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The original impetus for writing this expository note was an idea of
J. Nešetřil to edit a series of articles (in a series edited at the Institute
for Theoretical Informatics at the Charles University in Prague) on the
state of Theoretical Computer Science (TCS). Additional excuses were a
lecture on the P/NP problem I gave during the celebrations of the 50th
anniversary of the Mathematical Institute of the Academy of Sciences in
Prague (December’02) and a lecture I planned for (but did not deliver)
the Takeuti Symposium at the Kobe University (December’03). But less
specifically, the reason is simply the growing interest of mathematicians in
other areas to find out what is all this commotion about P/NP about.

I shall outline four fundamental problems of TCS. First informally, then
formally but without excessive details. I shall also sketch three fundamental
theorems, and discuss one particular challenge for the future. I shall con-
clude with a few short, very subjective, remarks on the state and the future
of TCS.

The reader will notice that I write here boldly about TCS but later on
consider really exclusively only complexity theory. The reason is that that
is the part of TCS I know something about. But perhaps it is not such a
restriction as the complexity theory is undoubtedly the foundational kernel
of TCS.
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Republic and by project LN00A056 of The Ministry of Education of the Czech Republic.
A part of this paper was written while visiting the Mathematical Institute in Oxford,
supported by the EPSRC.

†Also member of the Institute for Theoretical Computer Science of the Charles Uni-
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This note is not supposed to be an account of historic developments
(for that the reader may consult [4] or [18]). Neither do I wish to explain
basic notions like Turing machine or a boolean circuit. Rather this should
be understood as a non-technical explanation of four fundamental problems
and one fundamental challenge to an interested outsider having already some
basic knowledge.

1 Four foundational problems - informally

The mathematical notion of algorithm, defined in the 1930s by A. Turing
and A. Church, grew from the study of the strength of formal systems in
mathematical logic (D. Hilbert, K. Gödel and others). It may very well
be the most important notion mathematics discovered in the last century,
and when saying this I realize that there is a serious competition of quite
sophisticated constructs in various other fields of mathematics. This lead to
the notion of a universal algorithm (universal Turing machine) and to the
realization of the fact that there are sets (of strings) that can be enumerated
by an algorithm but no algorithm can decide the membership in such a set.

In a formal sense, the NP-completeness and the P/NP problem are just
“bounded” versions of these two facts, meaning that we allow algorithms
running in polynomial time only. But the actual road to the P and NP has
been more subtle.

The notion of a feasible algorithm emerged during 1960s in the work
of A. Cobham, J. Edmonds, M. O. Rabin and others. The consensus has
been reached that the informal notion of feasibility corresponds to the for-
mal notion of polynomial time. Important properties of this notion is its
robustness (independence from the machine model) and the fact that all (de-
terministic) algorithms intuitively branded as feasible are also polynomial
time. The class P is the class of decision problems solvable by a polynomial
time algorithm. As usual we encode finite objects by binary strings and
identify a decision problem with the set of all strings (a language) for which
the problem has the affirmative answer.

Incidentally, the definition of the class NP and the notion of the NP-
completeness also grew from mathematical logic, this time from the study of
the strength of propositional calculi. A canonical language in the class NP -
which I define in a moment - is the problem of satisfiability of propositional
formulas (the language is called SAT). S. A. Cook [2] was studying the
question whether some propositional calculus can be applied to solve SAT
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in polynomial time, and he arrived at the P/NP problem.1 A property SAT
has is that even if it may be difficult to decide the membership in SAT,
whenever ϕ ∈ SAT this fact can be witnessed by information encoded in
a short string: the satisfying assignment. NP is the class of languages for
which the membership of a string can be feasibly witnessed. The P/NP
problem asks whether or not the two classes are different. It is generally
conjectured that they are indeed different.

