
Witnessing functions in bounded arithmetic and

search problems

Mario Chiari

1�

Jan Kraj���cek

1;2y

Mathematical Institute

1

and Institute of Computer Science

2

Academy of Sciences, Prague

Abstract

We investigate the possibility to characterize (multi)functions that are

�

b

i

-de�nable with small i (i = 1; 2; 3) in fragments of bounded arithmetic

T

2

in terms of natural search problems de�ned over polynomial-time struc-

tures. We obtain the following results:

1. A reformulation of known characterizations of (multi)functions that

are �

b

1

- and �

b

2

-de�nable in the theories S

1

2

and T

1

2

.

2. New characterizations of (multi)functions that are �

b

2

- and �

b

3

- de�n-

able in the theory T

2

2

.

3. A new non-conservation result: the theory T

2

2

(�) is not 8�

b

1

(�)-

conservative over the theory S

2

2

(�).

To prove that the theory T

2

2

(�) is not 8�

b

1

(�)-conservative over the

theory S

2

2

(�), we present two examples of a �

b

1

(�)-principle separating

the two theories:

(a) the weak pigeonhole principle WPHP (a

2

; f; g) formalizing that no

function f is a bijection between a

2

and a with the inverse g,

(b) the iteration principle Iter(a;R; f) formalizing that no function f

de�ned on a strict partial order (f0; : : : ; ag; R) can have increasing

iterates.

Introduction

Bounded arithmetic theories are subtheories of �rst order arithmetic. They

attempt to formalize feasible reasoning about �nite structures, i.e., relations,

predicates, functions and algorithms referred to in arguments are of bounded

�

Supported by a grant of the Education Ministry of the Czech Republic.

y

Partially supportedbyUS - Czechoslovak Science and Technology Program grant# 93025,

and by grant #119107 of the AV

�

CR.

1

computational complexity: depending on the particular bounded arithmetic

theory, within the polynomial-time hierarchy or its level, or even within circuit

classes AC

0

or NC

1

. Bounded arithmetic was remarkably successful in this

attempt. The most widely studied systems of bounded arithmetic, I�

0

of [21],

I�

0

+

1

of [23] and S

2

of [2], and S

1

2

of [2] and PV of [9], can de�ne by

bounded formulas all rudimentary functions of [28], all functions computable

by a polynomial-time Turing machine with an oracle from the polynomial-time

hierarchy, and all polynomial-time functions respectively.

On the other hand, bounded arithmetic theories do not de�ne functions

computationally unfeasible. Already [21] showed that a function whose graph

is de�ned by a bounded formula and that is de�nable in a bounded arithmetic

theory is majorized by a term of the language. Considerably �ner information

was obtained in [2] where classes of functions (with the graph of a particu-

lar complexity) de�nable in a particular subtheory of bounded arithmetic S

2

were characterized. These characterizations are known as witnessing theorems.

Further witnessing theorems were obtained in [17, 13, 26, 14, 6, 5, 15].

Feasibility of bounded arithmetic is shown by its relation to propositional

logic too, as discovered in [9] and, in a di�erent form, in [22]. A bounded formula

can be translated into a propositional formula in various ways. To give an idea

of a translation we consider a rather well-known example.

Let PHP (a;R) be the bounded formula:

8x < a+ 19y < aR(x; y)! 9y < a9x

1

< x

2

< a+ 1; R(x

1

; y) ^R(x

2

; y) :

PHP (a;R) formalizes the pigeonhole principle. For any �xed a := n, the for-

mula PHP (a;R) can be translated into the propositional formula PHP

n

:

^

x<n+1

_

y<n

p

xy

!

_

y<n

_

x

1

<x

2

<n

(p

x

1

y

^ p

x

2

y

) ;

where the propositional atom p

xy

is in place of R(x; y). The formula PHP

n

is

a tautology (as the pigeonhole principle is valid in all �nite structures), it has

n(n� 1) atoms and has size (the number of occurrences of symbols) O(n

3

). As

PHP

n

is a tautology, it has a proof in any complete propositional proof system.

In general, however, we cannot say more, that is, we cannot say whether there is

a non-trivial upper bound on the size of (the smallest) proof of a tautology (other

than the exponential bound obtained if you consider truth tables as proofs.)

1

The important feature of bounded arithmetic theories is that to a theory is

associated a propositional proof system with the following property: whenever

a �nite combinatorial principle (expressed by a bounded formula of the language

of bounded arithmetic) is provable in the theory, the tautologies expressing it

in a propositional form do have proofs in the associated propositional proof

system of size polynomial in the size of the formula. Moreover, the propositional

1

For the particular formula PHP

n

, good lower and upper bounds are known, see [18, 25, 3].

2

proof systems associated to the main bounded arithmetic theories are not some

arti�cial systems but rather natural and well studied calculi like the extended

resolution proof system and various forms of Gentzen-style and Hilbert-style

systems.

Thus, the question whether a combinatorial principle is unprovable in a

bounded arithmetic theory is related (in fact, more closely than it is sketched

above, see [15]) to the problem whether there is a superpolynomial lower bound

to the size of proofs in an associated propositional proof system. The latter

problem is a fundamental one in the computational complexity theory: the

famous P vs NP problem of [8] is formulated in terms of propositional logic and

with a general notion of a propositional proof system the question whether there

is a propositional proof system admitting polynomial size proofs is equivalent to

the question whether the class NP is closed under complementation (the NP

vs coNP problem), cf. [10].

The discussion above should persuade the reader that to study the unprovab-

ility of �nite combinatorial principles in bounded arithmetic theories is relevant

to major open questions in propositional logic and complexity theory. Perhaps

the most widely considered principle in mathematical logic is the principle of

induction IND(a; P) which is formulated as a �nitary principle as follows:

:P (0) _ (9x < a; P (x)^ :P (x+ 1)) _ P (a) :

This principle is a basis of essentially all bounded arithmetic theories and they

di�er by posing various restrictions on the predicate P for which the induction

is adopted. For example, the theory T

2

(�) of [2] is based on IND(a; P) for

the predicates P de�ned by bounded formulas in the language of T

2

(�), and the

subtheories T

i

2

(�) are de�ned by further restricting P to the predicates de�nable

by �

b

i

(�)-formulas, bounded formulas of a particular quanti�er complexity.

Thus, to prove that IND(a; P) is not available in T

i

2

(�) for some P de�ned

by a bounded formula is the same as to show T

i

2

(�) 6= T

2

(�); i.e., to show that

T

2

(�) is not �nitely axiomatizable. This is indeed so but for the theory T

2

this

problem is open and closely related to the question whether the polynomial-time

hierarchy collapses, see [17].

Therefore, �ner information about the di�erence between T

i

2

(�) and T

2

(�)

or, in other words, good non-conservation results are desirable.

In this paper we obtain a new non-conservation result: T

2

2

(�) is not 8�

b

1

(�)-

conservative over S

2

2

(�). Previously only the non-8�

b

2

(�)-conservativity was

known, cf. [13, 26] (see [7] for the question how to lift this non-conservativity

to a non-8�

b

i

(�)-conservativity of T

i+1

2

(�) over S

i+1

2

(�), for all i � 1).

We believe that any further improvement of this non-conservation result

(to the eventual result that T

i

2

(�) is not 8�

b

1

(�)-conservative over S

i

2

(�), for

all i � 1, which we expect to hold) will require to �nd characterizations of

(multi)functions that are �

b

j

(�)-de�nable in T

i

2

(�), for j � i, in terms of search

3

problems de�ned over polynomial-time structures (instead of characterizations

involving oracle computations). A simple example is this: the task to compute

a value of a 2

p

2

-function for an argument a is equivalent to the task to �nd a

maximal value of a polynomial-time function at an interval [0; t(a)] (see Theorem

3.4).

We prove several new characterizations in terms of search problems, and we

state two speci�c questions about search problems de�nable in T

2

2

(see the end

of Sections 4 and 6).

