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Abstract

We prove, under a computational complexity hypothesis, that it is
consistent with the true universal theory of p-time algorithms that a spe-
cific p-time function extending n bits to m ≥ n2 bits violates the dual
weak pigeonhole principle: every string y ∈ {0, 1}m equals the value of
the function for some x ∈ {0, 1}n. The function is the truth-table func-
tion assigning to a circuit the table of the function it computes and the
hypothesis is that every language in P has circuits of a fixed polynomial
size nd.

Consider a first-order language having a function symbol for every determin-
istic p-time clocked Turing machine, the symbol being interpreted over N by
the function computed by the machine. Relations computable by p-time ma-
chines are formally represented by their characteristic functions but we write,
for example, x ≤ y instead of ≤ (x, y) = 1. We shall denote this language LPV
and the theory of all true universal sentences in the language by TPV; the no-
tation alludes to the influential theory PV introduced by Cook [2] although its
language is defined in a much more complicated way (because of the intended
links with proof complexity, cf.[2] or [8, Chpt.5]). Note that a number of im-
portant theorems from computational complexity, including the PCP theorem
or all valid instances of the NP-completeness of SAT (where there are p-time
functions sending witnesses to witnesses) or various lower bounds, can be ex-
pressed as universal statements in the language and hence are axioms of theory
TPV (cf. [13, Sec.22.3]).

Dual weak pigeonhole principle (dWPHP) for a function g says that for no
n < m can g map n-bit strings onto all m-bit strings. It was first considered in
the context of bounded arithmetic by Wilkie who proved a witnessing theorem
for a particular theory having dWPHP among its axioms; this was written up
in [8, Thm.7.3.7]. The theory was suggested as the basic theory (BT) for formal-
ization of complexity theory (and, in particular, of probabilistic constructions)
in [9] and indeed Jeřábek [3, 4, 5] succeeded in it spectacularly. The dWPHP is
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also linked with proof complexity (cf. [10]) and one can view the question (posed
in [9]) whether one of the theories related to p-time algorithms proves dWPHP
for p-time functions as a uniform version of particular propositional lengths-of-
proofs problems (about proof complexity generators, cf.[13, Sec.19.4]). We do
not give definitions of the notions mentioned above or details of the statements
as they are not technically relevant to this paper and serve here only as a mo-
tivation for the expert reader. The non-expert reader can find this background
in the references given and, in particular, all of it in [13].

The unprovability of dWPHP in TPV implies that P 6= NP: Paris, Wilkie
and Woods [15] proved that dWPHP for p-time functions is provable in a theory
having induction for all predicates in the p-time hierarchy (theory T2(PV) of
Buss [1]) but that theory would follow from TPV if it were that P = NP. This
is because if satisfiability can be solved by p-time algorithm f that statement
is universal:

Sat(x, y) → Sat(x, f(x))

and hence in TPV (here Sat(x, y) formalizes that y is a satisfying assignment
for formula x). But then every bounded formula is provably in TPV equivalent
to an open formula and hence induction for all bounded formulas follows from
induction for open formulas which is in TPV provable via usual binary search.
This means that if we want to prove that dWPHP is not provable in TPV
we ought to expect to use some hypothesis that itself implies P 6= NP. The
hypothesis we shall use is the following:

Hypothesis (H):
There exists constant d ≥ 1 such that every language in P can be decided by

circuits of size O(nd): P ⊆ Size(nd).

The popular expert opinion finds (H) unlikely, I suppose, but the reader
should note that there are no technical results that would support the skepti-
cism. In anything, the notorious unability to prove even 10n lower bound for
general circuits suggest that the possibility that (H) is true cannot be simply
dismissed. It has also the attractive feature that it implies P 6= NP (there are
languages in the polynomial-time hierarchy that have no size O(nd) circuits, cf.
Kannan’s theorem [7]). Thus, in principle, one could prove P 6= NP by proving
circuit upper bounds rather than by proving lower bounds. It is less attractive
that it implies also E ⊆ Size(2o(n)) (a language in E becomes p-time computable
if the inputs are padded) and hence it disproves the foundational hypothesis of
universal derandomization. But this is not an a priori reason to abandon (H)
as E 6⊆ Size(2o(n)) is itself only a hypothesis. On the other hand (H) is good for
proof complexity: together with [11, Thm.2.1] the statement E ⊆ Size(2o(n))
(and hence (H)) imply that either NP 6= coNP or that there is no p-optimal
propositional proof system; proving (or disproving) one of these two statements
are the two fundamental problems of proof complexity. The hypothesis (with
linear size circuits) is often attributed to Kolmogorov, see the discussion in [6,
Sec.20.2].