We may view the classes P and NP as polynomial time analogs of the
classes of recursive and recursively enumerable sets. Its is known that the
latter two classes are different. But the diagonal argument used for demon-
strating this cannot be used to separate P and NP. However, the notion of a
complete recursively enumerable set does have an analogy. It is the notion
of an NP-complete problem: A problem is NP-complete if it is in NP and
any other NP-problem can be reduced to it by a polynomial time algorithm.

Thinking a bit more about propositional logic leads us to the NP/coNP
problem. We may not know how to decide if a formula is satisfiable but
can one at least also feasibly witness the fact that it is not? A formula is
not satisfiable iff its negation is a tautology. So we are, in effect, asking if
it is possible to feasibly witness the fact that a propositional formula is a
tautology. A moment’ reflection discovers that this is the same as asking
if the class NP is closed under the complements, i.e. if NP=coNP, where
coNP is the class of complements of the NP-languages. This is the NP/coNP
problem. A prevailing view is that the two classes differ.

The third problem I want to discuss, the P/BPP problem, grew from re-
visiting the original assumption that feasible algorithms are the polynomial
time algorithms. Namely, what about probabilistic algorithms running in
polynomial time? BPP is the class of problems decidable by such algorithms
where the probability of the correct answer is at least, say, 99%. Clearly
BPP contains P and the P/BPP problem asks if this inclusion is proper or
not. Unlike the previous two problems where the generally accepted con-
jecture is that all classes P, NP, and coNP are different, here the consensus
is weaker. However, the majority opinion would be that actually P=BPP.
The attempts to prove this can be found in the literature under the heading
“derandomization” (but there is much more in derandomization than this).
I shall review a result supporting this conjecture in Section 4.

1This has been independently discovered also by Levin[14]. Other people (notably
G. Asser, J. H. Bennett, J. Edmonds, H. Scholz, R. Smullyan) studied classes equivalent
to NP, coNP or their intersection but either in a different context without a reference
to computational complexity or with informal definitions. It was Cook who defined the
notions precisely and formulated the P/NP problem.
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It is a high time to mention boolean circuits, introduced by C. Shannon in
the late 1940s. The time of an algorithm corresponds to the size of a circuit.
Any algorithm can be transformed into a sequence of circuits (with the size
bounded by a function polynomial in the time bound) computing the same
language. The opposite is not true, however. One can view the circuits as a
“non-uniform” algorithm, meaning that the algorithm can actually change
with the size of the input; it just needs to obey the same time bound. The
problems solvable by polynomial size circuits, i.e. polynomial time non-
uniform algorithms, form the class P/poly. Trivially, P/poly contains P.
Not trivially but still easily: P/poly also contains BPP.

The last problem I want to mention is, at the first glance, of a bit different
character. Briefly: Is cryptography possible? The well developed theory of
cryptography based on computability hardness assumptions (see e.g. [6])
does what is intended, i.e. it provides a secure encryption of messages and
other cryptographic tasks.

A key requirement for a large part (but not all) of this theory of a
secure cryptography is the ability to produce bits that look random to a
computationally restricted adversary. Such bits are called pseudo-random
and the functions that do produce them are pseudo-random number gen-
erators (PRNG). The precise definition of what is needed is this. Let
G : {0, 1}∗ → {0, 1}∗ be a function extending the inputs by one bit and
let Gn : {0, 1}n → {0, 1}n+1 be its restriction to {0, 1}n. The hardness
H(Gn) of Gn is the minimal s such that there is a boolean circuit C in n+1
variables of size s such that

| Probx∈{0,1}n [C(Gn(x)) = 1] − Proby∈{0,1}n+1 [C(y) = 1] | >
1

s

The hypothesis needed for the theory of computationally secure cryptogra-
phy is the following:

• There exists a polynomial time computable function G extending in-
puts by one bit such that its restriction Gn : {0, 1}n → {0, 1}n+1 to
{0, 1}n has the hardness H(Gn) ≥ exp(nΩ(1)).

