Substitutions into propositional tautologies

Jan Krajíček 1,2

Isaac Newton Institute, Cambridge, CB3 0EH, UK

Received 5 April 2006; received in revised form 1 September 2006; accepted 8 September 2006

Available online 9 October 2006

Communicated by K. Iwama

Abstract

We prove that there is a polynomial time substitution \((y_1, \ldots, y_n) := g(x_1, \ldots, x_k)\) with \(k \ll n\) such that whenever the substitution instance \(A(g(x_1, \ldots, x_k))\) of a 3DNF formula \(A(y_1, \ldots, y_n)\) has a short resolution proof it follows that \(A(y_1, \ldots, y_n)\) is a tautology. The qualification “short” depends on the parameters \(k\) and \(n\).

© 2006 Elsevier B.V. All rights reserved.

Keywords: Computational complexity; Proof complexity; Automated theorem proving

Let \(A(y)\) be a 3DNF propositional formula in \(n\) variables \(y = (y_1, \ldots, y_n)\) and assume that we want to prove that \(A(y)\) is a tautology. By substituting \(y := g(x)\) with \(x = (x_1, \ldots, x_k)\) we get formula \(A(g(x))\) which is, as long as \(g\) is computable in (non-uniform) time \(n^{O(1)}\), expressible as 3DNF of size \(n^{O(1)}\). The formula uses \(n^{O(1)}\) auxiliary variables \(z\) besides variables \(x\) but only \(x\) are essential: We know a priori (and can witness by a polynomial time constructible resolution proof) that any truth assignment satisfying \(\neg A(g(x_1, \ldots, x_k))\) would be determined already by its values at \(x_1, \ldots, x_k\).

If \(A(y)\) is a tautology, so is \(A(g(x))\). In this paper we note that the emerging theory of proof complexity generators (Section 1) provides a function \(g\) with \(k \ll n\) for which a form of inverse also holds (the precise statement is in Section 2):

For the following choices of parameters:

- \(k = n^\delta\) and \(s = 2^{n^\varepsilon}\), for any \(\delta > 0\) there is \(\varepsilon = \varepsilon(\delta) > 0\), or
- \(k = \log(n)^c\) and \(s = n^{\log(n)^\mu}\), for \(c > 1\), \(\mu > 0\) specific constants,

it holds:

There is a function \(g\) computable in time \(n^{O(1)}\) extending \(k\) bits to \(n\) bits such that whenever \(A(g(x))\) is a tautology and provable by a resolution proof of size at most \(s\) then \(A(y)\) is a tautology too.

Unless you are an ardent optimist you cannot hope to improve the bound to \(s\) so that it would allow an exhaustive search over \(\{0, 1\}^k\). In fact, it follows that unless \(P = NP\) no automated provers (or SAT solvers) that are based on DPLL procedure [4,5], even augmented by clause learning [15] or restarts of the procedure [6]...
can run in time subexponential \(2^{\Omega(n)}\) in the number of essential variables, as their computations yield resolution proofs of size polynomial in the time [2], cf. Section 3. However, for the particular function \(g\) we use, the exhaustive search yields something (assuming the existence of strong one-way functions): If \(A(g(x))\) is a tautology then there are at most \(2^n / n^{\Omega(1)}\) falsifying truth assignments to \(A(y)\) (Section 3). This is a consequence of results of Razborov and Rudich [14].

Notation. \(x, y, z, \ldots\) and \(a, b, \ldots\) are tuples of variables and of bits, respectively, the individual variables or bits being denoted \(x_i, y_j, \ldots\) and \(a_i, b_j, \ldots\), respectively. \([n]\) is \([1, \ldots, n]\).

1. Proof complexity generators

A proof complexity generator is any function \(g : [0, 1]^* \rightarrow [0, 1]^*\) given by a family of circuits\(^3\) \(\{C_k\}_k\), each \(C_k\) computing function \(g_k : [0, 1]^k \rightarrow [0, 1]^{n(k)}\) for some injective function \(n(k) > k\). (We want injectivity of \(n(k)\) so that any string is in the range of at most one \(g_k\).) We assume that circuits \(C_k\) have size \(n(k)^{O(1)}\). Functions \(g\) of interest are those for which it is hard to prove that any particular string from \([0, 1]^{n(k)}\) is outside of the range of \(g_k\). This can be formalized as follows.