The paper is organized as follows. In the �rst section we overview basic

notions and known results of bounded arithmetic. In the second and third

sections, we study the search problems that are �

b

1

-de�nable in T

1

2

and the

search problems that are �

b

2

-de�nable in S

1

2

and in T

1

2

. The fourth section is

devoted to the search problems that are �

b

2

-de�nable and �

b

3

-de�nable in T

2

2

.

In the �fth and sixth sections we show that a form of the weak pigeonhole

principle and a form of the iteration principle (both �

b

1

(�)- principles) are not

provable in the theory S

2

2

(�) while they are provable in the theory T

2

2

(�).

Although we recall notions and results from bounded arithmetic and pro-

positional logic, we advice the reader to consult either the original papers or

[15] for details. In [15] the relations of bounded arithmetic to computational

complexity and to propositional proof systems are treated in depth.

1 Bounded arithmetic preliminaries

In this section we recall some de�nitions and results from bounded arithmetic

relevant to our paper.

We study subtheories of the theory T

2

(�). The language L(�) of the theory

contains seven function symbols:

0; 1; x+ y; x � y; b

x

2

c; jxj; x#y

with the �rst �ve having the usual meaning, jxj is the length of the binary

representation of x, and x#y is 2

jxjjyj

, and three predicate symbols:

x = y; x � y; �(x

1

; : : : ; x

k

) ;

again the �rst two having the usual meaning and �(x

1

; : : : ; x

k

) is a k-ary pre-

dicate symbol without any attached interpretation in the standard model. The

arity k will vary. The language L is L n f�g.

The theory T

2

(�) is axiomatized by a �nite set BASIC of bounded �rst

order axioms codifying the recursive properties of function symbols and predic-

ates =;� (BASIC contains no axioms about �) and by the induction scheme

IND(a; P), for all bounded formulas P of the language L(�).

4

The class �

b

1

(�) of bounded formulas of L(�) is strati�ed into levels �

b

0

(�) �

�

b

1

(�) � : : : similarly as the arithmetical formulas are strati�ed into levels

�

0

0

� �

0

1

� : : :. In particular, �

b

0

(�) is the class of bounded formulas with

all quanti�ers bounded by a term of the form jtj (the sharply bounded quanti-

�ers), and �

b

i

(�) is the class of bounded formulas with (i � 1) alternations of

bounded quanti�ers, starting with the existential one and without counting the

sharply bounded ones. The important property of the �

b

i

(�)-formulas is that

they de�ne exactly the predicates in the i

th

level �

p

i

(�) of the polynomial time

hierarchy PH

�

relative to the oracle �. For example, the �

b

1

(�)-formulas de�ne

exactly the NP

�

-predicates.

A subtheory T

i

2

(�) is obtained from T

2

(�) by restricting the IND(a; P)

scheme to �

b

i

(�)-formulas P only. Other important subtheories of T

2

(�) are

the theories S

i

2

(�) that are based on a modi�ed induction scheme for �

b

i

(�)-

formulas.

It holds that: S

i

2

(�) � T

i

2

(�) � S

i+1

2

(�) ([2]); S

i+1

2

(�) is 8�

b

i+1

(�) - conser-

vative over T

i

2

(�) ([4]), although S

i+1

2

(�) 6= T

i

2

(�) ([17]). Further it holds that

T

i

2

(�) 6= S

i

2

(�) ([14]) and, in fact, that T

i

2

(�) is not 8�

b

i

(�) - conservative over

S

i

2

(�) ([5]).

Thus all possible conservation relations between S

i+1

2

(�) and T

i

2

(�) are de-

cided, since S

i+1

2

(�) is 8�

b

i+2

(�)-axiomatizable. With respect to our study of

conservation results between subtheories of T

2

(�), the theories S

i+1

2

(�) and

T

i

2

(�) are indistinguishable and we may therefore con�ne ourselves mostly to

theories T

i

2

(�).

To show that a formula �(�) is not valid in all structures is equivalent to a

computational complexity theory task to �nd an oracle � for which the principle

�(�) fails.

To establish the unprovability in T

2

(�) of a bounded formula �(�) which is,

in fact, valid for all interpretations of � in all �nite structures is related (though

not equivalent) to the task to show that the principle �(�) is not witnessed by

a polynomial time machine with an oracle from �

p

i

(�), �xed i for all �.

We shall not de�ne the general concept of witnessing ([2]) but merely state

one witnessing theorem for the theory T

1

2

proved in [5], and its straightforward

generalization to the theories T

i

2

(�) we shall need (Theorem 1.1).

A search problem (or a multifunction) is given by a binary predicate R(x; y);

if R is expressible by a �

b

i

-formula we say that it is a �

b

i

-search problem. Any

y such that R(x; y) holds is called a solution for instance x. The problem is

well-de�ned if:

8x9yR(x; y)

holds, and it is �

b

i

-de�nable in a theory T if there is a �

b

i

-formula �(x; y) ex-

pressing R(x; y) such that:

8x9y�(x; y)

is provable in T .

5

The search task is: given an instance x �nd any solution y. Note that a

solution is not necessarily unique.

This is a general concept and to �t in various examples of search problems

the relation R must encode several functions and relations specifying a natural

combinatorial setting for the search problem. Various classes of search problems

were considered in [19, 20]. In this paper, search problems are de�ned, or

speci�ed, in terms of a list of data (functions, relations) that are required to

satisfy a certain condition. A relation (thus, a search problem) is naturally

associated to the given specifying data and well-de�niteness is implied by the

required condition.

A foremost example is the notion of a polynomial local search problem (PLS

- problem) of [20]. An instance of a PLS-problem L is any �nite string x of 0; 1

(equivalently a number identi�ed with its binary expansion). For any x there is

a set F

L

(x) of solutions:

F

L

(x) := fy 2 f0; 1g

�

j jyj � jxj

`

g;

where ` is a constant depending on L. Any solution s 2 F

L

(x) has its cost

C

L

(x; s) : a natural number. Moreover, the set F

L

(x) is augmented by a neigh-

bourhood function N

L

(x; s) such that for s 2 F

L

(x):

(�

L

) [N

L

(x; s) = s]_ [N

L

(x; s) 2 F

L

(x) ^ C

L

(x;N

L

(x; s)) < C

L

(x; s)] :

Hence N

L

(x; s), if di�erent from s, provides a solution of a smaller cost than is

that of s. A crucial requirement is that both functions C

L

(x; s) and N

L

(x; s)

are polynomial time functions of x; s.

The search task of the PLS-problem L is, given x, �nd a solution s 2 F

L

(x)

for which N

L

(x; s) = s. Such solution is called locally optimal. We refer the

reader to [20] for examples of PLS-problems.

Clearly, the search problem determined by the relation R(x; y):

R(x; y) �

df

(y 2 F

L

(x) ^N

L

(x; y) = y)

is just the PLS-problem L and the condition (�

L

) implies that it is well-de�ned.

An oracle PLS-problem is de�ned identically, allowing functions C

L

(x; s)

and N

L

(x; s) to be computed by polynomial-time oracle machines. For a given

oracle PLS-problem L the machines computing these two functions are �xed.

An oracle PLS-problem L whose machines have access to a particular oracle

� is called a PLS

�

-problem and denoted L(�).

Theorem 1.1 ([5]) Let �(x; y; �) be a �

b

i

(�)-formula, i � 1. Assume that:

T

i

2

(�) ` 8x9y�(x; y; �) :

Then there is an oracle PLS-problem L and a �

b

i�1

(�)-formula �(x; �) de�ning

for all � � ! the set �

�

= fx 2 ! j �(x; �)g such that for all �:

6

1. the condition (�

L

) from the de�nition of PLS-problems holds for the prob-

lem L = L(�

�

)

2. whenever s 2 F

L(�

�

)

(x; s) is a locally optimal solution, then

(a) s has the form (y; z

1

; : : : ; z

k

)

(b) �(x; y; �) is valid.

In particular, the 89�

b

1

-consequences of T

1

2

are witnessed by projections of

PLS-problems and the 89�

b

2

-consequences of T

2

2

are witnessed by projections of

PLS

NP

-problems.

