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There are two basic ways or measuring the complexity (or length) or proors:
(1) to count the number or proor lines,
(2) to count the total size or the proor (i.e. to count each symbol). Trivially the

size is an upper bound to the number or proor lines. It is much more difficult to
bound the size using the number or proor lines. ff we consider logic without
runction symbols a reasonable bound can be proved (see Proposition 3.4). ff
runction symbols are allowed, then the situation is considerably more complicated.
In such a case rormulas in the proor may contain large terms and it is difficult to
find some bounds to the size or these terms using only the information about the
number or proor lines. There are still important open problems bere which show
that the role or terms in the first order logic is not quite well understood.

Some papers about this subject are rather difficult to read, Dne reason being
that they consider general classes or logical calculi: Thererore we decided to
consider just Dne particular calculus, Gentzen's well-known calculus LK as
presented in [TJ. Our results generalize trivially to theories given by a finite set or
axioms in LK, in particular to LKe, the calculus LK with equality. On the other
band, theories axiomatized by schemata, such as Peano arithmetic, require a
different approach.

As mentioned above, Dur presentation or the results uses the particular
rormulation or LK defined in [TJ, namely, we use also two different kinds or
variables, rree and bound, and we as~ume that terms contain only rree variables
while semiterms may contain both rree and bound Dnes (cr. [TJ, p. 6 and p. 35).
This distinction is not essential but is userul. The size or a rormula or a semiterm
will be the number or symbols in it. The size or a sequent is the sum or the sizes or
rormulas in the sequent. Semiterms and rormulas in LK can be represented as
labelled trees. The depth or a semiterm t denoted by dp(t),will be the lengthor the
longest path in the tree corresponding to t.

A proor in LK is a particular rooted tree labelled by sequents. The size oj the
prooJ is the sum or the sizes or the sequents in the plODí. The number oj prooJ lines
oj the prooJ is the number or vertices or the tree. The size or a semiterm or rormula
or sequent or proor X will be denoted by IXI.
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The main question that we want to address bere is the following. Suppose a
sequent r -+ A of size m has a proof with k prooflines in LK. How can we bound the
minima} size of a proof of r -+Ain LK using k and m? We think that this is a good
test question showing how well (or how poorly) we understand the structure offirst
order proofs. Ifthe sequent has a cut-free proofwith k prooflines, then we have an
upper bound which is exponential in k + m. In general, we have only primitive
recursive bound in k+m, since we use the cut-elimination theorem. It is an open
problem if there is an elementary recursive bound (i.e. a fixed times iterated
exponential).

The results are based on a reduction to the unification problem. This reduction
is implicit in Parikh's paper [Pa] and was laterdeveloped by Farmer [F1, F2]. In
the case of cut-free proofs in LK the reduction is very simple which allows us to
obtain quite a good bound. The bound is based on an estimate to the depth of a
most general unifier proveï in Sect. 2.

A similar reduction procedure for proofs with cuts produces only a so calIed
second order unification problem (a general system ofequations with free variables
for unknown terms). This problem has been shown undecidable [G]. We shalI use
this fact to show that the problem whether a given sequent r -+ A has a proof with a
given proof skeleton (see Sect. 2 for the definition) is undecidable. A result of this
type has been announced by Orevkov in [O 1] and sketched in [03]. This shows
that in order to obtain a proofof r -+A ofsmalI size from a proofof r-+A with few
proof lines we must in general change the structure, we cannot just replace the
terms in the proof by shorter ones. Motivated by a welI-known conjecture of
Kreisel we prove these results for systems in which there is only one term
parameter which has the form sn(o), n < W, where S is a unary function symbol.

A related problem has been studied by Farmer [F 1, F 2]: given k and a formula
or a sequent, is it decidable whether it has a proofwith k prooflines? In particular
he has shown that for cut-free proofs in LK it is decidable. (This folIows from the
reduction to the unification.) For general proofs in LK it is stilI open.

The most famous problem in this area is the so calIed Kreisers conjecture
mentioned already above: "Suppose that for some A(a) and k<w, Peano
arithmetic pro ves every A(sn(o)) by a proof with ~ k proof lines. Then it also
proves VxA(x)".

We could not resist to add at least some simple observations about this
conjecture in Sect. 6. A fulI proof of this conjecture has been announced by M.
Baaz.

We assume that the reader is familiar with the system LK as defined in [T].
Throughout the paper "proof', "provable" etc. refers always to this system.