Assume \(m(k)\) is the size of \(C_k\). The set of \(\tau\)-formulas corresponding to \(C_k\) is parameterized by \(b \in [0, 1]^{n(k)} \setminus \text{Rng}(g_k)\). Given such a \(b\), construct propositional formula \(\tau(C_k)_b\) (denoted simply \(\tau(g)_b\) when \(C_k\)'s are canonical) as follows: The atoms of \(\tau(C_k)_b\) are \(x_1, \ldots, x_k\) for bits of an input \(x \in [0, 1]^k\) and auxiliary atoms \(z_1, \ldots, z_{n(k)}\) for bit values of subcircuits of \(C_k\) determined by the computation of \(C_k\) on \(x\). The formula expresses in a DNF that if \(z_j\)'s are correctly computed as in \(C_k\) with input \(x\) then the output \(C_k(x)\) differs from \(b\). The size of \(\tau(C_k)_b\) is proportional to \(m(k)\). The formula is a tautology as \(b \notin \text{Rng}(g)\).

The \(\tau\)-formulas have been defined in [7] and independently in [1], and their theory is being developed.\(^4\) We now recall only few facts we shall use later.

The next definition formalizes the concept of “hard to prove” in two ways; the first one follows [13], the second one is from [9]. We apply these concepts only to resolution but they are well-defined for an arbitrary propositional proof system in the sense of [3].

\(^3\) In general we could allow functions computable in \(N\text{Time}(n(k)^{O(1)})/\text{poly \cap coN\text{Time}}(n(k)^{O(1)})/\text{poly}\).

\(^4\) [8,12,9,13,10,11]; the reader may want to read the introductions to [9] or [13], to learn about the main ideas.

Definition 1.1. Let \(s(k) \geq 1\) be a function, and let \(g = \{g_k\}_k\) be a function as above.

- Function \(g\) is \(s(k)\)-hard for resolution if any formula \(\tau(C_k)_b, b \in [0, 1]^{n(k)} \setminus \text{Rng}(g)\), requires resolution proofs of size at least \(s(k)\).
- \(g\) is \(s(k)\)-iterable for resolution iff all disjunctions of the form

\[
\tau(C_k)_{B_1}(x^1) \lor \cdots \lor \tau(C_k)_{B_t}(x^1, \ldots, x^t)
\]

require resolution proofs of size at least \(s(k)\). Here \(t \geq 1\) is arbitrary, and \(B_1, \ldots, B_t\) are circuits with \(n(k)\) output bits such that:

- \(x^t\) are disjoint \(k\)-tuples of atoms, for \(i \leq t\).
- \(B_1\) has no inputs, and inputs to \(B_i\) are among \(x^1, \ldots, x^{t-1}\), for \(i < t\).
- Circuits \(B_1, \ldots, B_t\) are just substitutions of variables and constants for variables.

Note that the \(s(k)\)-iterability implies the \(s(k)\)-hardness, the latter being the iterability condition with \(t = 1\). (The proof of Theorem 2.1 uses only hardness of the function but we need iterability to get a hard function computable in uniform polynomial time in Corollary 1.5.)

The disjunction from the definition of the iterability can be informally interpreted as follows. Assume that it is a tautology. Then it may be that already the first disjunct \(\tau(C_k)_{B_1}(x^1)\) is a tautology, meaning that the string \(B_1\) is outside of the range of \(g_k\). If not, and \(a^1 \in [0, 1]^k\) is such that \(g_k(a^1) = B_1\), then \(B_2(a^1)\) is the next candidate for a string being outside of the range of \(g_k\). If that fails (and \(a^2\) is a witness) then we move on to \(B_3(a^1, a^2)\), etc. The fact that the disjunction is a tautology means that in this process we find a string outside of the range of \(g_k\) in at most \(t\) rounds.

Exponentially hard functions for resolution do exist. A \(\mathcal{F}/\text{poly}\)-function, a linear map over \(\mathbb{F}_2\) defined by a sparse matrix with a suitable “expansion” property, \(2^{\Omega(n)}\)-hard for resolution was constructed in [9, Theorem 4.2]. Razborov [13, Theorems 2.10, 2.20] gave an independent construction and he noticed that any proof of hardness utilizing only the expansion property of a matrix implies, in fact, \(2^{\Omega(n)}\)-iterability as well. We use a weaker statement than what is actually proved in [13].

Theorem 1.2. (Razborov [13].) There exists a function \(g = \{g_w\}_w\), with \(g_w : [0, 1] \rightarrow [0, 1]^2\), computed by size \(O(w^3)\) circuits, that is \(2^{\Omega(n)}\)-iterable for resolution.
However, what we want is a function computed by a uniform algorithm (it is not known at present how to construct explicitly the matrices used in [9,13]) in order that our substitution is polynomial time computable too. Fortunately, we can get a uniform function from Theorem 1.2, using a result from [9].