We remark only that the opposite statement is also valid: every PLS

�

p

i�1

(�)

-

problem is 89�

b

i

(�)-de�nable in T

i

2

(�), see [5]. However, in this opposite state-

ment the formula R(x; y) de�ning the search problem need not to be the nat-

ural one as above but rather a �

b

1

-formula R

0

(x; y) such that the 8�

b

1

-sentence

(8x; s; (�

L

)) ! 8x9y;R(x; y) is expressible as 8x9yR

0

(x; y). For example, for

R

0

(x; y) de�ned by:

[N

L

(x; y) 6= y ^ (N

L

(x; y) =2 F

L

(x) _C

L

(x;N

L

(x; y) � C

L

(x; y))] _

_ [y 2 F

L

(x) ^N

L

(x; y) = y] ;

the formula 8x9yR

0

(x; y) is provable in T

1

2

and 8x9yR

0

(x; y) � 8x9yR(x; y)

holds, as the �rst disjunct can be never satis�ed (by (�

L

)).

2 Search problems that are �

b

1

-de�nable in T

1

2

In [13], a herbrandization of the induction axiom for a particular �

b

1

(�)-formula

was studied. Such herbrandization was reformulated in [5] as a �nite �

b

1

-

combinatorial principle: the iteration principle.

We shall reformulate it as a search problem.

De�nition 2.1 An iteration problem (I-problem) is given by a polynomial-time

function f(x; y) satisfying, for all x, the following conditions:

1. 0 < f(x; 0)

2. 8y < x; y < f(x; y) ! f(x; y) < f(x; f(x; y))

Numbers x > 0 are the instances of the problem and, for any x, y < x is a

solution for x, if

f(x; y) � x :

The iteration principle considered in [5] says that any I-problem is well-

de�ned. Let Iter(a; f) be the �

b

1

(f)-formula expressing that the problem has a

solution for instance a:

0 = f(a; 0) _ 9y < a; (y < f(a; y) ^ f(a; y) � f(a; f(a; y))) _ f(a; y) � a :

7

Theorem 2.2 ([5]) The �

b

1

(f)-formula Iter(a; f) is provable in T

1

2

(f) but not

in S

1

2

(f).

We note as a simple observation that the I-problems actually characterize

the �

b

1

-consequences of T

1

2

.

Theorem 2.3 Let �(x; y) be a �

b

1

-formula and assume that

T

1

2

` 8x9y�(x; y) :

Then there is an I-problem and a term t(x) such that any solution u for an

instance a := t(x) has the form u = (y; z) and �(x; y) holds.

Proof :

We use Theorem 1.1. Let L be the PLS-problem whose projections witness

the formula 8x9y�(x; y) in the sense of Theorem 1.1. Let t(x) be a term such

that t(x) is larger than every s 2 F

L

(x) and, for s 2 F

L

(x) larger than all

c = C

L

(x; s). Code pairs (u; v) of numbers u; v < t(x) by (t(x) � v) � t(x) + u.

W.l.o.g., we may assume that the pair (0; C

L

(x; 0)) is coded by 0.

De�ne a polynomial-time function f by:

f(x; (s; c)) := 0 if s 62 F

L

(x) _ c 6= C

L

(x; s)

and otherwise de�ne:

f(x; (s; c)) :=

�

(N

L

(x; s); C

L

(x;N

L

(x; s))) if s 6= N

L

(x; s)

t(x)

3

otherwise

Then the condition (�

L

) from the de�nition of PLS-problems implies that

the function f satis�es the requirements of De�nition 2.1, and that any solution

u of the iteration problem must satisfy f(x; u) = t(x)

3

. Hence, u = (s; C

L

(x; s))

for some locally optimal solution s of the PLS-problem L.

q.e.d.

After the experience o�ered by Theorems 1.1 and 2.3 we de�ne the no-

tion that a class of search problems characterizes search problems that are �

b

i

-

de�nable in a theory T . Recall the de�nition of search problems from Section

1.

De�nition 2.4 Let L be a class of search problems and let T be a theory in a

language extending the language of the theory T

2

.

The class L characterizes search problems that are �

b

i

-de�nable in T i� the

following two conditions hold:

1. For every search problem R(x; y) 2 L there is a �

b

i

-formula �(x; y) such

that:

8

(a) T ` 8x9y�(x; y)

(b) For every x; y : �(x; y)! R(x; y).

2. For every �

b

i

-formula �(x; y) for which T proves 8x9y�(x; y) there exists

a search problem R(x; y) 2 L which is well-de�ned and such that any

solution z for an instance x has the form:

z = (y; z

1

; : : : ; z

k

)

and �(x; y) holds.

Thus the classes of PLS-problems and of I-problems both characterize the

search problems that are �

b

1

-de�nable in the theory T

1

2

.

3 Search problems that are �

b

2

-de�nable in S

1

2

and in T

1

2

The search problems that are �

b

2

-de�nable in S

1

2

and in T

1

2

were characterized

in computational terms in [14, 4]. In this section we reformulate these charac-

terizations in terms of natural search problems.

De�nition 3.1 A function-maximization problem (FM -problem) is given by

two polynomial-time functions g(x) and f(x; y). A solution for an instance x is

any y < g(x) such that:

f(x; y) = max

z<g(x)

f(x; z) :

The FM -problem is sharply bounded i�

8y < g(x); f(x; y) < jt(x)j

for some term t(x).

Lemma 3.2 Every FM -problem is �

b

2

-de�nable in T

1

2

.

Proof :

The formula �(x; y):

y < g(x) ^ 8z < g(x); f(x; z) � f(x; y)

is �

b

1

� �

b

2

and de�nes the FM -problem. To prove that 8x9y�(x; y), consider

the following �

b

2

-formula �(u):

9v < h(x)9y < g(x)8z < g(x); v � f(x; y) ^ f(x; z) � v + u ;

9

where h(x) is an apriori polynomial-time bound to max

z<g(x)

f(x; z). Clearly,

�(u), for u := h(x), and:

�(u)! �(b

u

2

c) :

Hence, S

2

2

proves �(0) and the witnesses v; y to the validity of �(0) yield a

solution y for the instance x.

This shows that FM -problems are �

b

2

-de�nable in S

2

2

and hence (by the

8�

b

2

-conservativity of S

2

2

over T

1

2

, see [4]) they are also de�nable in T

1

2

.

q.e.d.

The theory T

3

is de�ned exactly as T

2

except that its language contains one

more function symbol #

2

where:

x#

2

y := 2

jxj#jyj

;

see [2]. The theory R

3

was de�ned in [29] and it is based on the following

induction axiom:

((0) ^ 8x((b

x

2

c)! (x))) ! 8x (jxj) :

Lemma 3.3 Every sharply bounded FM -problem is �

b

2

-de�nable in S

1

3

.

Proof :

The proof goes analogously with the proof of Lemma 3.2 with one change.

As the FM -problem is sharply bounded, the formula �(u) holds for u := jt(x)j

and hence the induction available in R

2

3

proves that �(0) is valid.

By [6] the theory R

2

3

is 8�

b

2

-conservative over S

1

3

, which yields the lemma.

q.e.d.

It is an open problem whether the theory R

2

2

is also 8�

b

2

-conservative over

S

1

2

. If so, the previous lemma would hold with S

1

2

in place of S

1

3

.

The next theorem is a converse to Lemma 3.2.

Theorem 3.4 The class of FM -problems characterizes the search problems

that are �

b

2

-de�nable in T

1

2

.

Proof :

Lemma 3.2 shows that every FM -problem is �

b

2

-de�nable in T

1

2

.

By [2] the 8�

b

2

-consequences of T

1

2

are witnessed by 2

p

2

-functions. Hence it

is su�cient to prove the following claim.

Claim : Let F (x) be a 2

p

2

-function. Then there exists a term t(x) and a

polynomial-time function f(x; y) such that: for all x,

10

if u < t(x) is a solution to the FM -problem given by t(x) and f(x; y),

then:

u = (y; z

1

; : : : ; z

k

)

and y = F (x) holds.