1. Bounds to the Unification

Let Term1 be the set o[ terms with variables [Tom the set A and [unction symbols
[Tom the set L. A substitut ion is a mapping

u:A-+Term1.

Given a term t and substitution u, u(t) is the term obtained [Tom t by substitution u
l.e. u(t) = t(al/u(a1), ..., a",!u(am))
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where t does not contain variables other than a1, ..., am and we substitute for all
occurrences of the corresponding variables.

The unijication problem is to find a substitution u for a given system U of pairs
ofterms (t1' sJ, ..., (tk' sJ such that, for all i = 1, ..., k, u(tJ = u(sJ. u is called a unijier
for (t1, sJ, ..., (tk' sJ. The unification problem arose in connection with the
resolution principle. Therefore it is not surprising that other problems in proof
theory can be reduced to it. Such reductions were constructed in [F1, F2]. In the
next section we shall reduce the problem of finding a proof of a sequent r -+ L1 with

a given skeleton S (defined in Sect. 3) to the unification problem. For this purpose it
is not sufficient to have any unifier, since a proof poses some restrictions to the
variables occurring in terms. An approach to this problem is based on the concept
of a most general unijier. Another approach based on trees instead of terms was
used in [K1], Sect.2.

A most general unijier for a system U is a unifier Uo such that any unifier u for U
can be decomposed into u = u 1 U o for some substitution u l'

The restrictions will be of the following type:
(*) for a pair (a, c), a a variable, and c a constant, u(a) must not contain the

constant c.
Lemma 1.1. lJ there exists a unijier Jor U which satisfies a set oj conditions oj type
(*), then any most general unijier Jor U satisfies the conditions too.

ProoJ - trivial. D

There is a well-known and simple algorithm for finding a most general unifier,
see [C-L], p. 77. Using properties ofthis algorithm we derive bounds to the depth
of a most general unifier. We shall use these bounds to derive relations between the
number of proof lines and the size of a proof. Part (i) of the next lemma is
equivalent to a lemma of [K 1], Sect. 2.

Lemma 1.2. Let U be a system oj pairs oj terms, let S be the set oj terms Si and ti
occurring in U, let v be the number oj different variables occurring in U. Then each
most general unijier u Jor U satisfies the Jollowing inequalities

(i) max dp(u(t)) ~ Liti;
leS leS

(ii) maxdp(u(t))~(v+ 1). maxdp(t).
leS leS

Proof. The unification algorithm produces sets ofterms SO,S1, ""Sk such that
(1) So=S, Sk= {U(t)ltE S}, where u is a most general unifier;
(2) Si+1 = {t(ajs)ltES;}, where s is a subterm ofsome term in Si and s does not

contain the variable a. Since each most general unifier can be obtained from u by
permuting variables, it is sufficient to consider just u produced by the algorithm.
For each i =0, ..., k, t E Si we label the tree T(t) as follows. The labelled tree will be
denoted by 1'(t). For i=Oanda vertex wofT(t),thelabelofwwillbethe subterm of
t corresponding to the vertex w. Thus for instance the leaves of T(t), t E So are
labelled by variables and constants. For •ESi+1, •=t(ajs) as in (2) above, the
vertices of T(•) which correspond to T(t) will have the same labels as in 1'(t), the
vertices which correspond to T(s) will have the same labels as in 1'(s), except for the
vertices which correspond to the root of 1'(s) [since they have labels from 1'(t)].
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Claim 1. ff u =1= w are on a path from the root to a leave in T(t), t E Si' O ~ i ~ k, then
they have different labels.

This is a corollary of a stronger Claim 2 which follows easily from the property
(2) using induction over i.

Claim 2. Suppose that a vertex u of T(t) and vertex w of T(s) have the same label,
s, t E Si' O ~ i ~ k. Then u and w determine isomorphic labelled subtrees of T(t) and
T(s).

To prove the inequalities consider a maximal path p in some T(t), tESk. Since
thereare ~ L ItllabelsandbyClaim 1,thelengthofpislessthanorequalto Liti,

leS leS
which proves (i). By the construction of T(t), p can be decomposed into paths
isomorphic to paths in the trees T(s), S E S, each path, except possibly for the last
one, ending with a vertex labelled by a variable. For different paths the variables
must be different, thus we obtain (ii). D

Remark. The proof above gives in fact the following inequality maxdp(u(t»
leS

~ card {S I s a subterm of some t E S}, which is stronger than (i) if some term occurs
more than once as a subterm of some t E S.
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2. The Size of Terms in Cut-Free Proofs

In general proofs with few proof lines may contain large terms. In this section we
shall show lhal in cut-free proofs ODe caD replace large terms by terms whose size is
bounded where the bound depends only on the number ofprooflines and the size
of the sequent lhal we want to prove.