Functions with this property are called strong PRNGs. Here the consensus
is still weaker than in the case of the P/BPP problem. But the majority
opinion would still be, I suppose, in support of the conjecture.
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2 Formal statements of the four problems

To explain the problems precisely I shall put them, with the exception of
the last one, under one formal umbrella. We shall consider Turing machines
M that get as an input a pair (x,w) ∈ {0, 1}∗ ×{0, 1}∗ and that run in time
polynomial in the length n = |x| of x. Let p(n) be the polynomial bound.
Hence it makes no sense for w to be longer than p(n) as the machine would
not have time to even read the whole of w.

For x denote by Mx the subset of {0, 1}≤p(n) defined by

Mx := {w ∈ {0, 1}≤p(n) | M accepts the pair (x,w)}

All classes P, NP, coNP, BPP can be defined in a similar way as the classes of
all languages L such that there is a Turing machine M with the constrains
as above and such that the membership to the classes is defined by the
following respective conditions:

• Class P: x ∈ L iff 0 ∈ Mx. (The string 0 plays a role of “any fixed
string”.)

• Class NP: x ∈ L iff Mx 6= ∅.

• Class coNP: x ∈ L iff Mx = ∅.

• Class BPP:

1. If x ∈ L then |Mx| ≥
99
100 |{0, 1}

≤p(n)|.

2. If x /∈ L then |Mx| ≤
1

100 |{0, 1}
≤p(n)|.

The P/NP problem thus asks if we can avoid the exhaustive search for
witnesses; more precisely, if we can decide whether Mx is empty or not
without looking at any witness. The NP/coNP problem similarly asks if
we can replace an existential quantification over {0, 1}≤p(n) by a universal
quantification. The P/BPP problem asks again if we can avoid looking at
witnesses assuming that there is either very few or very many of them.

The existence of strong PRNGs does not seem to have a natural refor-
mulation in this style (contrary to what is occasionally claimed about the
class UP).
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3 Three important theorems

I shall mention three important results that provide reductions of three of
the four problems to hardness assumptions of a similar nature.2

The question of a possibility of a similar reduction for the fourth problem
NP/coNP is discussed in Section 4.

3.1 NP-completeness

A language L ∈ NP is NP-complete iff any other NP-language L′ can be
reduced to L by a polynomial time function f : {0, 1}∗ → {0, 1}∗: For all x,
x ∈ L′ iff f(x) ∈ L. The intuitive meaning is that any algorithm solving L
can be transformed - via f - into an algorithm solving L′.

Theorem 3.1 ([2, 14]) SAT is NP-complete.

There are literally thousands of NP-complete problems. This means that
the notion is very successful; it works as a threshold of unfeasibility for many
problems.

Using the trivial inclusion of P in P/poly we can formulate a hardness
reduction: P 6= NP assuming that

• SAT cannot be decided by polynomial size boolean circuits.

3.2 Nisan-Wigderson generators

Assume we had a small subset A ⊆ {0, 1}≤p(n) such that for any language
L in BPP and for any machine M certifying it in the sense of Section 2 it
holds that

(∗) |
|Mx ∩ A|

|A|
−

|Mx|

|{0, 1}≤p(n)|
| ≤

1

4

Using the set A we could “derandomize” machine M as follows. Given x ∈
{0, 1}∗, we run M on all pairs (x,w), w ∈ A, and then we output the answer

that appeared in the majority of cases. If x ∈ L, then |Mx|
|{0,1}≤p(n)|

≥ 99
100

and so we get an accepting answer for the fraction of at least |Mx∩A|
|A| ≥

99
100 − 1

4 ≥ 7
10 elements w of A. On the other hand, if x /∈ L then we get

2As pointed out by S. A. Cook, the conjectures that P 6= NP and NP 6= coNP can
be deduced also from easiness assumptions. In particular, if exponential time E (resp.
nondeterministic exponential time NE) has subexponential (even submaximal) size circuits
then P 6= NP (resp. NP 6= coNP).
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a positive answer in at most 1
100 + 1

4 ≤ 3
10 fraction of all w ∈ A. Hence

our simulation correctly decided the membership in L. The only issue is
how effective it really is. Clearly, this depends on how effectively we can list
elements of A and how large A is. What we need is A of size nO(1) listed
by an algorithm running also in time nO(1). That is exactly provided by the
following theorem.