Let N be the oracle polynomial-time machine computing F with the NP -

oracle 9w�(u;w). We assume that w is implicitly bounded in the polynomial-

time relation �, and that the time bound of N is n

`

.

Let D

x

be the set of all 5-tuples of the form:

(y; v; w; �; x)

where:

1. � is a tuple (�

1

; : : : ; �

`

) 2 f0; 1g

�

.

2. v is a computation of machine N on the input x in which the i

th

oracle

query [9w�(u

i

; w)?] is answered YES and NO according to whether �

i

= 1

or �

i

= 0.

3. w is a tuple (w

1

; : : : ; w

`

).

4. For all i � ` : if �

i

= 1 then �(u

i

; w

i

) holds.

5. y is the output of the computation v.

Note that every tuples in D

x

has size bounded by some term t(x) (hence

D

x

� f0; : : : ; t(x)� 1g) and D

x

6= ; (take � = w = (0; : : : ; 0) and the computa-

tion v of N whose queries are all answered negatively).

De�ne the function f(x; u) for u < t(x):

f(x; u) :=

�

1 +

P

`

i=1

�

i

� 2

`�i

if u = (y; v; w; �; x) 2 D

x

0 otherwise

Assume that u = (y; v; w; �; x) yields the maximal value of f(x; u), for u <

t(x). We claim that all oracle queries in v are answered correctly by �. The

a�rmative answers are correct, as they are witnessed by w. Assume that a

negative answer �

i

= 0 is incorrect and let z be such that �(u

i

; z). Consider a

new �

0

:

�

0

j

:=

8

<

:

�

j

if j < i

1 if i = j

0 otherwise

and a new w

0

:

11

w

0

j

:=

8

<

:

w

j

if j < i

z if i = j

0 otherwise.

Let v

0

be the unique computation of N on x with the oracle answers �

0

and the

output y

0

. Then, however, f(x; u

0

) > f(x; u), for u

0

= (y

0

; v

0

; w

0

; �

0

; x) 2 D

x

.

q.e.d.

Lemma 3.2 and Theorem 3.4 generalize to T

1

2

(�) and oracle FM -problems.

Hence the following corollary follows from the separation S

1

2

(�) 6= T

1

2

(�), cf.

[13, 26, 14].

Corollary 3.5 The oracle FM -problem with oracle functions f and g is not

�

b

2

(f; g)-de�nable in S

1

2

(f; g).

We consider one more reformulation of the characterization of 8�

b

2

- con-

sequences of T

1

2

.

Theorem 3.6 The search problems that are �

b

2

-de�nable in T

1

2

are character-

ized by the class of search problems given by a polynomial-time function g(x)

and a polynomial-time predicate H(x; y), in which a solution to an instance x

is the minimal element of the set fy < g(x) j H(x; y)g [fg(x)g.

Proof :

That every such problem is �

b

2

-de�nable in T

1

2

follows from Lemma 3.2, when

f is de�ned by:

f(x; y) :=

�

g(x)� y if H(x; y)

g(x) otherwise

For the other direction, note that in the proof of Theorem 3.4 we may code

tuples u 2 D

x

in such a way that if f(x; u) > f(x; u

0

) then the code of u is

bigger than the code of u

0

. Take H to be the de�nition of such codes.

q.e.d.

Since we proved Lemma 3.3 for S

1

3

instead for S

1

2

, we cannot prove a char-

acterization in terms of sharply bounded FM -problems of the search problems

that are �

b

2

-de�nable in S

1

2

(analogous to Theorem 3.4). However, one direction

still works.

Theorem 3.7 Every search problem that is �

b

2

-de�nable in S

1

2

is represented

by a sharply bounded FM -problem, i.e., it is a projection of a sharply bounded

FM -problem.

12

Proof :

The search problems that are �

b

2

-de�nable in S

1

2

are characterized as those

problems which can be witnessed by a polynomial-time machine that may ask

O(log logx) queries to an NP -oracle, and modi�ed in such a way that the oracle

supplements its a�rmative answers with witnesses to those answers (cf. [14], in

[6] this class of search problems is called FP

NP

[wit;O(logn)]).

This implies that an FM -problem de�ned as in the proof of Theorem 3.4 is,

in the case of S

1

2

, actually sharply bounded, as ` � O(log logx).

q.e.d.

4 Search problems that are �

b

2

- and �

b

3

- de�nable

in T

2

2

Theorem 1.1 gives a characterization of the search problems that are �

b

2

- de�n-

able in T

2

2

in terms of oracle PLS - problems. An axiomatization of the 8�

b

2

-

consequences of T

2

2

by the re
ection principles of the proof system G

2

is given in

[16]. Neither characterization is entirely satisfactory. The latter one is not sat-

isfactory because the re
ection principles lack a direct combinatorial meaning.

In the former characterization the de�nition of the search problems contains

unfeasible functions (2

p

2

), while we would like a characterization involving only

polynomial-time objects and whose search task complexity stems from the task

itself rather than from the underlying structure.

In this section we give such characterizations of search problems that are

�

b

2

- and �

b

3

-de�nable in T

2

2

. We start with the latter, as it is simpler.

De�nition 4.1 A minimal minimum problem (MM -problem) is given by a

polynomial-time relation R(x; y; z) and polynomial-time functions c(x; y) and

g(x) such that the relation

f(y; z) j R(x; y; z)g

is a strict partial ordering of the set fu j u < g(x)g (henceforth, we write �

x

).

A solution y for an instance x is any y < g(x) satisfying the following two

conditions:

1. y is a minimal element of the ordering �

x

.

2. For any �

x

-minimum z, c(x; y) � c(x; z).

Theorem 4.2 Search problems that are �

b

3

-de�nable in T

2

2

are characterized by

the class of MM -problems. In particular, the theory T

2

2

is axiomatizable over

S

1

2

by the statements formalizing that all MM -problems are well-de�ned.

13

Proof :

The property that y is �

x

-minimal with cost u is �

b

1

. Hence the set X of

pairs (u; y) such that y < g(x) is a �

x

-minimumand u = c(x; y) is �

b

1

-de�nable.

Moreover, the property that �

x

is a strict partial ordering on f0; : : : ; vg is

also �

b

1

. Thus the formula �(v) expressing that if �

x

is a partial ordering of

f0; : : : ; vg then there is y � v �

x

-minimal on f0; : : : ; vg is �

b

2

, and so the theory

T

2

2

su�ces to prove by induction on v that there is at least one �

x

-minimum on

the whole set f0; : : : ; g(x)�1g. Hence, the set X is non-empty. Since T

2

2

proves

�

b

1

-MIN axiom, X has a minimal element (w.r.t. to the standard ordering).

W.l.o.g. we may assume that the minimality of the pair (u; y) implies the

minimality of u.

This shows that T

2

2

proves that all MM -problems are well-de�ned.

To verify that every search problem which is �

b

3

-de�nable in T

2

2

is repres-

ented by an MM -problem, it is su�cient to show that the assumption that

all MM -problems are well-de�ned implies (over S

1

2

) that all non-empty �

b

1

-

de�nable sets have a minimum, as the latter statement (the �

b

1

-MIN axioms)

8�

b

3

-axiomatizes T

2

2

(cf. [2]).

Let B(x; u) = 8v < x;A(x; u; v) be a �

b

1

-formula with A 2 �

b

1

. For the pairs

(u; v); (r; s) 2 (x+ 1)� (x+ 1) de�ne

(u; v) �

x

(r; s)

i� u = r and one of the following three conditions holds:

1. (v = x _ :A(x; u; v)) ^A(x; r; s)

2. A(x; u; v) ^A(x; r; s)^ v < s

3. :A(x; u; v) ^ v < x ^ (:A(x; r; s)_ s = x) ^ v < s .

