Information Processing Letters

Substitutions into propositional tautologies

Jan Krajíček ${ }^{1,2}$
Isaac Newton Institute, Cambridge, CB3 OEH, UK

Received 5 April 2006; received in revised form 1 September 2006; accepted 8 September 2006
Available online 9 October 2006
Communicated by K. Iwama

Abstract

We prove that there is a polynomial time substitution $\left(y_{1}, \ldots, y_{n}\right):=g\left(x_{1}, \ldots, x_{k}\right)$ with $k \ll n$ such that whenever the substitution instance $A\left(g\left(x_{1}, \ldots, x_{k}\right)\right)$ of a 3DNF formula $A\left(y_{1}, \ldots, y_{n}\right)$ has a short resolution proof it follows that $A\left(y_{1}, \ldots, y_{n}\right)$ is a tautology. The qualification "short" depends on the parameters k and n.

© 2006 Elsevier B.V. All rights reserved.
Keywords: Computational complexity; Proof complexity; Automated theorem proving

Let $A(y)$ be a 3DNF propositional formula in n variables $y=\left(y_{1}, \ldots, y_{n}\right)$ and assume that we want to prove that $A(y)$ is a tautology. By substituting $y:=g(x)$ with $x=\left(x_{1}, \ldots, x_{k}\right)$ we get formula $A(g(x))$ which is, as long as g is computable in (non-uniform) time $n^{\mathrm{O}(1)}$, expressible as 3DNF of size $n^{\mathrm{O}(1)}$. The formula uses $n^{\mathrm{O}(1)}$ auxiliary variables z besides variables x but only x are essential: We know a priori (and can witness by a polynomial time constructible resolution proof) that any truth assignment satisfying $\neg A\left(g\left(x_{1}, \ldots, x_{k}\right)\right)$ would be determined already by its values at x_{1}, \ldots, x_{k}.

If $A(y)$ is a tautology, so is $A(g(x))$. In this paper we note that the emerging theory of proof complexity generators (Section 1) provides a function g with $k \ll n$

[^0]for which a form of inverse also holds (the precise statement is in Section 2):

For the following choices of parameters:

- $k=n^{\delta}$ and $s=2^{n^{\varepsilon}}$, for any $\delta>0$ there is $\varepsilon=$ $\varepsilon(\delta)>0$, or
- $k=\log (n)^{c}$ and $s=n^{\log (n)^{\mu}}$, for $c>1, \mu>0$ specific constants,

it holds

There is a function g computable in time $n^{\mathrm{O}(1)}$ extending k bits to n bits such that whenever $A(g(x))$ is a tautology and provable by a resolution proof of size at most s then $A(y)$ is a tautology too.

Unless you are an ardent optimist you cannot hope to improve the bound to s so that it would allow an exhaustive search over $\{0,1\}^{k}$. In fact, it follows that unless $\mathcal{P}=\mathcal{N} \mathcal{P}$ no automated provers (or SAT solvers) that are based on DPLL procedure $[4,5]$, even augmented by clause learning [15] or restarts of the procedure [6]
can run in time subexponential $\left(2^{k^{0(1)}}\right)$ in the number of essential variables, as their computations yield resolution proofs of size polynomial in the time [2], cf. Section 3. However, for the particular function g we use, the exhaustive search yields something (assuming the existence of strong one-way functions): If $A(g(x))$ is a tautology then there are at most $2^{n} / n^{\omega(1)}$ falsifying truth assignments to $A(y)$ (Section 3). This is a consequence of results of Razborov and Rudich [14].

Notation. x, y, z, \ldots and a, b, \ldots are tuples of variables and of bits, respectively, the individual variables or bits being denoted x_{i}, y_{j}, \ldots and a_{i}, b_{j}, \ldots, respectively. $[n]$ is $\{1, \ldots, n\}$.

1. Proof complexity generators

A proof complexity generator is any function g : $\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ given by a family of circuits ${ }^{3}\left\{C_{k}\right\}_{k}$, each C_{k} computing function $g_{k}:\{0,1\}^{k} \rightarrow\{0,1\}^{n(k)}$ for some injective function $n(k)>k$. (We want injectivity of $n(k)$ so that any string is in the range of at most one g_{k}.) We assume that circuits C_{k} have size $n(k)^{\mathrm{O}(1)}$. Functions g of interest are those for which it is hard to prove that any particular string from $\{0,1\}^{n(k)}$ is outside of the range of g_{k}. This can be formalized as follows.