Following Farmer [F1, F2] we define a proof skeleton (or just a skeleton) as a
rooted tree whose vertices are labelled by the inference rules of LK. Further, it is
marked on the tree which SOD of a given vertex is the left ODe and which is the right
ODe. For the exchange rule the label contains also the number of the pair to which
it should be applied. The information which the skeleton does not contain are the
terms and variables used in quantifier rules. Every proof determines uniquely its
skeleton, bul we do not require for a skeleton to be determined by some proof. A
cut-free skeleton is a skeleton in which no vertex is labelled by the cul rule.

Let a cut-free skeleton S and a sequent r--+LI be given. We want to find a
proof of r -+ LI whose skeleton is S. We shall consider only regular proofs (cf. [T])
and show lhal in this case the problem caD be reduced to a unification problem
with the restriction of the type (*) of the preceding section (observe lhal for any
proof P there is a regular proof P' of the same end-sequent as P which has the same
skeleton as P). We shall divide the reduction procedure into two parts. First we
shall show lhal if there is any proof of r -+ LI with skeleton S, then its logical
structure ( = everything except for semiterms) is uniquely determined. Then we
construct the unification problem.

Let us call a preproof any structure which has all the properties of a proof
except for the initial sequents which are only required to be of the following form

B(Sl' ...,SJ-+B(tl' ...,tJ, where Sl' ...,s(, t1, ...,t( (**)
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are semiterms1. To construct a preproof from S and r-LI we proceed as fol-
lows:

(1) assign r -LI on the root of S,
(2) if a sequent has been assigned to a vertex v of S and v is not a leave, assign

sequents to its gong according to the rule assigned to v; in case of the structural and
propositional rules these sequents are uniquely determined; in case of the
quantifier rules choose always a new free variable and substitute it for the bounded
variable.

This procedure may not terminate with preproof sometimes. But clearly we
have:

Claim2.1. ff there is a proof of r-LI with skelet on S, the procedure above
constructs a preproof Po such that each regular proof P of r - LI with skeleton S
caD be obtained from Po by substituting suitable terms for the free variables
introduced at the vertices labelled by 'v': left and 3: right and by renaming the free
variables. D

The unification problem U is constructed from a preproof Po as follows:
(1) We treat bounded variables, eigenvariables and free variables of r - LI as

constants i.e. they cannot be substituted for;
(2) (t, s) is in U iff t = ti, s = Si' i ~ t, for some initial sequent of Po of the form (**)

above;
(3) for every free variable a introduced at some 'v': left or 3: right vertex we

require that any term u(a) substituted for a must not contain a bound variable, an
eigenvariable of the proof or a free variable of r - LI.

Because of(1), the restrictions of(3) are of the type (*) (see Sect. 1). Let A be the
set of free variables introduced at 'v': left and 3: right vertices. Let T be the set of all
terms. Then using induction on the depth of Po ODe caD prove:

Claim 2.2. For every u: A - T, u is a solution to the unification problem U with the
restrictions iff u produces a regular proof from Po. D

Now we caD apply our bound to the depth of a most general unifier.

Theorem 2.3. Suppose r - LI has a cut- free prooJ P with skeleton S. Let T be the set
oj maximal semiterms oj r -LI, let t be the number oj leaves oj S and let q be the
number oj applications oj the rules 'v': leJt and 3: right. Then there exists a prooJ pf oj
r - LI with the same skeleton S such lhal the depth oj each semiterm oj pf is bounded
above by

(i) t. Liti;
teT

(q+ 1). maxdp(t)
teT

(ii)

Proof. The procedure above reduces the existence or a proor or r -+ L1 with skeleton

S to a unification problem with certain restrictions. Since there is a proor por r -+ L1

with skeleton S, the unification problem has a solution. The restrictions ror the
unifier are or the types considered in Lemma 1.1. Hence also a most general unifier

The auantifiers Dr B mav bDund SDme variables inside Dr the semiterms
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is a solution. As the semiterms or maximal depth in an LK proor are always in the
initial sequents we caD use Dur bounds for unification (Lemma 1.2).

(i) In the reduction procedure Liti is a bound to the sum or the sizes Or
teT

maximal semiterms assigned to any vertex Or S, in particular to leaves. Since there
are t leaves, (i) in the theorem is an upper bound to the sum or sizes or the terms in
the unification problem, hence, by Lemma 1.2 (i), also to the maximal depth or the
unified terms.