Note that if (u; v) is �

x

-minimal then

B(x; u) i� v = x :

De�ne the function:

c(x; (u; v)) :=

�

u if v = x

x otherwise.

Hence for a �

x

-minimum (u; v):

c(x; (u; v)) :=

�

u if B(x; u) holds

x otherwise.

Clearly, assuming that B(x; u) is satis�ed by at least one element u, the �

x

-

minimum of the smallest possible cost (it is unique) is a pair (u; x), where u is

the smallest number satisfying B(x; u).

14

q.e.d.

Now we move on to characterizations of search problems that are �

b

2

- de�n-

able in T

2

2

. We generalize the de�nition of local search problems.

De�nition 4.3 A generalized local search problem (GLS-problem) is given by

the following data:

1. a polynomial-time function g(x) (specifying the domain as the set of y <

g(x))

2. a polynomial-time function c(x; y) (the cost function)

3. a polynomial-time relation N (x; y; z) (the neighbourhood of y, we write

N

y

x

)

4. a polynomial-time relation R(x; y; u; v) (the ordering on N

y

x

, we write �

y

x

)

satisfying the following conditions:

(i) N

y

x

6= ;, all y < g(x)

(ii) �

y

x

is a strict linear ordering of N

y

x

, all y < g(x)

(iii) if u 2 N

y

x

is �

y

x

-minimal and v 2 N

u

x

is �

u

x

-minimal then:

c(x; v) � c(x; u) :

The search task is : given an instance x �nd u; v; w < g(x) such that

(a) v 2 N

u

x

is �

u

x

-minimal

(b) w 2 N

v

x

is �

v

x

-minimal

(c) c(x; v) = c(x;w).

Since the de�nition is not terribly illuminating, let us consider an example.

Let f(x; y) be a cost function de�ned on the elements of the d-dimensional cube

x � x � : : : � x, and de�ne the neighbours to be the elements which di�er in

every coordinate by at most 1. The task is to �nd a local optimum; i.e., an y

such that no neighbour of y has a smaller cost.

If d is a constant (or O(logn), where n = jxj), then a neighbourhood has at

most polynomially many elements and a polynomial-time algorithmmay search

throughout it to �nd an element of minimal cost. This is just the usual PLS-

problem.

If d = n, the domain is still bounded by some g(x). However, a neighbour-

hood may have exponential size and no polynomial-time algorithm can search

through it. In this case, however, we still have a linear ordering in every neigh-

bourhood (given by the cost) and the minimal neighbours are those where the

cost does not increase. Hence, we have a GLS-problem.

15

Theorem 4.4 The search problems that are �

b

2

-de�nable in T

2

2

are character-

ized by the class of GLS-problems.

Proof :

Consider the formula �(c) expressing that c is the cost of a �

y

x

-minimum for

some y < g(x):

9y; u < g(x)8v < g(x); u 2 N

y

x

^ c = c(x; u) ^ (v 2 N

y

x

! (u = v _ u �

y

x

v)) :

Let Y = fc j �(c)g. Then Y is �

b

2

-de�nable and non-empty (as every neigh-

bourhood N

y

x

is non-empty and contains �

y

x

-minimal elements).

By the �

b

2

-MIN axioms available in T

2

2

there exists a minimal element c 2 Y .

Witnesses y; u to the validity of �(c) provide a solution of the GLS-problem.

To prove that every search problem which is �

b

2

-de�nable in T

2

2

can be

represented by a GLS-problem, we employ Theorem 1.1. Thus, it is su�cient

to show that every PLS

NP

-problem can be represented by a GLS-problem.

Let L be an PLS-problem with access to an NP -oracle 9w�(u;w), where �

is a polynomial-time predicate and w is implicitly bounded in �. First we de�ne

the data specifying the GLS-problem and then we shall verify that it has the

required properties.

Elements of N

y

x

, y = (z

0

; c

0

; v

0

; w

0

; �

0

; y

0

), are 6-tuples of the form:

(z; c; v; w; �; y

0

)

where:

1. � is a tuple (�

1

; : : : ; �

`

) 2 f0; 1g

�

, where n

`

is a �xed time bound to a

machine computing simultaneously N

L

(x; y

0

) and C

L

(x;N

L

(x; y

0

)): Call

such machine M

L

(x; y

0

).

2. v is a computation of the machine M

L

(x; y

0

) on the input x; y

0

in which

the i

th

oracle query [9w�(u

i

; w)?] is answered YES or NO according to

whether �

i

= 1 or �

i

= 0.

3. w is a tuple (w

1

; : : : ; w

`

).

4. For all i � ` : if �

i

= 1 then �(u

i

; w

i

) holds.

5. (z; c) is the output of the computation v.

The ordering �

y

x

on N

y

x

is de�ned by the anti-lexicographic order of the �'s,

and the cost of such y is de�ned to be its second component:

c(x; y) := c :

16

Condition (�

L

) from the de�nition of PLS-problems in Section 1 implies that the

GLS-problem de�ned in this way satis�es the conditions (i)� (iii) of De�nition

4.3.

On the other hand, a solution u; v; w:

u = (z

u

; c

u

; v

u

; w

u

; �

u

; y

u

)

v = (z

v

; c

v

; v

v

; w

v

; �

v

; y

v

)

w = (z

w

; c

w

; v

w

; w

w

; �

w

; y

w

)

to the GLS-problem satis�es:

z

v

= N

L

(x; y

u

) ^ c

v

= C

L

(x; z

v

)

and

z

w

= z

v

:

Hence z

v

is a locally optimal solution of the PLS

NP

-problem.

q.e.d.

We conclude this section by de�ning a simple �

b

2

-search problem which is

de�nable in T

2

2

.

De�nition 4.5 A minimization problem (MIN - problem) is given by a poly-

nomial - time function g(x) and a polynomial - time relation y �

x

z such that

for all x the relation �

x

is a strict linear ordering of the set f0; : : : ; g(x)� 1g.

The search task is : given an instance x �nd y < g(x) which is �

x

-minimal.

EveryMIN -problem is �

b

2

-de�nable in T

2

2

(for �xed x show by induction on

u that there is the �

x

-minimal element among those smaller than u). However,

the oracle version with �

x

being an oracle relation � (same for all x) is not

�

b

2

(�)-de�nable in S

2

2

(�). This follows, for example, from [27], where a non-

standard model M of S

2

2

(�) is constructed in which, for some a 2 M , the

relation � is a strict linear ordering of f0; : : : ; ag without the minimal element.

We do not know whether the class ofMIN -problems characterizes the search

problems that are �

b

2

-de�nable in T

2

2

.

5 A version of the pigeonhole principle

In this section we present the �rst proof that T

2

2

(�) is not 8�

b

1

(�)-conservative

over T

1

2

(�). The 8�

b

1

(�)-formula that separates the two theories formalizes a

version of the pigeonhole principle.

The pigeonhole principle (or Dirichlet's Schubfachprinzip) is the basic prin-

ciple saying that there is no bijection f de�ned on a �nite set D and with values

17

in a �nite set R, if jDj > jRj. A strong version of the principle is for jDj = 1+jRj

but for bounded arithmetic weaker versions are needed, where jDj = 2 � jRj or

jDj = jRj

2

. To explain the di�erence between these versions, we sketch a proof

of the following theorem.

Theorem 5.1 ([24]) Let WPHP (a

2

; f) be the following formula

(9x < a

2

; f(x) � a) _ (9x < y < a

2

; f(x) = f(y)) _

(9y < a8x < a

2

; f(x) 6= y) :

Then the theory T

2

2

(f) proves the 8�

b

2

(f)-formula

8a WPHP (a

2

; f):

Proof-sketch:

Assume that f : a

2

! a violates WPHP (a

2

; f). Then the function f

1

:

a

4

! a :

f

1

(u � a

2

+ u) = f(u) � a+ f(v); for u; v < a

2

is a bijection between a

4

and a. Iterating this procedure t = dlog

2

(a)e -times

we get a bijection f

t

: a

a

! a.