Assume $m(k)$ is the size of C_{k}. The set of τ-formulas corresponding to C_{k} is parameterized by $b \in\{0,1\}^{n(k)} \backslash$ $\operatorname{Rng}\left(g_{k}\right)$. Given such a b, construct propositional formula $\tau\left(C_{k}\right)_{b}$ (denoted simply $\tau(g)_{b}$ when C_{k} s are canonical) as follows: The atoms of $\tau\left(C_{k}\right)_{b}$ are x_{1}, \ldots, x_{k} for bits of an input $x \in\{0,1\}^{k}$ and auxiliary atoms $z_{1}, \ldots, z_{m(k)}$ for bit values of subcircuits of C_{k} determined by the computation of C_{k} on x. The formula expresses in a DNF that if z_{j} 's are correctly computed as in C_{k} with input x then the output $C_{k}(x)$ differs from b. The size of $\tau\left(C_{k}\right)_{b}$ is proportional to $m(k)$. The formula is a tautology as $b \notin \operatorname{Rng}(g)$.

The τ-formulas have been defined in [7] and independently in [1], and their theory is being developed. ${ }^{4}$ We now recall only few facts we shall use later.

The next definition formalizes the concept of "hard to prove" in two ways; the first one follows [13], the second one is from [9]. We apply these concepts only to resolution but they are well-defined for an arbitrary propositional proof system in the sense of [3].

[^1]Definition 1.1. Let $s(k) \geqslant 1$ be a function, and let $g=$ $\left\{g_{k}\right\}_{k}$ be a function as above.

- Function g is $s(k)$-hard for resolution if any formula $\tau\left(C_{k}\right)_{b}, b \in\{0,1\}^{n(k)} \backslash \operatorname{Rng}(g)$, requires resolution proofs of size at least $s(k)$.
- g is $s(k)$-iterable for resolution iff all disjunctions of the form

$$
\tau\left(C_{k}\right)_{B_{1}}\left(x^{1}\right) \vee \cdots \vee \tau\left(C_{k}\right)_{B_{t}}\left(x^{1}, \ldots, x^{t}\right)
$$

require resolution proofs of size at least $s(k)$. Here $t \geqslant 1$ is arbitrary, and B_{1}, \ldots, B_{t} are circuits with $n(k)$ output bits such that:
$-x^{i}$ are disjoint k-tuples of atoms, for $i \leqslant t$.
$-B_{1}$ has no inputs, and inputs to B_{i} are among x^{1}, \ldots, x^{i-1}, for $i \leqslant t$.

- Circuits B_{1}, \ldots, B_{t} are just substitutions of variables and constants for variables.

Note that the $s(k)$-iterability implies the $s(k)$-hardness, the latter being the iterability condition with $t=1$. (The proof of Theorem 2.1 uses only hardness of the function but we need iterability to get a hard function computable in uniform polynomial time in Corollary 1.5 .)

The disjunction from the definition of the iterability can be informally interpreted as follows. Assume that it is a tautology. Then it may be that already the first disjunct $\tau\left(C_{k}\right)_{B_{1}}\left(x^{1}\right)$ is a tautology, meaning that the string B_{1} is outside of the range of g_{k}. If not, and $a^{1} \in\{0,1\}^{k}$ is such that $g_{k}\left(a^{1}\right)=B_{1}$, then $B_{2}\left(a^{1}\right)$ is the next candidate for a string being outside of the range of g_{k}. If that fails (and a^{2} is a witness) then we move on to $B_{3}\left(a^{1}, a^{2}\right)$, etc. The fact that the disjunction is a tautology means that in this process we find a string outside of the range of g_{k} in at most t rounds.

Exponentially hard functions for resolution do exists. A $\mathcal{P} /$ poly-function, a linear map over \mathbf{F}_{2} defined by a sparse matrix with a suitable "expansion" property, $2^{k^{\Omega(1)}}$-hard for resolution was constructed in [9, Theorem 4.2]. Razborov [13, Theorems 2.10, 2.20] gave an independent construction and he noticed that any proof of hardness utilizing only the expansion property of a matrix implies, in fact, $2^{k^{\Omega(1)}}$-iterability as well. We use a weaker statement than what is actually proved in [13].

Theorem 1.2. (Razborov [13].) There exists a function $g=\left\{g_{w}\right\}_{w}$, with $g_{w}:\{0,1\}^{w} \rightarrow\{0,1\}^{w^{2}}$, computed by size $\mathrm{O}\left(w^{3}\right)$ circuits, that is $2^{w^{\Omega(1)}}$-iterable for resolution.

