Complexity Conference, June 1988, pp. 224–233.

[6] , On truth-table reducibility to SAT, Information and Computation,
91 (1991), pp. 86–102.

[7] P. Clote and G. Takeuti, Bounded arithmetics for NC, ALOGTIME,
L and NL, Annals of Pure and Applied Logic, 56 (1992), pp. 73–117.

[8] L. A. Hemachandra, The strong exponential hierarchy collapses, in
Proceedings 19-th Annual ACM Symposium on Theory of Computing,
1987, pp. 110–122. To appear in JCSS.

[9] R. Kaye, Using Herbrand-type theorems to separate strong fragments of
arithmetic, in Arithmetic, Proof Theory and Computational Complexity,
P. Clote and J. K. cek, eds., Oxford, 1993, Clarendon Press (Oxford
University Press).

[10] J. Kraj́ıček, No counter-example interpretation and interactive com-
putation, in Logic From Computer Science: Proceedings of a Workshop

44

held November 13-17, 1989, Mathematical Sciences Research Institute
Publication #21, Springer-Verlag, 1992, pp. 287–293.

[11] , Fragments of bounded arithmetic and bounded query classes, Trans-
actions of the A.M.S., 338 (1993), pp. 587–598.

[12] J. Kraj́ıček, P. Pudlák, and G. Takeuti, Bounded arithmetic and
the polynomial hierarchy, Annals of Pure and Applied Logic, 52 (1991),
pp. 143–153.

[13] J. Kraj́ıček and G. Takeuti, On bounded Σ1
1 polynomial induction,

in Feasible Mathematics: A Mathematical Sciences Institute Workshop,
Ithaca, June 1989, Birkhäuser, 1990, pp. 259–280.

[14] M. W. Krentel, The complexity of optimization problems, Journal of
Computer and System Sciences, 36 (1988), pp. 490–509.

[15] P. Pudlák, Some relations between subsystems of arithmetic and the
complexity of computations, in Logic From Computer Science: Proceed-
ings of a Workshop held November 13-17, 1989, Mathematical Sciences
Research Institute Publication #21, Springer-Verlag, 1992, pp. 499–519.

[16] G. Takeuti, Proof Theory, North-Holland, Amsterdam, 2nd ed., 1987.

[17] , Si
3 and

◦
V i

2(BD), Archive for Math. Logic, 29 (1990), pp. 149–169.

[18] , RSUV isomorphisms. Typeset manuscript, 1991.

[19] K. W. Wagner, Bounded query classes, SIAM Journal on Computing,
19 (1990), pp. 833–846.

45