(ii) The number or variables in the unification problem is q.
Again max dp(t) is an upper bound to the depth or any semiterm which

teT
appears in the reduction procedure. Thus (ò) rollows rrom Lemma 1.2 (ii). O

Lemma 2.4. Suppose a proof P has k proof lines. Then
(1) each sequent in P has at most k+1 formulas;(k+2 )(2) P has at most 2 - 1 formulas.

Proof. The first part follows easily by induction. Let f(k) be the maximal number
of formulas in a proof with k proof lines. Then

f(1)=2
and by (1)

f(k+ 1)~f(k)+k+2
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Theorem 2.3 enables us to bound the size of a shortest cut-free proof of a
sequent r -+ A if we have a bound to the number of proof lines of some cut -free
proof of r -+ A. The bounds are probably very crude.

Theorem 2.5. Let m be the size oj a sequent r -+ A which has a cut- Jree prooJ P with k
prooJ lines. Let c be the maximal arity oj a Junction symbol in the sequent. Then there
exists a prooJ P' oj the sequent which has the same skeleton as Pand its size can be
bounded, Jor k, m sufficiently large, by

(i) IP'I ~ k3m2 if c ~ 1 ,

(ii) IP'I ~ ckm if c ~ 2.

Proof. Since in LK each rule has at most two premises, the number ofleaves of the
skeleton of P is k + 1

t~

where (

corresl1

equatic
2

By Theorem 2.3 (i) there is a proor pf or r -j. 11 with the same skeleton which
contains only semiterms whose depth is ~ m . t. Thus the maximal size r or a
semiterm in p' is bounded by
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otherwise. Using the subformula property of the cut-free proof P' we get that m. r
is a bound to the maximal size of a formula in P'. Using the estimate to the number
of formulas in P' (Lemma 2.4) and simple calculations we get (i) and (ii) of the
theorem. O

We do not know how good the bounds are in the theorem above, since we lack
lower bound techniques. So far we cannot rule out that e.g. P' caD be constructed
so that IP'I=O(k'm).

3. The Size of Proofs with Cuts

In Sect. 5 we shall prove that the problem whether a given sequent has a proofwith
a given skeleton is in general undecidable. Thus there is no recursive function
f(k,m) which bounds the size of the smallest proof ofa sequent r-LJ, Ir-LJI ~m,
with the skeleton S, ISI ~ k, i.e. there is no reasonable analogue of Theorem 2.5 for
general proofs. However, a primitive recursive bound can be shown, if Dne does not
require that the skeleton is preserved. This is done by cut-elimination.

Define the logical depth of a formula A be the depth of A if A is considered
as a term where

(1) atomic formulas are considered to be constants,
(2) /\, v, ) are considered to be binary function symbols, and " 3x, 'v' x, for

all bound variables, are considered to be unary function symbols.

Lemma 3.1 (cf. [Pa, F1, F2, K1J). lf a sequent r-LJ, Ir-LJI=m has a proof P
with k proof lines then r- L1 has a proof pf with the same skeleton and such that pf
contains only formulas of logical depth m + O(k).

Proof. Let P be given. We shall gradually replace formulas of P by propositional
variables and at the same time construct a unification problem U. The variables of
U will be the introduced propositional variables, the function symbols will be as in
(2) above. For each initial sequent we introduce a new variable corresponding to
both antecedent and succeedes of the sequent. For the weakening we add a new
variable. For other structural rules we do not add new variables, but we add an
equation for the contraction and for the cut. For logical rules we add a new
variable for the principal formula of the role in question and add an equation

f(a,b)=c or f(a)=c

where c is the variable corresponding to the principal formula, a, bare variables
corresponding to auxiliary formulas and f is /\ or v etc. Finally we add an
equation a = A

for each formula A of the sequent r - LJ and the variable a corresponding to it and

we treat the formulas of r - LJ as constants in U. The proof P gives a solution to U.
Thus we caD apply Lemma 1.2 (i) and we obtain a proof P' where the logical depth
of each formula is bounded by m + O(k). This is not a proof in LK, since LK does
not use propositional variables, but, of course, we caD replace each propositional
variable by an atomic formula which does not contain variables occurring in
P. D
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Since the cut-elimination is proveï using induction over the logical depth of
formulas used in cuts we obtain the following corollary, cf. [K1, 02J.