However, what we want is a function computed by a uniform algorithm (it is not known at present how to construct explicitly the matrices used in $[9,13]$) in order that our substitution is polynomial time computable too. Fortunately, we can get a uniform function from Theorem 1.2, using a result from [9].

Definition 1.3. Let $m \geqslant \ell \geqslant 1$. The truth table function $\mathbf{t t}_{m, \ell}$ takes as input m^{2} bits describing ${ }^{5}$ a size $\leqslant m$ circuit C with ℓ inputs, and outputs 2^{ℓ} bits: the truth table of the function computed by C.
$\mathbf{t t}_{m, \ell}$ is, by definition, equal to zero at inputs that do not encode a size $\leqslant m$ circuit with ℓ inputs.

Theorem 1.4. (Krajíček [9].) Assume that there exists a \mathcal{P} /poly-function $g=\left\{g_{w}\right\}_{w}$, with $g_{w}:\{0,1\}^{w} \rightarrow$ $\{0,1\}^{w^{2}}$, that is $2^{w^{\Omega(1)}}$-iterable for resolution.

Then:
(1) For any $1>\delta>0$, the truth table function $\mathbf{t t}_{2^{\delta \ell}, \ell}$ is $2^{2^{\Omega(\delta \ell)}}$-iterable for resolution.
(2) There is a constant $c \geqslant 1$ such that the truth table function $\mathbf{t t}_{\ell^{c}, \ell}$ is $2^{\ell^{1+\Omega(1)}}$-iterable for resolution.

The theorem (see [9, Theorem 4.2]) is proved by iterating the circuit computing g_{w} along an w-ary tree of depth t, suitable t. The two statements stated explicitly are just two extreme choices of parameters, but the proof yields an explicit trade-off for a range of parameters. We state this without repeating the construction from [9].

Let $c \geqslant 1$ and $\varepsilon>0$ be arbitrary constants. Assume that there is a function $g=\left\{g_{w}\right\}_{w}$, with $g_{w}:\{0,\}^{w} \rightarrow$ $\{0,1\}^{w^{2}}$, computed by size w^{c} circuits and that is $2^{w^{\varepsilon}}$ iterable for resolution.

Then the truth function $\mathbf{t t}_{m, \ell}$ is s-iterable for the following choices of parameters, with $t \geqslant 1$ arbitrary:

1. $m:=w^{c} \cdot t$,
2. $\ell:=t \cdot \log (w)$,
3. $s:=2^{w^{\varepsilon}-t \log (w)}$.

Corollary 1.5.

(1) For every $c>1$ there are $\varepsilon>0$ and a polynomial time computable function $g=\left\{g_{k}\right\}_{k}$,
$g_{k}:\{0,1\}^{k} \rightarrow\{0,1\}^{k^{c}}$,
that is, $2^{k^{\varepsilon}}$-hard for resolution.

[^2](2) There are $\varepsilon>\delta>0$ and a polynomial time computable function $g=\left\{g_{k}\right\}_{k}$,
$g_{k}:\{0,1\}^{k} \rightarrow\{0,1\}^{2^{k^{\delta}}}$,
that is, $2^{k^{\varepsilon}}$-hard for resolution.

2. The substitution

Theorem 2.1.

(1) For any $\delta>0$ there are $\mu>0$ and a polynomial time computable function $g=\left\{g_{k}\right\}_{k}$, extending $k=$ n^{δ} bits to $n=n(k)$ bits such that for any 3DNF formula $A(y), y=\left(y_{1}, \ldots, y_{n}\right)$, it holds:

- If $A\left(g_{k}(x)\right)$ has a resolution proof of size at most $2^{n^{\mu}}$ then $A(y)$ is a tautology.
(2) There are $c>1, \mu>0$ and a polynomial time computable function $g=\left\{g_{k}\right\}_{k}$, extending $k=\log (n)^{c}$ bits to $n=n(k)$ bits such that for any 3DNF formula $A(y), y=\left(y_{1}, \ldots, y_{n}\right)$, it holds:
- If $A\left(g_{k}(x)\right)$ has a resolution proof of size at most $n^{\log (n)^{\mu}}$ then $A(y)$ is a tautology.