Definition 1.3. Let \(m \geq \ell \geq 1 \). The truth table function \(\text{tt}_{m,\ell} \) takes as input \(m^2 \) bits describing\(^5\) a size \(\leq m \) circuit \(C \) with \(\ell \) inputs, and outputs \(2^\ell \) bits: the truth table of the function computed by \(C \).

\(\text{tt}_{m,\ell} \) is, by definition, equal to zero at inputs that do not encode a size \(\leq m \) circuit with \(\ell \) inputs.

Theorem 1.4. (Krajíček [9].) Assume that there exists a \(\mathcal{P}/\text{poly} \)-function \(g = \{g_w\}_w \), with \(g_w : [0,1]^w \to [0,1]^{w^2} \), that is \(2^{w^{O(1)}} \)-iterable for resolution.

Then:

1. For any \(1 > \delta > 0 \), the truth table function \(\text{tt}_{2^{\ell(\delta)},\ell} \) is \(2^{2^{\ell(\delta)}} \)-iterable for resolution.
2. There is a constant \(c \geq 1 \) such that the truth table function \(\text{tt}_{c^{\ell},\ell} \) is \(2^{c^{\ell+O(1)}} \)-iterable for resolution.

The theorem (see [9, Theorem 4.2]) is proved by iterating the circuit computing \(g_w \) along an \(w \)-ary tree of depth \(t \), suitable \(t \). The two statements stated explicitly are just two extreme choices of parameters, but the proof yields an explicit trade-off for a range of parameters. We state this without repeating the construction from [9].

Let \(c \geq 1 \) and \(\varepsilon > 0 \) be arbitrary constants. Assume that there is a function \(g = \{g_w\}_w \), with \(g_w : [0,1]^w \to [0,1]^{w^2} \), computed by size \(w^{c} \) circuits and that is \(2^{w^{c}} \)-iterable for resolution.

Then the truth function \(\text{tt}_{m,\ell} \) is \(s \)-iterable for the following choices of parameters, with \(t \geq 1 \) arbitrary:

1. \(m := w^c \cdot t \),
2. \(\ell := t \cdot \log(w) \),
3. \(s := 2^{w^c - t \log(w)} \).

Corollary 1.5.

1. For every \(c > 1 \) there are \(\varepsilon > 0 \) and a polynomial time computable function \(g = \{g_k\}_k \).

\[g_k : [0,1]^k \to [0,1]^{k^\varepsilon}, \]

that is, \(2^{k^\varepsilon} \)-hard for resolution.

2. There are \(\varepsilon > \delta > 0 \) and a polynomial time computable function \(g = \{g_k\}_k \),

\[g_k : [0,1]^k \to [0,1]^{2^{k^\delta}}, \]

that is, \(2^{k^\delta} \)-hard for resolution.

Theorem 2.1.

1. For any \(\delta > 0 \) there are \(\mu > 0 \) and a polynomial time computable function \(g = \{g_k\}_k \), extending \(k = n^\delta \) bits to \(n = n(k) \) bits such that for any 3DNF formula \(A(y) \), \(y = (y_1, \ldots, y_n) \), it holds:
 - If \(A(g_k(x)) \) has a resolution proof of size at most \(2^{n^\mu} \) then \(A(y) \) is a tautology.
 - There are \(c > 1, \mu > 0 \) and a polynomial time computable function \(g = \{g_k\}_k \), extending \(k = \log(n)^c \) bits to \(n = n(k) \) such that for any 3DNF formula \(A(y) \), \(y = (y_1, \ldots, y_n) \), it holds:
 - If \(A(g_k(x)) \) has a resolution proof of size at most \(n^{3\log(n)^\mu} \) then \(A(y) \) is a tautology.

Proof. For Part 1, let \(\delta > 0 \) be arbitrary. Put \(c := \delta^{-1} \), and take \(\varepsilon > 0 \) and the polynomial time function \(g = \{g_k\}_k \) guaranteed by Corollary 1.5 (Part 1). Hence \(g_k : [0,1]^n \to [0,1]^n \), for \(k = n^\delta \).