Corollary 3.2. lf the sequent r--+11, Ir--+11I=m has a proof with k proof lines then
r --+11 has a cut-free proof with 2~+0(k) proof lines. O

Recall that 2i is defined by
2y - y 2y - 22~o-, x+l- .

Now our bound follows from Corollary 3.2 and Theorem 2.5 by a simple
calculation.

Theorem 3.3. Let m be the size of a sequent which has a proof with k proof lines.
Then the sequent has also a proof with size =2g(k+mr O

It is an open problem whether the bound in Theorem 3.3 can be improved to a
fixed time iterated exponential function (i.e. 2~+k for some constant c). Ifsuch an
improvement is possible, then it cannot be proveï by cut-elimination as above,
since the increase in the cut elimination cannot be bounded by such a function, cf.
[StJ. If the sequent does not contain function symbols at all, then an exponential
bound follows directly from Lemma 3.1.

Proposition 3.4. Let m be the size of a sequent r --+ LI which does not contain function
symbols and which has a proof with k proof lines. Then the sequent has also a proof
with size 2m+O(k).

Proof. Let pf be the proof of r --+11 given by Lemma 3.1. Then each formula of pf
has size 2m+O(k), (since it does not contain function symbols either). By
Lemma 2.4 (ii) there are O(k2) formulas in any proof with k proof lines. Thus the
size of pf is

. . l < kl,J, = .
This car
symbol

(1) ~
(2) ,

have so

O(k2).2m+O(k)=2m+O(k) o

4. The Undecidability or the Second Order Unification Problem

Let Lbe a set orrunction symbols, al, ...,am variables. Let 1'=(T, Sub1, ...,Subm)
be the algebra ofterms where Tis the set ofterms in L, a1, ..., am andfor i= 1, ..., m

Subi(c5, u): = c5(aJu)

are substitutions as binary operations on 1: A second order unification problem is a
finite set ofequations in the language Tu{Sub1, ...,Subm} plus free variables for
element s of T. The free variables will be called the term variables. By introducing
new term variables we can transform any such system into an equivalent Dne where
all equations have form with V2

the for<5(aJu)=(] ,

where <5, u, (] are terms or term variables. The name "second order unification" is
used since this problem caD be considered as a generalization of the first order
unification.
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The existence of undecidable second order unifications has been proveï by
Goldfarb [G], (see also [F1, F2]). However, heuses in his construction parameters
which are terms built from binary function symbols. We shall show that ODe caD
use, essentially, the ordinary numerals as parameters. This might be interesting
because of the connection with Kreisel's length of proofs conjecture. AIso our
proof is simple.

Suppose a unary function symbol is chosen, saJ S. Then we call a numeral any
term of the form SR(t), ta free variable or t=O, nEW.

Tbeorem 4.1. Let L contain a unary function symbol S, a constant O and a binary
function symbol. Let .0 be a term variable. Then for every recursively enumerable set
X ~ W there exists a second order unification problem Q such that Qu {,o = SR(O)} has

a solution iff nE X.

Proof. As in [G] we shall use Matijaseviè's theorem. It follows from trus theorem
that every r.e. set X caD be defined by a formula

3Yl ... Yk Dx(x,y" ...,yJ,

where Dx is a conjunction of formulas of the form

Yi=U, U<W

Yi=Yj+YI,

Yi= Yj. YI

Yi=X,ofP'
. By
s the i,j, 1 ~ k. We shall simulate the variables x, Y 1 ... Yk by numerals (defined above).

This can be done easily using the following three claims where o denotes a binary
symbol in L. We leave the details to the reader.

(1) The equation S(T) = T(a/s(a)), T term variable, has solutions T=S"(a), nEW.
(2) The equation T(a/u)=(] plus the equations from (1) for term variables T, u, (]

have solutions:

SP(a), Sq(a), sm(a) for p+q=m

(3) The equations

S(O" J = O"l(ajS(a»

S(0"2) = 0"2(ajS(a»

S(0"3) = 0"3(bjS(b»

-r(ajO" l' bjS(b), cla o (b o c»= 0"2 o (0"3 o-r)

with variables a, h, c and term variables O" l' 0"2' O" 3'! have solutions for O" 1, O" 2' O" 3 of
the form

SP(a), sm(a), Sq(b) for p.q=m

The proof is nontrivial only for claim (3).
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a) Assume p' q = m. Then SP(a), sm(a), Sq(b) and the following term are a
solution for the equations above

SP(q-l)(a) o (Sq-l(b) o (SP(q- 2)(a) o (sq- 2(b)

0(... (SP(a) o (S(b) o (a o(b o c) ...»»»).

b) Suppose SP(a), sm(a), Sq(b), t are a solution.
We shall proceed by induction on the depth of t, denoted dp(t).
(i) dp(t) =0. Then t is c, hence 0"2 is a and 0"3 is b. Thus p.q=m=O.
(ii) dp(t»O. Then t is tI o t2 where

tl(aISP(a), bIS(b), cla o (b o c» = sm(a)

i.e. tl=sm-P(a) and

One can
then we
T-+Lt,B

tz(ajSP(a), bjS(b), cla o (b o c» = S4(b) o t.