Next we need to define the truth-table function tts,k. It takes as an input
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a circuit with k inputs of size ≤ s and outputs its truth table, 2k bits. A size ≤ s
circuit can be encoded by, say, 10s log s bits exactly and hence for 10s log s < 2k

this is a function from a smaller set into a bigger one. Our size function s = s(k)
will have the form s(k) := 2εk for some fixed 0 < ε < 1. Hence any such tts,k is
a p-time function.

Theorem 1
Assume hypothesis (H). Then for every 0 < ε < 1 and s = s(k) := 2εk the

theory TPV does not prove the sentence

∀1m(m = 2k > 1)∃y ∈ {0, 1}m∀x ∈ {0, 1}n, tts,k(x) 6= y (1)

expressing the dWPHP for tts,k, where n := 10s log s.

Proof :
Assume that TPV proves (1). By the KPT theorem (cf.[14] or [8, Thm.7.4.1]

or [13, Cor.12.2.4]) there a p-time functions

f1(z), f2(z, w1), . . . , ft(z, w1, . . . , wt−1) (2)

such that for any m = 2k > 1 and any b1, . . . , bt, C1, . . . , Ct−1:

• either b1 /∈ rng(tts,k) for b1 = f1(1m) ∈ {0, 1}m or, if b1 ∈ rng(tts,k) and
b1 = tts,k(C1),

• b2 /∈ rng(tts,k) for b2 = f2(1m, C1) ∈ {0, 1}m or, if b2 ∈ rng(tts,k) and
b2 = tts,k(C2),

• . . ., or

• bt /∈ rng(tts,k) for bt = ft(1m, C1, . . . , Ct−1) ∈ {0, 1}m.

Define constants δi := (2d)−i, for i = 0, . . . , t, and parameters mi := mεδi where
d is the constant from (H) and m is large enough.

We first show that f1 cannot find a suitable b1. Define the function f̂1 that
has mt + k variables and on inputs 1mt and i ∈ {0, 1}k computes the i-th bit of
f1(1m). The string 1mt has the only purpose to make f̂1 p-time. By hypothesis
(H) there is a circuit C ′

1(z, i) with the same variables as f̂1 that computes f̂1.
Define C1 by substituting 1mt for z in C ′

1 and leaving just the k variables for bits
of i. Note that C1 has size O((mt + k)d) and thus can be encoded by ≤ mt−1

bits. Further, by its definition, tts,k(C1) = b1.
Now we show that f2 does not compute a suitable b2 := f2(1m, C1) either.

As before define function f̂2 that now takes three inputs: string 1mt−1 , circuit
C1 (substituted for w1) and i ∈ {0, 1}k, and computes the i-th bit of f2(1m, C1).
Applying (H) we get a circuit C ′

2 with the same 2mt−1 + k variables as f̂2 that
computes the function. Define C2 by substituting 1mt−1 for z and bits defining
C1 for w1 in C ′

2, and leaving just the k variables for bits of i. Note that C2 can
be encoded by ≤ mt−2 bits and tts,k(C2) = b2.
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Continuing in an analogous way for t steps we show that the t-tuple of
functions (2) cannot have the claimed property. Note that the final Ct witnessing
that bt ∈ rng(tts,k) too can be encoded by m0 bits and hence all circuits Ci

have size at most m0 = mε = 2εk.

q.e.d.

The reader who is confident that hypothesis (H) is false can interpret the
theorem as saying that in order to disprove (H) it suffices to prove in TPV
the existence of (a table of) a Boolean function with an exponential circuit
complexity.

It would be desirable to prove the theorem for some other p-time function g
under a weaker or different hypothesis than (H). A good candidate for g may be
the proof complexity generator defined in [12, Sec.3] (or see [13, Sec.19.4]). It is
not difficult to modify the proof of Theorem 1 for this function (with suitable
parameters).
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[11] J. Kraj́ıček, Diagonalization in proof complexity, Fundamenta Mathemati-
cae, 182, (2004), pp.181-192.
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