Assume \(A(y) \) is not a tautology and let \(b \in [0,1]^n \) is a falsifying assignment. Then \(\tau(g)_b \) can be proved in resolution by combining a size \(s \) proof of \(A(g(x)) \) with a size \(n^{O(1)} \) proof of \(\neg A(b) \). By the \(2^{k^\varepsilon} \)-hardness of \(g \), it must hold that

\[s + n^{O(1)} \geq 2^{n^{k^\delta}}. \]

Hence \(s \) must be at least \(2^{n^\mu} \), for suitable \(\mu < \delta \varepsilon \).

Part 2 is proved analogously, using Corollary 1.5 (Part 2). \(\square \)

Note that if \(g(x) \) is a hard proof complexity generator, so is function \((x,z) \to (g(x),z) \). Hence we may apply the substitutions from the theorem only to some variables \(y_i \).

3. Remarks

We conclude by some remarks. First we substantiate the comment about automated theorem provers and SAT-solvers from the introduction.

Let \(B(x,z) \) be the formula \(A(g(x)) \) with the auxiliary variables \(z \) also displayed. The \(k \) variables \(x \) are essential in \(B \) in the sense that there is a \(O(|B|) \) size resolution proof of

\[B(x,z) \lor B(x,w) \lor z_j \equiv w_j \]
for all j. (In fact, such a proof is easily constructible once we have the algorithm for g.) Assume that it would be always possible to find a resolution proof of a formula whose size would be subexponential in the minimal number of essential variables and polynomial in the size of the formula; in our case $2^{O(n)} |A(g(x))|^{O(1)}$.

Taking g from Theorem 2.1 (Part 2) this would get a size $|A(g)|^{O(1)}$ proof of $A(g(x))$, which is below the required upper bound $n^{\log(n)^m}$. Hence we could interpret this as a new proof system R_g in the sense of Cook–Reckhow [3]: A proof in R_g of $A(y)$ is either a resolution proof or a size $|A(g(x))|^c$ (specific c) proof of $A(g(x))$. This proof system would allow for polynomial size proofs of all tautologies, hence $N\mathcal{P} = \text{co}N\mathcal{P}$ followed only from assuming the existence of short resolution proofs. But automated provers (SAT-solvers) actually construct the proofs, or a proof can be constructed by a polynomial time algorithm from the description of any particular successful computation. Hence the existence of automated provers (SAT-solvers) running in time subexponential in the number of essential variables implies even $\mathcal{P} = N\mathcal{P}$ (or $\mathcal{P} \subseteq \text{BPP}$ if the prover is randomized).

Our second remark concerns the exhaustive search; in other words, what do we know about $A(y)$ if we only know that $A(g(x))$ is a tautology but we do not have a short proof of that fact.

Take for g the function from Theorem 2.1 (Part 1), or any $\text{tt}_{m(\ell),\ell}$ with $m(\ell) = \ell^{o(1)}$. Let $n := 2^\ell$, and interpret strings $b \in \{0, 1\}^n$ as truth tables of boolean functions in ℓ variables. Hence $b \notin \text{Rng}(g)$ implies that b is not computable by a circuit of size $\ell^{O(1)}$.

Assume $A(g(x))$ is a tautology while $A(y)$ is not. Define set $C \subseteq \{0, 1\}^n$ by:

$$C := \{ b \in \{0, 1\}^n \mid \neg A(b) \}. $$

Then it satisfies:

1. C is in \mathcal{P}/poly.
2. $b \in C$ implies that b is not computable by a size $\ell^{O(1)}$ circuit (i.e. b is not in \mathcal{P}/poly).

Razborov and Rudich [14] defined the concept of a \mathcal{P}/poly-natural proof against \mathcal{P}/poly. It is a \mathcal{P}/poly subset C of $\{0, 1\}^n$ satisfying condition (2) above, and also condition

3. The cardinality of C is at least $2^n/n^c$, some $c \geq 1$.

They proved a remarkable theorem (see [14]) that no such set exists, unless strong pseudo-random number generators do not exists (or, equivalently, strong one-way function do not exists).

In our situation this implies that (under the same assumption) there can be at most $2^n/n^{o(1)}$ assignments falsifying $A(y)$.

Let me conclude with an open problem: Can the substitution speed-up proofs more than polynomially? That is, are there formulas $A(y)$ having long resolution proofs but $A(g(x))$ having short resolution proofs? In yet another words, does R simulate the system R_g defined earlier?

Acknowledgements

I am indebted to Antonina Kolokolova (Simon Fraser U.) for discussions on related topics. I thank Klas Markström (Umeå) for explaining me a few facts about automated theorem provers and SAT-solvers, and to Pavel Pudlák (Prague) for comments on the draft of the paper.

References