Proof. For Part 1 , let $\delta>0$ be arbitrary. Put $c:=$ δ^{-1}, and take $\varepsilon>0$ and the polynomial time function $g=\left\{g_{k}\right\}_{k}$ guaranteed by Corollary 1.5 (Part 1). Hence $g_{k}:\{0,1\}^{n^{\delta}} \rightarrow\{0,1\}^{n}$, for $k=n^{\delta}$.

Assume $A(y)$ is not a tautology and let $b \in\{0,1\}^{n}$ is a falsifying assignment. Then $\tau(g)_{b}$ can be proved in resolution by combining a size s proof of $A(g(x))$ with a size $n^{\mathrm{O}(1)}$ proof of $\neg A(b)$. By the $2^{k^{\varepsilon}}$-hardness of g, it must hold that
$s+n^{\mathrm{O}(1)} \geqslant 2^{n^{\delta \varepsilon}}$.
Hence s must be at least $2^{n^{\mu}}$, for suitable $\mu<\delta \varepsilon$.
Part 2 is proved analogously, using Corollary 1.5 (Part 2).

Note that if $g(x)$ is a hard proof complexity generator, so is function $(x, z) \rightarrow(g(x), z)$. Hence we may apply the substitutions from the theorem only to some variables y_{i}.

3. Remarks

We conclude by some remarks. First we substantiate the comment about automated theorem provers and SAT-solvers from the introduction.

Let $B(x, z)$ be the formula $A(g(x))$ with the auxiliary variables z also displayed. The k variables x are essential in B in the sense that there is a $\mathrm{O}(|B|)$ size resolution proof of
$B(x, z) \vee B(x, w) \vee z_{j} \equiv w_{j}$
for all j. (In fact, such a proof is easily constructible once we have the algorithm for g.) Assume that it would be always possible to find a resolution proof of a formula whose size would be subexponential in the minimal number of essential variables and polynomial in the size of the formula; in our case $2^{k^{\circ(1)}}|A(g(x))|^{O(1)}$.

Taking g from Theorem 2.1 (Part 2) this would get a size $|A(g)|^{\mathrm{O}(1)}$ proof of $A(g(x))$, which is bellow the required upper bound $n^{\log (n)^{\mu}}$. Hence we could interpret this as a new proof system R_{g} in the sense of Cook-Reckhow [3]: A proof in R_{g} of $A(y)$ is either a resolution proof or a size $|A(g(x))|^{c}$ (specific c) proof of $A(g(x))$. This proof system would allow for polynomial size proofs of all tautologies, hence $\mathcal{N P}=\operatorname{coN} \mathcal{P}$.

The equality $\mathcal{N P}=\cos \mathcal{P}$ followed only from assuming the existence of short resolution proofs. But automated provers (SAT-solvers) actually construct the proofs, or a proof can be constructed by a polynomial time algorithm from the description of any particular successful computation. Hence the existence of automated provers (SAT-solvers) running in time subexponential in the number of essential variables implies even $\mathcal{P}=\mathcal{N} \mathcal{P}$ (or $\mathcal{N} \mathcal{P} \subseteq \mathcal{B} \mathcal{P} \mathcal{P}$ if the prover is randomized).

Our second remark concerns the exhaustive search; in other words, what do we know about $A(y)$ if we only know that $A(g(x))$ is a tautology but we do not have a short proof of that fact.

Take for g the function from Theorem 2.1 (Part 1), or any $\mathbf{t t}_{m(\ell), \ell}$ with $m(\ell)=\ell^{\omega(1)}$. Let $n:=2^{\ell}$, and interpret strings $b \in\{0,1\}^{n}$ as truth tables of boolean functions in ℓ variables. Hence $b \notin \operatorname{Rng}(g)$ implies that b is not computable by a circuit of size $\ell^{\mathrm{O}(1)}$.

Assume $A(g(x))$ is a tautology while $A(y)$ is not. Define set $C \subseteq\{0,1\}^{n}$ by:
$C:=\left\{b \in\{0,1\}^{n} \mid \neg A(b)\right\}$.
Then it satisfies:
(1) C is in $\mathcal{P} /$ poly.
(2) $b \in C$ implies that b is not computable by a size $\ell^{\mathrm{O}(1)}$ circuit (i.e. b is not in $\mathcal{P} /$ poly).

Razborov and Rudich [14] defined the concept of a $\mathcal{P} /$ poly-natural proof against $\mathcal{P} /$ poly. It is a $\mathcal{P} /$ poly subset C of $\{0,1\}^{n}$ satisfying condition (2) above, and also condition
(3) The cardinality of C is at least $2^{n} / n^{c}$, some $c \geqslant 1$.