In particular, f

t

de�nes an injection of the set of subsets of a (identi�ed with

their characteristic functions) into a and the usual Cantor's diagonal argument

applies.

In bounded arithmetic, however, we cannot formalize this argument directly,

as we cannot prove that the number a

a

exists (exponentiation is not provably

total, cf. [21]). However, thinking about elements < a

a

as coding sequences

of a numbers < a, given w < a and i < a we can still meaningfully de�ne the

function:

the i

th

-element of the sequence mapped by f

t

to w,

(use the inverse function f

(�1)

t

to f

t

de�ned using the iterations of the inverse

function to f). That is enough to carry out the diagonal argument, as the

diagonal set can be de�ned as:

fi < aji =2 f

(�1)

t

(i)g :

Writing down the de�nitions of f

t

and f

(�1)

t

shows that the argument is form-

alized in S

3

2

(f). By 8�

b

3

(f)-conservativity of S

3

2

(f) over T

2

2

(f) (cf. [4]), the

theorem is proved.

q.e.d.

18

The reader may wonder why we simply do not prove that any bijection must

preserve the cardinality of the domain. This is because there is no bounded

L(�)-formula '(x; y) such that for all � and n;m:

'(n;m) holds i� jfi < n j �(i)gj = m :

In other words, we cannot de�ne the cardinality of �nite sets by a bounded

formula, [1, 11, 12, 30].

We also cannot simulate the proof with a function f : a + 1 ! a in place

of a function from a

2

to a; the construction of f

t

: a

a

! a would require
(a)

iterations and the de�nition of i 2 (f

t

)

(�1)

(w) would need to code sequences

of length
(a), which is impossible in bounded arithmetic. Indeed, the theory

T

2

(f) does not prove the pigeonhole principle for f : a+ 1! a, cf. [18, 25].

The formula WPHP (a

2

; f) is only �

b

2

(f) while we want a �

b

1

(f)-formula.

To express with a smaller quanti�er complexity the condition that f is onto we

introduce a function symbol g for the inverse function of f .

Let WPHP (a

2

; f; g) be the following �

b

1

(f; g)-formula:

(9x < a

2

; f(x) � a) _ (9x < y < a

2

; f(x) = f(y)) _

_ (9x < a; g(x) � a

2

) _ (9y < a; f(g(y)) 6= y) :

Lemma 5.2 Let R be either the theory S

i

2

or the theory T

i

2

for some i, and let

R(f) and R(f; g) denote the same theory in the language expanded by f or by

f; g respectively.

Then the theory R(f) proves the 8�

b

2

(f)-formula

8a WPHP (a

2

; f)

i� the theory R(f; g) proves the 8�

b

1

(f; g)-formula

8a WPHP (a

2

; f; g) :

Proof:

The only if part is obvious as :WPHP (a

2

; f; g) implies that f is onto.

For the if part let (M; f) be a model of R(f) in which WPHP (a

2

; f) fails for

a := m 2 M . De�ne g in (M; f) to be the inverse function to f . Clearly, the

expanded structure (M; f; g) satis�es :WPHP (m

2

; f; g) and it also satis�es all

induction axioms of R(f; g), as g(y) = x is de�ned by an open formula f(x) = y

and any other formula involving terms with g can be rewritten using the graph

g(y) = x instead, without increase of quanti�er complexity. The open formula

A(z=g(y)) is equivalent to

9x < a

2

; g(y) = x ^A(z=x)

and also to

8x < a

2

; g(y) = x! A(z=x)

and so its is a �

b

1

(f)-formula.

19

q.e.d.

The following result improves upon [13] where it was proved that the formula

WPHP (a

2

; �):

(9x < a

2

8y < a:�(x; y)) _ (9x < y < a

2

9z < a; �(x; z)^ �(y; z)) _

(9y < a8x < a

2

;:�(x; y))_ (9y < z < a9x < a

2

; �(x; y) ^ �(x; z))

formalizing WPHP with a predicate symbol � for the graph of f rather than

with a symbol for f itself, is not provable in S

2

2

(�).

Theorem 5.3 The formula WPHP (a

2

; f) is not provable in T

1

2

(f) and hence

it is not provable in S

2

2

(f) either.

Proof:

For the sake of contradiction assume that WPHP (a

2

; f) is provable in

T

1

2

(f). By Lemma 5.2 T

1

2

(f; g) proves WPHP (a

2

; f; g). By Theorem 1.1 there

is an oracle PLS-problem L such that for every f; g the problem L(f; g) wit-

nesses the formula. That is: whenever s = (y; z

1

; : : : ; z

k

) is a locally optimal

solution for an instance x := a of the problem L(f; g), one of the following

conditions holds:

1. y < a

2

^ f(y) � a

2. y = (u; v) ^ u < v < a

2

^ f(u) = f(v)

3. y < a ^ g(y) � a

2

4. f(g(y)) 6= y

We show that no such oracle PLS-problem L. For any �xed L, we �nd a

number a and functions f; g for which all these four conditions fail.

Let C

L

and N

L

be the cost function and the neighborhood function associ-

ated to L. We identify these functions with the oracle polynomial-timemachines

computing them. Fix x := a for a large enough (we shall specify this later). We

want to �nd f; g for which there are locally optimal solutions s 2 F

L(f;g)

(a) for

which 1. - 4. fail.

We say that a computation of a machine with oracles f; g respects a partial

function F :� a

2

! a i�, whenever [f(u) =?] is queried in the computation,

u 2 dom(F) and the oracle answer is F (u), and whenever [g(v) =?] is queried

then v 2 rng(F) and the answer is F

(�1)

(v). A computation respecting a partial

injective function is called good.

Let c

0

be the minimal possible cost C

L(f;g)

(a; s) computed by the machine

C

L

for any f; g and some solution s 2 F

L(f;g)

(a) in a good computation. Let

F

0

be a partial injective function � a

2

! a respected by such computation w

20

and let s

0

be the solution for which w is the computation of its cost. Clearly

we may assume

jdom(F

0

)j � jaj

k

;

where n

k

majorizes the time bounds of C

L

and N

L

. Note that there is at least

one good computation, and so c

0

; F

0

, and s

0

are well de�ned.

The cost c

0

is the minimal possible hence s

0

is locally optimal in all PLS

f;g

-

problems L(f; g), for any f; g containing F

0

and F

(�1)

0

respectively.

Let s

0

= (y; z

1

; : : : ; z

k

) and assume �rst that condition 1. holds for F

0

:

y < a

2

^F

0

(y) � a :

That is, however, impossible as F

0

has no value greater than a� 1. So assume

that condition 2. holds:

y = hu; vi ^ u < v < a

2

^ F

0

(u) = F

0

(v) :

The last conjunct is not forced by F

0

, as F

0

is injective, and in fact, we may

always extend F

0

to a partial injective F

1

:� a

2

! a de�ned on u; v; this is

because

jdom(F

0

)j+ 2 � jaj

O(1)

<< a:

For a similar reason conditions 3. and 4. cannot be forced by F

0

.

Hence, the proof is concluded, since we may had chosen a su�ciently large

as to satisfy the last inequality.

q.e.d.

The following criterion implying the unprovability of a principle in S

2

2

(�)

was proved in [27]. If a sentence of a relational language L

0

disjoint with L

admits an in�nite model then it is consistent with S

2

2

(L

0

) that the sentence has

a model with the universe [0; a]. This was strengthened in [15] to languages with

function symbols. As there is an in�nite structure M with a binary function

f(x; y) which is a bijection between M �M and M , the strengthened criterion

o�ers another proof of Theorem 5.3. However, we feel that the �rst proof is

needed should the independence result be lifted to higher fragments of S

2

(�),

see [7].

Since T

2

(�) is de�ned in terms of a predicate symbol � we need to form-

alize a principle �(a; f) in terms of �. Of course, we can think of �(x; y) as

the graph of f . For example, WPHP (a

2

; f) could be translated into the for-

mula WPHP (a

2

; �) above which is, however, only 8�

b

2

(�). This is a genuine

di�erence between the formulasWPHP (a

2

; f) and WPHP (a

2

; �): the former

can be witnessed by a polynomial-time machine with a �

b

1

(f)-oracle while the

latter cannot be witnessed by a polynomial-time machine with a �

b

1

(�)-oracle,

cf. [13].