Hence dp(tz) > O, SO tz = tJ o t4

tJ(ajSP(a), bjS(b), cla o (b o c» = S4(b),

thus tJ=S4-1(b). Further we have

t4(ajSP(a), bjS(b), cla o (b o c»= t

=t1 o(tJ o t4)= S"'-P(a) o (S4-1(b) o t4)

By the induction hypothesis, since dp(t4) < dp(t),

p.(q-1)=m-p
i.e. p' q=m. We have done. o

A -J. A,
contral

Proof I

(seconc
nEX(

5. An Undecidable Proof Skeleton

In this section we shall show that there is no recursive procedure by which ODe caD
determine if a given sequent is provable in LK by a proof with a given skeleton.
(For the definition of skeleton see Sect. 2.)

Theorem 5.1 (cf. Orevkov [01, 03]). Let L be a language containing a unary
function symbol S, a constant O and a binary function symbol. Then for every
recursively enumerable set x~w there exist a sequent A-.A, P(a) and a skeleton S
such that nE X iff A-.A, P(S"(O)) has an LK-proof with skeleton S.

In order to make the description of the skeleton shorter we shall use derived
inference rules. Such a rule is a binary relation R on pairs of sequents which satisfies
the following property: For every k, t E w, there exists a skeleton S in LK and a leaf
t o in S such that if r -. A and II -. A are in the relation R, k resp. t is the number of
formulas in r resp. in A, and we assign r-.A to to, then

(1) we caD find a correct assignment to the other vertices of S such that II -. A is
on the root,

(2) any correct assignment has II -. A on the root.
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This property enables us to transform any skeleton with derived inference rules
roto a skeleton in LK. (The dependence of S on the number offormulas in r and j
is caused by the necessity of using exchange rules several times in order to obtain
such a sequent.) We shall describe the rules using metavariables for formulas
A,B, ... and for sequents r,j, ... in the usual way. The following are derived
inference rules for LK.

. r-+j,B
(1) doubhng r -+j, B, B.

Here is the skeleton for this rule:

4I,

right weakening left weakening

CiJt

left contraction
/°",

cut

One can easily check that ifwe label 1'0 by r-.LI, B, I' 1 by C-.C and 1'2 by D-.D,
then we can complete the labelling correctly iff C = D = B in which case we obtain
r-.LI,B,B on the root.

(2)do o . r-.LI,B,C d "
klSjUnCUon r -. LI, B V C correspon mg s eleton.

~

to
right v -first version

exchange of the last two formulas

right v -second version

right contraction

A-A,r,B(3) elimination A -j. A, r .
Using the following skeleton

I,

I.
left weakening

cut

,r,B is transrormed into A, C-.A,r, C. Then using suitable exchanges and
. with C on both sides we obtain A-.A,r.

5.1. Let X~w be an r.e. set. Let Q be the set orterm equations
fR = Qu {T 0= SR(O)} has a solution iff

, s( be terms occurring in Q and let To, ..., Tk be term
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Then app
possible s

from the
possible i

applying
P(v) v P(t.
replaced
subterms
we only ]
obtained

variables of D. Suppose a1, ..., am are the free variables used in D. Observe lhal if Dn
has a solution in a language containing more free variables, then it has a solution in
the language of Dn to o, since the language of Dn contains a constant.

Let P(a) be a forrnula with at least ODe occurrence of a and with no other
serniterrns than a.

Let B be the following foTrnula:

P(aJv ... vP(am)vP(sJv...vP(s()

[where always all occurrences of a in P(a) are substituted for].
Let A be the sentence:

[from so
times rig
present i
possible
which m

The 4
before aj
m-timesl
the sequl
other fol
above).

6. Gene]

Georg]
containi
a genen

For
edition

"Fol
proof lil
form to

We sha
As C

one. Tl1

3X1 ... 3xmB(a1/X1' ...,a"jXm)'

lnstead of defining skeleton S explicitely we shall describe a general shape of a
proof of the sequent A-+A, P(S"(O» for nEX. We shall show that the skeleton of
such proofs can be extended to a proof of the sequent above itT.Q" has a solution.

