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Complexity theory: fundamental problems open

P vs. NP
Propositional Entscheidungsproblem: Is there a p-time algorithm
recognizing propositional tautologies?
[Conj.: NO]

P vs. BPP
Universal derandomization: Can randomization be removed from p-time
algorithms?
[Conj.: YES]

One-way functions
Is factoring (discrete log, ...) hard? Does there exist a pseudo-random
number generator?
[Conj.: YES]
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Proof complexity

NP vs. coNP

Length of propositional proofs: Is there a proof system in which every
tautology has a p-size proof?

Proof system [Cook-Reckhow]:

Q(x , y) p-time relation

ϕ ∈ TAUT iff ∃w Q(ϕ,w)

p-size proofs: |w | ≤ |ϕ|const

[Conj.: NO > YES]
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Finite structures

Corollary of Fagin’s thm

NP = coNP iff Σ1
1 = Π1

1 on finite structures.

generally: relational language with constants,

for simplicity of notation: just one relation ([n],R), R ⊆ [n]c ,

[n] := {1, . . . , n}.

Want:
An infinite class C of structures definable by a Π1

1 sentence ∀Xα(X ) that
is not definable by any Σ1

1 condition ∃Y β(Y ).

X ,Y are variables for relations of different arities.
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Candidate classes

Non-3-colorability
Graphs G = ([n],E ) that cannot be colored by 3 colors.

CSP
Pair of structures A and B such that A cannot be homomorphically
mapped into B. (B can be suitably fixed.)

TAUT
Structures A = ([n],R) encoding formulas (e.g. in DNF) that are
tautologies.
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Ex.: Systems of equations

Unsolvable polynomial systems

A system of polynomial equations EQ over the 2-element field F2 that has
no solution in the field.

Set-up:

constant c and parameter n ≥ 1,

variables xi indexed by ≤ c-tuples i from [n],

degree ≤ c polynomials fj over F2 indexed by ≤ c-tuples j from [n],

monomials represented by ≤ c2 tuples and the whole system EQn by
a ≤ c3-ary relation.

6 / 29



Π1
1-definition

Base structure: An = ([n],Rn), with Rn including EQn (and maybe some
other structure).

0-1 assignment to variables ⇔ subsets U ⊆ [n]c ,

a witness to U solving all fj = 0: V ⊆ [n]c × ([n]c
2
× [n]c

2
) such that

for all j , V (j , ) is a total 2-partition of the monomials of fj that are
non-zero under U.

A suitable Π1
1-definition ∀Xα(X ) over An says:

for no U, no V is a witness that U solves EQn.
(with X = (U,V )).
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Pseudofinite structure

Starting with a sequence for n ≥ 1:

. . . , An , . . .

↓↓↓ ultraproduct, overspill in a non-standard model, ... ↓↓↓

pseudofinite A
∗ = ([n∗],R∗)

n∗ is a non-standard element of a model M of true arithmetic,

in M it holds that A∗ |= ∀Xα(X ).
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Basic picture
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Basic question

Assume we expand A∗ by a witness W to ¬α:

B = (A∗,W ) |= ¬α(W ) ,

where

W encodes an assignment U and a witness V that it solves all fj = 0.

Question

What else must B satisfy in order to imply that a specific Σ1
1 condition

∃Y β(Y ) does not define the class of all An, n ≥ 1?
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PHP example
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Soundness

We want to keep the soundness of ∃Yβ(Y ):

B |= ∀X ,Y β(Y ) → α(X ) .

An argument:
Assume that ∃Y β(Y ) holds in all An, n ≥ 1, and that a witness to that is
a part of Rn. Then it is also a part of R∗ and

A
∗ |= ∃Y β(Y ) and thus also B |= ∃Y β(Y )

(A∗ �R B suffices if a witness for Y is a part of R∗). But if

B |= ¬α(W )

we contradict the soundness.
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Ex.: Nullstellensatz

NS proofs

System EQn is unsolvable iff there are polynomials gj , hi over F2 such that

∑

j

gj fj +
∑

i

hi(x
2
i − xi ) = 1 .

If the degree of all gj , hi is bounded by a constant d then the whole
tuple of these polynomials can be encoded by a relation Sn (a part of
Rn),

and R∗ contains S∗, an NS proof over [n∗].

Arranging soundness of degree ≤ d NS-proofs:

Expand A∗ by a solution U,V to EQ∗ such that B allows to count
consistently parities of definable sets - an abstract Euler characteristic.
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Ex.: propositional proof

Propositional proofs

Y : ϕ1 , ϕ2 . . . , ϕi , . . . , ϕk

ϕk is a propositional formula with atoms for atomic formulas involving
X and expressing that ∀Xα(X ) is true (e.g. EQn is unsolvable),

β(Y ) says that Y is a correct proof in propositional calculus.

Arranging soundness of Y :

The expansion B ought to satisfy the Least Number Principle for
statements:

¬Sat(ϕi ,W ) .

Such first ϕi not satisfied by W violates the soundness of rules or
axioms.
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Sat formula

ϕi are of a bounded depth in the DeMorgan language.

Sat is FO-definable. This case was solved (Ajtai, ... )

ϕi are arbitrary formulas or even circuits.

Sat is ∆1
1 := Σ1

1 ∩ Π1
1 -definable. This is a pivotal open problem of

proof complexity to establish a lower bound for ordinary propositional
calculus: (Extended) Frege system.

ϕi are of bounded depth but in a language properly extending the
DeMorgan one by the parity connective

⊕
.