They proved a remarkable theorem (see [14]) that no such set exists, unless strong pseudo-random number
generators do not exists (or, equivalently, strong oneway function do not exists).

In our situation this implies that (under the same assumption) there can be at most $2^{n} / n^{\omega(1)}$ assignments falsifying $A(y)$.

Let me conclude with an open problem: Can the substitution speed-up proofs more than polynomially? That is, are there formulas $A(y)$ having long resolution proofs but $A(g(x))$ having short resolution proofs? In yet another words, does R simulate the system R_{g} defined earlier?

Acknowledgements

I am indebted to Antonina Kolokolova (Simon Fraser U.) for discussions on related topics. I thank Klas Markström (Umea) for explaining me a few facts about automated theorem provers and SAT-solvers, and to Pavel Pudlák (Prague) for comments on the draft of the paper.

References

[1] M. Alekhnovich, E. Ben-Sasson, A.A. Razborov, A. Wigderson, Pseudorandom generators in propositional proof complexity, Electronic Colloquium on Computational Complexity, Rep. No. 23, 2000. Ext. abstract in: Proc. of the 41st Annual Symp. on Foundation of Computer Science, 2000, pp. 43-53.
[2] P. Beame, H. Kautz, A. Sabharwal, Towards understanding and harnessing the potential of clause learning, Journal of Artificial Intelligence Research (JAIR) 22 (2004) 319-351.
[3] S.A. Cook, A.R. Reckhow, The relative efficiency of propositional proof systems, Journal of Symbolic Logic 44 (1) (1979) 36-50.
[4] M. Davis, H. Putnam, A computing procedure for quantification theory, Journal of the ACM 7 (1) (1960) 201-215.
[5] M. Davis, G. Logemann, D. Loveland, A machine program for theorem proving, Communications of the ACM 5 (7) (1962) 394-397.
[6] C.P. Gomes, B. Selman, H. Kautz, Boosting combinatorial search through randomization, in: 15th AAAI, 1998, pp. 431437.
[7] J. Krajíček, On the weak pigeonhole principle, Fundamenta Mathematicae 170 (1-3) (2001) 123-140.
[8] J. Krajíček, Tautologies from pseudo-random generators, Bulletin of Symbolic Logic 7 (2) (2001) 197-212.
[9] J. Krajíček, Dual weak pigeonhole principle, pseudo-surjective functions, and provability of circuit lower bounds, Journal of Symbolic Logic 69 (1) (2004) 265-286.
[10] J. Krajíček, Diagonalization in proof complexity, Fundamenta Mathematicae 182 (2004) 181-192.
[11] J. Krajíček, Structured pigeonhole principle, search problems and hard tautologies, Journal of Symbolic Logic 70 (2) (2005) 619-630.
[12] A.A. Razborov, Resolution lower bounds for perfect matching principles, in: Proc. of the 17th IEEE Conf. on Computational Complexity, 2002, pp. 29-38.
[13] A.A. Razborov, Pseudorandom generators hard for k-DNF resolution and polynomial calculus resolution, Preprint, May'03.
[14] A.A. Razborov, S. Rudich, Natural proofs, Journal of Computer and System Sciences 55 (1997) 24-35.
[15] L. Zhang, C.F. Madigan, M.H. Moskewicz, S. Malik, Efficient conflict driven learning in a boolean satisfiability solver, in: Proc. of the 2001 IEEE/ACM International Conference on ComputerAided Design, 2001, pp. 279-285.

[^0]: E-mail address: krajicek@maths.ox.ac.uk (J. Krajíček).
 ${ }^{1}$ On leave from Mathematical Institute, Academy of Sciences and Faculty of Mathematics and Physics, Charles University, Prague.
 2 The paper was written while I was at the Isaac Newton Institute in Cambridge (program Logic and Algorithms), supported by an EPSRC grant \# N09176. Also supported in part by grants A1019401, AV0Z10190503, MSM0021620839, 201/05/0124, and LC505.

[^1]: ${ }^{3}$ In general we could allow functions computable in $\operatorname{NTime}\left(n(k)^{\mathrm{O}(1)}\right) /$ poly $\cap \operatorname{coNTime}\left(n(k)^{\mathrm{O}(1)}\right) /$ poly.
 4 [8,12,9,13,10,11]; the reader may want to read the introductions to [9] or [13], to learn about the main ideas.

[^2]: ${ }^{5} \mathrm{O}(m \log (m))$ bits would suffice but we want simple formulas.