Let nE X and let S"(O) = to, t l' ... , tk be a solution of .Q". The proof will start with

B-+B. Then we shall derive:

B-+B,P(S"(O»,P(aJ, ...,P(am),P(sJ, ...,P(sJ,P(tJ, ...,P(tk)

using several weakenings. The middle part of the skeleton will be arranged so that
the form of this sequent is forced.

(1) First we shall show how the form ofB is forced. At the end of the middle
part of the skeleton we shall apply successively m rules left 3 to the formula B.
Otherwise we do not do anything with the occurrence of B in the antecedent. Any
formula from which we can obtain A in this way must be just an alphabetical
variant of B. As there are no free variables in the end-sequent we can assume
w.l.o.g. that B"is of the form above.

(2) The form of P(S"(O» is forced, since it will be preserved until the end-
sequent.

(3) The form of P(aJ, ..., P(a",), P(sJ, . .., P(s() is easi1y forced as follows. Using
the derived role "doubling" we make replicas of these formulas. Then using the role
"disjunction" we constroct a formula which should be equal to B. That it really is
equal to B will be ensured by contracting it with B.

(4) lt remains to show that the form ofP(tJ, ...,P(tk) can be forced. First we
show that we can force a formula to be of the form P(t) (without any additional
property of t)" We make a replica of P(aJ and a replica of P(t) (by the derived role
"doubling"), then we apply successively right 3 to P(aJ and to P(t) and contract the
resulting two formulas. Since the form of P(a1) is forced (by A in the end-sequent),
the contraction is possible iff P(t) has such a formo

Finally we show that for r, u, v E {s l' .. . , St, to, ..., tk} we can force

r(a;/u) = V (*)

whenever this is prescribed in .Q". This will ensure that to, . . ., tk is some solution.
Using "doubling" and "disjunction" [the derived roles (1) and (2)] derive in the

succedent of the sequent formulas:

P(r) v P(aJ, P(v) v P(u). (**)
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other

i, Then apply right 3 to both formulas and contract them into oneo If (*) holds this is

possible since we can derive the same formula

3y(P(r(aJy» v P(y» (***)

from the formulas of (**). Now assume that for some r, v, u such a derivation is
possible in which all occurrences of a; are substituted by y in P(r) v P(aJ when
applying right 3 to it. Thus P(r) v P(aJ is transformed into (***)0 Hence also
P(v) v P(u) must be transformed to this form using right 3. Thus the term which is
replaced by a bound variable in P(v) v P(u) must be u. Therefore v with some
subterms u replaced by y must be equal to r(aJy). But this is equivalent to (*)0 Thus
we only need to show that the form of (***)can be forced. Let C be a formula
obtained from P(r) v P(aJ after applying right 3. Using "disjunction" we construct:

CvP(aJv 0.0 vP(a;-JvP(a;+Jv 00. vP(am),

[from some replicas of P(afl's obtained by "doubling"J. Then we apply (m-1)-
times right 3 to this formulao Let D be the resulting formula. This formula will be
present in the sequent when we apply m-times the rule left 3 to B. But this is
possible only if D does not contain a l' o o o, amo Then also C must not contain a;,
which means that it has the form (***)0

The description of the skeleton is almost tinishedo We should only add that
before applying left 3 to the occurrence of B in the antecedent we have to apply
m-times right 3 to its occurrence in the succedent and eliminate P(aJ, o o o, P(tk) from
the sequent using the derived rule (3) "elimination". Final1y we eliminate also the
other formulas which do not belong to the end-sequent (i.e. formulas such as D
above). O

6. Generalizing Short Proofs with Large Terms

Georg Kreisel conjectured that for suitable systems a proof of a sentence
containing large terms which has few prooflines caD be transformed into a proof of
a general statement. We shall be little more specific about this conjecture.

For systems related to those of [Pa] G. Kreisel conjectured (cf. the second
edition of [T], footnote 3 on p. 402):

"For A(x) and c < aJ there are M, N < aJ s.t. if d is a proof of A(ll) having ~ c
proof lines and n ~ N then there are m ~ M and a derivation of a similar logical
form to d that proves:

(*)

x = n(modm)) A(x) ."