Sat is FO definable in logic with the parity quantifier Q2. This is an
enigmatic frontline open problem: Everything seems to be in place for
its solution which is elusive (thirty years now!).
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Problem summary

Want B such that:

1 A∗ � B

2 B |= ¬α(W )

3 B satisfies the LNP for as
large class of formulas as
possible.

The construction:

B (to be denoted K (F ,G ))

will be Boolean-valued, and

the three condition will be
satisfied in the maximum
Boolean value sense.
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Set-up: sample space

M: ambient non-standard ℵ1-saturated model of true arithmetic

Ω: a non-standard finite set, Ω ∈ M

A: Boolean algebra of subsets of Ω in M (A ∈ M)

µ: (weighted) counting measure on A

Inf : ideal in A of sets of infinitesimal µ measure (not definable)

B: the quotient algebra A/Inf

Key fact

B is complete.
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Family F - the FO part of K (F , G )

[[α = β]] := {ω ∈ Ω | α(ω) = β(ω)} / Inf . 18 / 29



Family G - the SO part of K (F , G )

Elements of G (SO objects) are (some) unary maps

Γ : F → F

(not necessarily definable) satisfying equality axioms: for all α, β ∈ F

[[α = β]] ≤ [[Γ(α) = Γ(β)]] .

Define
[[Γ = ∆]] :=

∧

α∈F

[[Γ(α) = ∆(α)]] .
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Ex. of G

Γ is given by (γi )i<m ∈ M, all γi ∈ F and m ∈ I , and

Γ(α)(ω) := γi (ω) , for i := α(ω)

or 0, if i ≥ m.
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Partial evaluations
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Falg and Galg

α: queries no(1)-times for values of low degree polynomials,

Γ: as before (γ0, . . . , γm−1).

Key requirement

Every α ∈ F is defined almost everywhere:

Probω∈Ω[α(ω) undefined ] < o(1) . (1)

Remark: Under a much weaker requirement that the probability is
bounded by

1 − exp((n∗)o(1)) (2)

we can choose suitable subfamilies F ′ ⊆ Falg and G ′ ⊆ Galg and construct
a nonstandard hardcore Ω′ ⊆ Ω such that (1) holds for K (F ′,G ′) and Ω′.
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Properties of the model

Lemma

Any K (Falg ,Galg ) satisfies:

1 open comprehension,

2 open induction,

3 interprets the parity quantifier Q2 in front of open formulas,

4 (crucially) quantifier elimination for FO formulas (with parameters).

Hence 1. - 3. hold for all FO formulas with Q2, as well as does the LNP.

Any ⇔ For any partial evaluation satisfying the key requirement ...

Corollary: Propositional proofs that use bounded depth formulas in the
DeMorgan language augmented by

⊕
are sound in the model.
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Induction
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Q.E.
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A surprising property

Theorem

Any K (Falg ,Galg ) actually satisfies all Π1
1 consequences of Σ1

1-induction.
In particular, propositional proofs using arbitrary formulas (or even
circuits) are sound in the model.

Corollary: If EQ∗ can be solved in any K (Falg ,Galg ) then proofs of the
unsolvability of EQn, n ≥ 1, in Extended Frege systems require
super-polynomial size.

Finitary consequence: If EQn and Ωn are such that no low degree / low
depth algebraic trees find with too high probability where ω ∈ Ωn is
undefined then proving unsolvability of EQn in EF requires super-poly
(exponential, in fact) size.

26 / 29



Concluding remarks

1 The statement that each α is defined a.e. says that no low
degree/low depth algebraic decision tree can find g for which
ω(g) = ∗ with a large probability.
This is a computational statement and it would be interesting to find
systems EQn and partial evaluations Ωn for which it follows from
some established computational hypothesis.

[Candidate systems EQn are offered by the theory of proof complexity
generators.]

2 Model theory plays a conceptual role: it offers a framework for
thinking about lower bounds for strong (or all) proof systems. One
can expect that in all applications yielding finitary statements these
can be likely proved using finitary means. E.g. the previous Finitary
consequence has a finitary proof.
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General reference

Proof complexity is a rich subject drawing on methods from logic, 

combinatorics, algebra and computer science. This self-contained book 

presents the basic concepts, classical results, current state of the art and 

possible future directions in the f eld. It stresses a view of proof complexity as 

a whole entity rather than a collection of various topics held together loosely 

by a few notions, and it favors more generalizable statements.

Lower bounds for lengths of proofs, often regarded as the key issue in 

proof complexity, are of course covered in detail. However, upper bounds 

are not neglected: this book also explores the relations between bounded 

arithmetic theories and proof systems and how they can be used to prove 

upper bounds on lengths of proofs and simulations among proof systems. It 

goes on to discuss topics that transcend specif c proof systems, allowing for 

deeper understanding of the fundamental problems of the subject.

Jan Krajíc�ek is Professor of Mathematical Logic in the Faculty of 

Mathematics and Physics at Charles University, Prague. He is a member of the 

Academia Europaea and of the Learned Society of the Czech Republic. He has 

been an invited speaker at the European Congress of Mathematicians and at 

the International Congresses of Logic, Methodology and Philosophy 

of Science. 
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9
7
8
11

0
8
41

6
8
4
9
 K

R
A

JÍ
C

E
K

 –
 P

R
O

O
F
 C

O
M

P
LE

X
IT

Y
 P

P
C

 C
 M

 Y
 K

28 / 29



Specific reference
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