21

We follow [5] in using a di�erent translation

2

in the language L(�) a principle

�(a; f). Interpret �(x; j) as the bit-graph of f :

�(x; j) holds i� (f(x))

j

= 1 ;

where (f(x))

j

is the j

th

bit of f(x). Then f(x) = y can be written as the

�

b

1

(�)-formula (since the function (y)

j

, the j

th

bit of y, is �

b

1

-de�nable):

8j < jaj;�(x; j) � ((y)

j

= 1) :

Thus, any �

b

i

(f)-formula �(f) translates into a �

b

i

(�)-formula �

�

(�). In par-

ticular, WPHP

�

(a

2

; �; �) is the 8�

b

1

(�; �)-formula:

9x < a

2

;�(x; jaj)_ 9x < y < a

2

8j < jaj; �(x; j) � �(y; j) _

9y < a; �(y; jaj) _

9y < a9z < a

2

[8j � jaj; �(y; j) � ((z)

j

= 1) ^ :8j < jaj; �(z; j) � ((y)

j

= 1)] :

The following lemma is immediate.

Lemma 5.4 For any i � 1: the formula �(a; f) is �

b

i

(f) i� the formula

�

�

(a; �) is �

b

i

(�).

If R is one of the theories S

i

2

or T

i

2

, and if R(f) and R(�) denote the same

theory in the language expanded by f or by � respectively, then it holds:

R(f) ` 8a�(a; f) i� R(�) ` 8a�

�

(a; �) :

The following corollary follows from Theorems 5.1 and 5.3 using Lemmas

5.2 and 5.4, and from the possibility of coding predicates �

0

(translating f) and

�

1

(translating g) in only one predicate � (though the arity increases from 2 to

3):

�(x; j; t) � [(�

0

(x; j) ^ t = 0) _ (�

1

(x; j) ^ t = 1)] :

Corollary 5.5 The theory T

2

2

(�) is not 8�

b

1

(�)-conservative over the theory

T

1

2

(�).

Previously only the non-8�

b

2

(�)-conservativity was known, cf. [13, 26].

To improve Corollary 5.5 we should �nd a �

b

1

-search problem that is de�nable

in T

3

2

(�) but not in T

2

2

(�). Several �

b

1

-search problems were considered in

[19, 20]; in particular the classes PPP , PPA and PPAD. Theories of bounded

arithmetic corresponding to these classes were identi�ed in [15, Chapter 7].

However, they are not subtheories of T

2

(�); i.e., not even the whole theory

T

2

(�) de�nes the relativized versions of these classes.

2

Interpreting �(x; y) as f(x) � y and �(x; y) as g(x) � y yields yet another translation of

WPHP (a

2

; f; g) into a �

b

1

(�;�)-formula.

22

6 A generalized iteration principle

In this section we present another �nite �

1

-principle which also gives a �

b

1

(�)-

formula separating the theories T

2

2

(�) and T

1

2

(�). It is a generalization of the

iteration principle considered in Section 2.

De�nition 6.1 The formula Iter(a;R; f) is the disjunction of the negations of

the following eight conditions (we write x � y in place of R(x; y)):

1. 0 � a

2. 8x � a;:x � x

3. 8x; y; z � a; x � y ^ y � z ! x � z

4. 8x < a;:a � x

5. 8x � a; f(x) � a

6. 0 � f(0)

7. 8x < a; x � f(x)! f(x) � f(f(x))

8. 8x < a; f(x) � a

The principle is valid in every �nite structure: whenever � is a strict partial

order on the set f0; : : : ; ag (conditions 2. and 3.) and 0 � a (condition 1.), the

iterations of a function f : f0; : : : ; ag ! f0; : : : ; ag satisfying conditions 5. - 7.

produces an �-increasing sequence 0 � f(0) � : : : � f

(k)

(0) � : : :; hence, some

f

(k)

(0) is not �-smaller than a (which violates conditions 4. and 8.).

In [5] it was proved that the �

b

1

(f)-formula Iter(a;<; f), < the standard

ordering, separates the theories S

1

2

(f) and T

1

2

(f) (see Theorem 2.2). We prove

now that the formula Iter(a;R; f) separates the theories S

2

2

(R; f) and T

2

2

(R; f).

Theorem 6.2 The �

b

1

(R; f)-formula Iter(a;R; f) is not provable in the theory

T

1

2

(R; f) but it is provable in the theory T

2

2

(R; f).

Proof:

The proof of the unprovability of the formula Iter(a;R; f) in T

1

2

(R; f) par-

allels the proof of Theorem 5.3. Assume for the sake of contradiction that

T

1

2

(R; f) does prove the formula. By Theorem 1.1 there is an oracle PLS-

problem L such that, for every R; f , the problem L(R; f) witnesses the formula:

whenever (y; z

1

; : : : ; z

k

) is a local minimum of L(R; f) for the instance x := a,

one of the following seven conditions holds:

1. :0 � a _ :0 � f(0)

2. y � a ^ y � y

23

3. y = hy

1

; y

2

; y

3

i ^ y

1

� a ^ y

2

� a ^ y

3

� a^

^y

1

� y

2

^ y

2

� y

3

^ :y

1

� y

3

4. y < a ^ a � y

5. y � a ^ f(y) > a

6. y < a ^ y � f(y) ^ f(y) � a ^ :f(y) � f(f(y))

7. y < a ^ :f(y) � a

We show how to �nd, for any �xed L, a number a, an R, and an f , such

that none of these conditions hold. That proves the �rst part of the theorem.

We modify the diagonalization of polynomial-time machines (attempting to

witness the formula Iter(a;R; f)) from [5].

Pick a su�ciently large a. Call a computation of a machine with oracles

R; f good i� it satis�es the following properties. After the i

th

oracle query there

are two subsets fr

0

; : : : ; r

t

g and fw

1

; : : : ; w

m

g of f0; : : : ; ag such that:

1. t +m � i

2. r

0

= 0

and such that for any of the �rst i queries it holds:

3. if the query had the form [f(u) =?] then

either u = r

j

some j < t and the oracle answer was r

j+1

or u 2 fw

1

; : : : ; w

m

g and the oracle answer was 0

4. if the query had the form [u � v?] then u; v 2 fr

0

; : : : ; r

t

g [fw

1

; : : : ; w

m

g

and the oracle answer was according to the ordering:

r

0

� w

1

� : : : � w

m

� r

1

� r

2

� : : : � r

t

� a :

Let c

0

be the minimal value of C

L

(s; x) for s 2 F

L

(x), and such that the

computation of C

L

on inputs x; s is a good computation, and let s

0

be the

corresponding solution, fr

0

; : : : ; r

t

g[fw

1

; : : : ; w

m

g the two associated sets, and

R

0

, f

0

the corresponding ordering and partial function. Clearly,

t +m � jaj

O(1)

<< a ;

where jaj

O(1)

majorizes the run-time of the machine C

L

.

Assume that s

0

= (y; z

1

; : : : ; z

k

). The element y should witness the validity

of one of the conditions 2.-7. above. However, y cannot witness the validity

of any of the conditions 2.-4. as the ordering � can be extended to a strict

linear ordering of f0; : : : ; ag that violates these conditions. The element y can

24

satisfy neither 5. nor 7., for all R and f extending R

0

and f

0

respectively,

since either f

0

(y) is de�ned and the two conditions fail or we may force failure

by putting f(y) = 0. To check that y cannot satisfy 6. either, three cases

have to be considered: either both f

0

(y) and f

0

(f

0

(y)) are de�ned, or f

0

(y) is

unde�ned, or f

0

(y) is de�ned and f

0

(f

0

(y)) is not. In the �rst case 6. fails.