E is the class of languages computable in exponential time 2O(n).

Theorem 3.2 ([8]) Assume that there is δ > 0 and a language L in E such

that any boolean circuit computing L must have the size at least 2δn.

Then for any polynomial time bound p(n) there are k ≥ 1 and a function

g : {0, 1}k log(n) → {0, 1}≤p(n)

computable in time nO(1) such that the set A := Rng(g) satisfies the condi-

tion (∗) for all machines M running in time ≤ p(n).

Hence we have the following hardness reduction: P = BPP assuming that

• Boolean circuits computing the complete language in the exponential
time class E must have the size at least 2Ω(n).

3.3 Strong pseudo-random number generators

The hypothesis that there exist strong PRNGs (see Section 2) does not look
terribly intuitive and one hopes that it is true simply for utilitarian reasons.

The following theorem shows that the hypothesis about the existence
of strong PRNGs is equivalent to another hypothesis that looks intuitively
much more plausible.3

A one-way function is a polynomial time function that is very hard to
invert, even on a small fraction of values. A one-way function is strong if
one needs exponential size circuits for inverting the function for a subexpo-
nential fraction of all values. Prominent conjectured one-way functions are
the multiplication of two natural numbers bigger than one, and the expo-
nentiation in finite fields (the functions are known as factoring and discrete
logarithm, the names for the inverses).

3Nevertheless, we should watch out. The advent of quantum algorithms brought one big
surprise: Both factoring and discrete logarithm are actually feasible for such machines, cf.
[17]. In fact, it is possible that classical physics also allows some computations unfeasible
on Turing machines, see [20] and the papers cited there. So far the quantum machines
had no effect on the hardness of SAT.
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Theorem 3.3 ([7]) Assume that a strong one-way function exists. Then

strong PRNGs exist.

In particular, we have a reduction of the existence of sufficiently strong
PRNGs, and hence of the possibility of a secure cryptography, to the fol-
lowing concrete hardness assumption:

• Factoring is intractable by subexponential size boolean circuits. In
particular, subexponential size circuits can factor only an exponen-
tially small fraction of integers that are products of two primes of
comparable sizes.

Note that none of the three theorems proves a lower bound. In fact, there
are no lower bounds in complexity theory that could be reasonably branded
as a step towards proving that P and NP are different (or towards a proof
of some of the other three conjectures).

4 A particular challenge

We saw in the last section that three out of the four conjectures can be
deduced from a hardness assumption of the following general form:

• Every boolean circuit performing a particular, explicitly given, com-
putational task has to be large.

It is an interesting challenge to try to reduce the NP 6= coNP conjecture to
a hypothesis of the same form. It may not be possible but I see no a priori
reason ruling out such a reduction.

The study of the NP/coNP problem goes under the name (proposi-
tional) proof complexity. The reason is that non-deterministic acceptors
of the set of propositional tautologies TAUT can be seen as general proposi-
tional proof systems. More precisely, a proof system (tacitly propositional)
is a polynomial time computable function P : {0, 1}∗ → {0, 1}∗ such that
Rng(P ) = TAUT. Any x ∈ P−1(y) is called a P -proof of y. If Q is any of
the ordinary propositional calculi we may embed it into this general notion
as follows. Define a function PQ(x) to be y if the string x is a Q-proof of the
formula y, and put PQ(x) := 1 otherwise. Then Rng(PQ) = TAUT follows
from the soundness and from the completeness of Q. The polynomial time
computability of PQ follows from the fact that Q is given by schematic rules
for axioms and inferences. See [5] or [9] for details.
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In this terminology, NP 6= coNP iff there are no proof system P and a
polynomial p(n) such that any y ∈ TAUT has a P -proof of size at most p(|y|).
So NP 6= coNP would follow if we could demonstrate super-polynomial lower
bounds to the lengths of proofs in all proof systems. Such lower bounds are
known for a few weak systems but not even for the ordinary Hilbert-style
calculus based on modus ponens and a finite set of axiom schemes (a Frege
system in the terminology of [5]).