We shall call this new conjecture Sharpened Kreisers conjecture.
As G. Kreisel observed the original conjecture follows easily from the new

oDe. This is seen as follows.
Clearly it holds for any n < Q) and any m ~ M:

x=n(modM!»)x=n(modm) (1)

Also trivially
(2)V x=(N+i)(modM!)

i<MI
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Assume that we have proors or A(Q), AU), A(2), ... with ~ c proor lines. By
Sharpened Kreisel's conjecture the proors or A(N...:tj), i = O, 1,2, .. ., M! - 1, can be
turned into proors or:

x=(N + i) (modmJ}A(x) (3)

for all i~(M!-1) and appropriate mi~M.
Combining (1), (2), (3) the wanted foTrnula VxA(x) follows.
The reduction to the unification that we have used in Sect. 2 caD be applied to

prove a theorem in this spirit. Since this application is straightforward we present it
bere, though our main concern in this paper was to investigate the relation of the
number of proof lines to the size of proofs. The idea that unification caD produce
such result was communicated to us by M. Baaz. The methods ofM. Baaz promise
to be a deep insight into problems related to Sharpened Kreisel's conjecture.

Theorem 6.1. Suppose r -+.1, A(t) has a cut-Jree prooJ P with skeleton S. Let T be the
set oj maximal semiterms in r -+.1, A(a), let t be the number oj leaves oj S and let q be
the number oj applications oj V: leJt and 3: right. Then there exists a term s and a
prooJ pf oj r -+.1, A(s) such that

(1) pf has the same skeleton as P;
(2) t can be obtained by a substitution Jrom s,
(3) the depth oj s satisfies the inequalities

dp(s)~t. L Irl;
reT

dp(s)~(q+ 1). maxdp(r).
rET

Remarks. 1. ff t does not satisfy the inequalities in (3) then s must contain a free
variable, hence in this way ODe caD obtain a proof of a general statement from a
proof of a special case.

2. In the proofwe shall show even more: any • such that r -+A, A(•) has a proof
with skeleton S caD be obtained by a substitution from s.

3. The theorem is true also for proofs with cuts ifwe leave out condition (1),
and increase (substantially) the bound in (3): This follows from the cut-elimination.

Proof. Extend P to a proororr-+L1, 3xA(x) by adding Dne application orright 3
rule. Then Theorem 2.3 gives us everything except ror condition (2). This condition
follows by observing that the terms or the constructed proor (in Theorem 2.3) are
the terms or a most general unifier. O

Observe that Theorem 6.1 implies that Sharpened KreiseI's conjecture is true
rOT a finite set of axioms. The next corollary follows also from a result of Miyatake
[M] for A a little stronger.

Corollary 6.2. Let A be a sen tence such lhal

4-+a=O v a=S(O) v va=sm-l(O)V 3x(a=sm(x»
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ínes. By
I. caD be

is provable in LKe for every m. Suppose B(a) is a formula and k a positive integer such
that

A -+ B(sn(o))
3)

Iplied to
resentit
n of the
produce
promise
;ture.

T be the
r let q be
sanda

is provable in LKe using k proof lines for every n. Then A ~ \ix B(x) is provable rOD.

Proof. By Theorem 3.2 we can assume w.l.o.g. that each A ~ B(Sft(O)) has a cut- free
proof with ~ k proof lines. Let n> k .IA ~ B(a)l. Then, by Theorem 6.1 there is a
term s such that dp(s) < n, A ~ B(s) is provable and Sft(O) is a substitution instance of
s. Thus s is sm(a) for some m < n and a .rree variable a. Now a proof of A ~ \ix B(x)
can be constructed from the proofs of A ~ B(Si(O)), i = O, ..., m -1 and the proof of

A~B(sm(a)). D

As we have already pointed out, the situation is essentially different ifwe extend
I,.K by axiom schemata. The following fact has been proveï by Yukami [V].
Fact 6.3. There exists k such that, for all m, n, the sen tence Sft(O) + sm(o) = sm + ft(O)

has a proof in Peano arithmetic with ~ k proof lines. D

It folIo ws that, for the formula A(a):= 3y(a=y+y), there exists k such that
each A(S2ft(0)) has aproof with ~ k proof lines in Peano arithmetic but \ix A(x) is
obviously not provable. Hence in theories such as Peano arithmetic we cannot
generalize short proofs with large terms in the manner of the preceding two
theorems. However, observe that the proofs of the formula above does generalize
in the sense of Sharpened Kreisel's conjecture.

(The reader interested in results obtained by various authors during the
attempts to prove Kreisel's conjecture may consult a survey paper [K2].)
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