In the second case we may force failure by putting f(y) = 0. In the last case

y = r

t�1

, f

0

(y) = r

t

and we may de�ne f(r

t

) = r

t+1

, where r

t+1

2 f0; : : : ; ag n

fr

0

; : : : ; r

t

; w

1

; : : : ; w

m

; ag is arbitrary. This is possible as the set is, by the

inequality above, non-empty.

To prove the second part of the theorem consider the formula �(u):

9x � u8y � u; x � f(x) ^ f(x) > u ^ :f(x) � f(y)

and assume that the conjunction of the �rst seven conditions of the formula

Iter(a;R; f) is valid. Then �(0), by conditions 2. and 6., x := 0 being the

witness. Also:

�(u)! �(u+ 1)

since either there is an x that witnesses �(u) and so �(u+1) too, or u+1 does

witness �(u+ 1).

Since the formula � is �

b

2

(R; f), T

2

2

(R; f) proves �(a). The second part of

the theorem follows, since the witness to �(a) violates condition 8.

q.e.d.

De�nition 6.3 A generalized iteration problem (GI - problem) is given by poly-

nomial - time functions g(x) and f(x; y) and a polynomial - time relation y �

x

z

satisfying:

1. �

x

is a strict linear ordering of f0; : : : ; g(x)� 1g

2. 0 is the �

x

-minimum and 0 �

x

f(x; 0)

3. for all y < g(x):

y �

x

f(x; y)! f(x; y) �

x

f(x; f(x; y)) :

The search task is : given an instance x �nd y < g(x) such that f(x; y) � g(x).

The second part of Theorem 6.2 implies that every GI - problem is �

b

1

-

de�nable in T

2

2

. We do not know whether (a variant of) the class of GI -

problems characterizes the search problems that are �

b

1

- de�nable in T

2

2

.

Acknowledgement:

The �rst author wish to thank the Czech Academy of Sciences for the gener-

ous hospitality and the Logic Group therein for making him feel very welcome

in the beautiful city of Prague.

25

References

[1] Ajtai, M. (1983) �

1

1

- formulae on �nite structures, Annals of Pure and

Applied Logic, 24 : 1-48.

[2] Buss, S. R. (1986) Bounded Arithmetic. Naples, Bibliopolis.

[3] (1987) The propositional pigeonhole principle has polynomial size

Frege proofs, J. Symbolic Logic, 52: 916-927.

[4] , (1990) Axiomatizations and conservation results for fragments of

bounded arithmetic, in: Logic and Computation, Contemporary Mathem-

atics, 106:57-84. Providence, American Mathematical Society.

[5] Buss, S. R., and Kraj���cek, J. (1994) An application of boolean complexity

to separation problems in bounded arithmetic, Proceedings of the London

Mathematical Society, 69(3):1-27.

[6] Buss, S. R., Kraj���cek, J., and Takeuti, G. (1993) On provably total functions

in bounded arithmetic theories R

i

3

; U

i

2

and V

i

2

, in: Arithmetic, Proof The-

ory and Computational Complexity, eds. P. Clote and J. Kraj���cek, pp.116-

161, Oxford. Oxford University Press.

[7] Chiari, M., and Kraj���cek, J. (1995) Lifting independence results in bounded

arithmetic, submitted.

[8] Cook, S A. (1971) The complexity of theorem proving procedures, in: Proc.

3

rd

Annual ACM Symp. on Theory of Computing, pp. 151-158. ACM Press.

[9] (1975) Feasibly constructive proofs and the propositional calculus,

in: Proc. 7

th

Annual ACM Symp. on Theory of Computing, pp. 83-97.

ACM Press.

[10] Cook, S. A., and Reckhow, A. R. (1979) The relative e�ciency of proposi-

tional proof systems, J. Symbolic Logic, 44(1):36-50.

[11] Furst, M., Saxe, J., B., and Sipser, M. (1984) Parity, circuits and the

polynomial-time hierarchy, Math. Systems Theory, 17: 13{27.

[12] Hastad, J. (1989) Almost optimal lower bounds for small depth circuits. in:

Randomness and Computation, ed. S.Micali, Ser.Adv.Comp.Res. 5: 143-

170. JAI Press.

[13] Kraj���cek, J. (1992) No counter-example interpretation and interactive com-

putation, in: Logic From Computer Science, Proceedings of a Workshop

held November 13-17, 1989 in Berkeley, ed. Y.N.Moschovakis, Math-

ematical Sciences Research Institute Publication, 21: 287-293. New York.

Springer-Verlag.

26

[14] (1993) Fragments of bounded arithmetic and bounded query classes,

Transactions of the A.M.S., 338(2) : 587-598.

[15] (1995) Bounded arithmetic, propositional logic, and complexity the-

ory, Encyclopedia of Mathematics and Its Applications, Vol. 60, Cambridge

University Press, Cambridge - New York - Melbourne, 343 p.

[16] Kraj���cek, J., and Pudl�ak, P. (1990) Quanti�ed propositional calculi and

fragments of bounded arithmetic, Zeitschrift f. Mathematikal Logik u.

Grundlagen d. Mathematik, 36: 29-46.

[17] Kraj���cek, J, Pudl�ak, P, and Takeuti, G. (1991) Bounded arithmetic and the

polynomial hierarchy, Annals of Pure and Applied Logic, 52: 143{153.

[18] Kraj���cek, J.,Pudl�ak, P. and Woods, A. (1995) Exponential lower bound to

the size of bounded depth Frege proofs of the pigeonhole principle, Random

Structures and Algorithms, 7(1): 15-39.

[19] Papadimitriou, C. H. (1990) On graph-theoretic lemmata and complexity

classes (extended abstract), in: Proceedings of the 31st IEEE Symposium

on Foundations of Computer Science (Volume II), IEEE Computer Society,

pp. 794{801.

[20] Papadimitriou, C. H., and Yannakakis, M. (1988) Optimization, approx-

imation and complexity classes, in: 20th Annual ACM Symp. on Th. of

Computing, pp.229-234. ACM Press.

[21] Parikh, R. (1971) Existence and feasibility in arithmetic, Journal of Sym-

bolic Logic, 36:494-508.

[22] Paris, J., and Wilkie, A. J. (1985) Counting problems in bounded

arithmetic, in: Methods in Mathematical Logic, LNM 1130, pp.317-340.

Springer-Verlag.

[23] (1987) On the scheme of induction for bounded arithmetic formulas,

Annals of Pure and Applied Logic, 35: 261-302.

[24] Paris, J. B., Wilkie, A. J., and Woods, A. R. (1988) Provability of the

pigeonhole principle and the existence of in�nitely many primes, Journal

of Symbolic Logic, 53: 1235{1244.

[25] Pitassi, T., Beame, P., and Impagliazzo, R. (1992) Exponential lower

bounds for the pigeonhole principle, Computational Complexity, 3: 97-208.

[26] Pudl�ak, P. (1992) Some relations between subsystems of arithmetic

and the complexity of computations, in :Logic From Computer Science,

Proceedings of a Workshop held November 13-17, 1989 in Berkeley,

ed.Y.N.Moschovakis,Mathematical Sciences Research Institute Publication,

21: 499-519. Springer-Verlag.

27

[27] Riis, S. (1993) Making in�nite structures �nite in models of second or-

der bounded arithmetic, in: Arithmetic, Proof Theory and Computational

Complexity, eds. P. Clote and J. Kraj���cek, pp.289-319. Oxford. Oxford Uni-

versity Press.

[28] Smullyan, R. (1961) Theory of Formal Systems, Annals of Mathematical

Studies, 47. Princeton. Princeton University Press.

[29] Takeuti, G. (1993) RSUV isomorphism, in: Arithmetic, Proof Theory and

Computational Complexity, eds. P. Clote and J. Kraj���cek, pp.364-386. Ox-

ford. Oxford University Press.

[30] Yao, Y. (1985) Separating the polynomial-time hierarchy by oracles, in:

Proc. 26th Ann. IEEE Symp. on Found. of Comp. Sci., pp. 1-10.

28