A recent attempt to reduce the NP 6= coNP conjecture to a hardness
assumption can be found in [10, 1, 11, 15, 12, 16]4. But it is too early
to speculate about an eventual outcome of this project. Instead, I shall
describe a theorem linking the NP/coNP problem with an eminently logical
topic: consistency statements.

Let me briefly recall a terminology (see [9, Chpt.14] for details). A proof
system P simulates proof system Q iff there is a polynomial p(n) such that
if Q(x) = y then ∃z, |z| ≤ p(|x|) ∧ P (z) = y. That is, P -proofs are at most
polynomially longer than Q-proofs. A proof system simulating all other
proof systems (if it exists) is called an optimal proof system.

A P -hard sequence of tautologies is a sequences {τn}n from TAUT such
that |τn| ≥ n and τn’s are computed by a polynomial time function from
strings 1(n), and such that there is no polynomial bound on the shortest
P -proofs of the formulas.

We shall also talk about ordinary first order theories (like Peano arith-
metic or set theory). We shall automatically assume that a language of
any theory contains the language of arithmetic and that the axioms of the
theory form a polynomial time decidable set (this is true about all theories
axiomatised by axiom schemes). Further we shall assume that the theories
contain some non-trivial part of Peano arithmetic (which I won’t specify)
and that they are consistent. Let ConT (x) be a formula5 in the language of
arithmetic expressing that there is no T -proof of contradiction of length at
most x. Using the dyadic numeral ñ for n, ConT (ñ) is a sentence of length
O(log n) speaking about T -proofs of length up to n, i.e. coded up to 2n.

More details on these definitions can be found in [13] or [9, Chpt.14].
The following theorem is the only theorem in proof complexity giving some
non-trivial universal information (as opposed to lower bounds for specific
proof systems).

Theorem 4.1 ([13]) The following three statements are equivalent:

4Keyword: τ -formulas. An overview can be found in the introduction to [12].
5This formula really depends on the axiomatisation and not just on the theory, but I

shall omit this here.
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1. There is an optimal proof system.

2. There exists a theory6 S such that for any theory T there exists a

polynomial p(n) such that all formulas ConT (ñ) have S-proofs of size

bounded above by p(n).

3. There is a proof system P that does not allow a sequence of P -hard

tautologies.

Further, a failure of any of the statements implies that NP 6= coNP.

Hence, in particular, it is enough to find a hardness assumption refuting any
of the three statements.

5 Concluding remarks

A debate occasionally starts whether complexity theory is a “failure” (no
real progress on the fundamental problems) or an “extreme success” (as some
colleagues boost, counting boldly in 40 years of developments in mathemati-
cal logic). I think that it is neither; that it is simply “extremely interesting”.
The interest comes from facing fundamental scientific problems, not from
any potential technological applications (these always come second, as his-
tory of physics - electricity and quantum mechanics, in particular - amply
show). As S. Smale [19] nicely puts it: The P/NP problem is a gift (of TCS)
to mathematicians.

As long as we manage to pass to our students the excitement from the
problems and we explain to them that such a gift is rare in science and that
they are privileged to study in these exciting times, so long the future of
the field will be, I believe, fine. The problems are apparently difficult but a
determined graduate student can still learn all relevant developments during
the course of his or her PhD. studies. We do not know what the qualifica-
tion “difficult” really means. Continuum Hypothesis has been difficult but
required at the end (after the development of a couple of basic constructions
in mathematical logic during the first half of the 20th century) only one re-
ally new idea. Fermat’s Last Theorem has been also difficult and required
several hundred years of a development of a whole part of mathematics.

Acknowledgements: I thank S. A. Cook, R. Impagliazzo, P. Pudlák and
J. Sgall for comments on the draft of this note.

6With the provisions as described earlier.
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