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In this paper we prove some results about the complexity of proofs. We consider proofs in
Hilbert-style formal systems such as in [17J. Thus a proof is a sequence of formulas satisfying
certain conditions. We caD view the formulas as being strings of symbols; hence the whole
proof is a string too.

We consider the following measures of complexity of proofs: length (= the number of symbols
in the proof), depth (= the maximal depth of a formula in the proof) and number o! steps (= the
number of formulas in the proof).

For a particular formaI system and a given formula A we consider the shortest length of a
proof of A, the minimal depth ofa proof of A and the minimal number of steps in a proof of A.
The main results are the following: (1) a bound on the depth in terms of the number of steps:
Theorem 2.2, (2) a bound on the depth in terms of the length: Theorem 2.3, (3) a bound on the
length in terms of the number of steps for restricted systems: Theorem 3.1. These results are
applied to obtain several corollaries. In particular we show: (1) a bound on the number of steps
in a cut-free proof, (2) some speed-up results, (3) bounds on the number of steps in proofs of
Paris-Harrington sentences. .

Some papers related to Dur research are listed in the references. We were especially
inftuenced by Parikh's paper [17J on the famous conjecture of Kreisel (cf. [3J, problem 34]).

Many important problems in this field remain open. We hope that Dur paper will contribute
to progress in this area.

It should be noted that some results of this paper caD be equally well obtained using
unification theory (cf. [5]), by translating a complexity-of-proof problem into a unification
problem. A unification algorithm solving the unification problem caD then be constructed and
the complexity of the unification algorithm analyzed.

As pointed out by the referee this method caD be used to solve the problem stated in Section 3 for
some non-simple (defined below) schematic systems.

U. Preliminaries

A general notion of a formal logical system about which we will prove our

results is the schematic system. Roughly speaking: a schematic system is specified
by its language, a finite number o! axiom schemes (including ~ingle axioms) and a
finite number o! schematic rules o! inJerence. The most important thing is,
however, to set down the conditions that determine the set of formulas, terms or
other syntactic objects which caD be substituted in a particular scheme or a
schematic rule. E.g., if no restrictions on these conditions 'are assumed, then any
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theory caD be formalized as a schematic system: take a scheme consisting of a
single formula variable R together with a substitutability condition that says that a
formula A caD be substituted for R iff A is a theorem of the theory.

We shall consider the following situation. A language L is determined by
specifying its:

(i) variables: x, y, . .. possibly of higher orders: X, Y, . . . , ff:, 6.!J, . .. but
with finitely many orders;

(ii) first-order function symbols J, g, . . . ;
(iii) first-order predicate symbols: p, q, . . . and possibly the binary symbol E if

the system is of a higher order;
(iv) logical symbols, /\, v, -',~, 3, '9'... and =; and
(v) other symbols: brackets (, ), [, ], . . . .

We do not assume that all above mentioned symbols actually occur in L. Terms
and formulas are built according to usual rules. The variables of (n + 1)-th order
are intended to range over the sets of objects of the n-th order; in particular,
variables have no arguments and and the only atomic expression in which
(n + 1)-th order variable ff: caD occur is X E ff:where X is the n-th order.

We have included the higher order variables for making the applications of the
results of Section 4 more straight-forward. However, the results for systems
allowing higher-order variables are trivial generalizations of the results for
first-order systems (since higher-order variables do not have arguments).

The simplest way to define a scheme or a schematic role is to extend L by
adding metasymbols for variables f, jí, . . . , X, f, . . ., terms 1,.f,..., and
formulas Á, B, . . . ; let us denote this extension L *. Metavariables and term
variables are assumed not to have arguments. Thus terms of L * have form

t(x/s, y/r, . . .), where t(x, y, . . .) is an L-term and s, r, . . . are metavariables or
term variables. A formula variable may contain as arguments any L *-terms, in
particular: variables, metavariables, terms, term variables. More properly: for
any n we have in L * infinitely many formula variables of arity n, Á(XI' . . . , xn).

Substitutions of L-expressions for metasymbols in L *-expressions must fulfil the
usual conditions (cf. [17]). In particular, if an L-formula A(XI'...' xn) is
substituted forÁ(xl'.'" xn) and L-terms, s', r',... for L*-terms s, r,..., then
for an L*-expression Á(XI/s,x2/r,...) we substitute the L-expression
A(XI/S', Yl/r', . . .), where all free occurrences of the Xl' X2' . . . are substituted
for.

A schematic rule (w.r.t. L) is determined by:
(i) a (k + 1)-tuple Ao, AI' . . . ,Ak of L*-formulas written usually as:

AI, . ,Ak and-
Ao

(ii) a domain which is given in the following way: if in the formulas
Ao, . . . , Ak altogether a metavariables, b term variables and c formula variables
occur, then the domain is some set of (a + b + c)-tuples where the first a elements
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are variables of L, the second b elements are terms of L and the last c elements
are formulas of L.

An instance of the schematic role is obtained by taking an (a + b + c)-tuples
from its domain and substituting its elements into a (k + 1)-tuple Ao, . . . ,Ak
(according to the comment above, cf. [17, p. 31]).

Although the subject is familiar, an example may be useful: let L be the ustlal
language of the first order predicate calculus. Then the schematic role

é-A(.i)
é-V.iA(.i)

with the domain {(x, A, C) I x is not free in C} defines the genera1ization rule.
The special case of the schematic rule with k = O is usually called a scheme.

E.g. the schematic rule

-rlA-A

with the full domain defines oDe of the usual axiom schemes of the classical
propositional calculus.

Since schematic systems are designed to represent systems with simple syntactic
properties and which are easily manageable, we will now pose conditions on the
domains of schematic rules.

Thus the schematic system A\ is given by:
(i) a language L;
(ii) a finite number of schematic rules whose domains are defined by some

conjunctions of the conditions (on (a + b + c)-tuples) of ODe of the following
types:

1. i*ý,...,X*Y,...

2. i does not occur in Á, resp. in 1 resp. X, . . . does not. . . ,

3. i is free for 1 in Á,
4. i resp. X, . . . is not free in Á,

5. variable i resp. X, . . . is of order k.

(Although we confined ourselves to this list, it is by no means an exhaustive ODe.

E.g. a condition of type "Á has depth at most n", or of type "Á does not contain

a bounded variable of order ~2" would help to define various fragments of

arithmetic. Generally we caD allow, without damaging our results, any conditions

on syntactic objects which are preserved by subobjects, i.e. subformulas and

subterms-e.g. the condition "t is closed".) From now on we assume that the

schematic rules are defined according to the above restrictions.

A list of restrictions, called 'Parikh's restrictions', based on 2., 3. and 4. is

found in [5].

A proof in the schematic system A\, called an A\-proof, is any finite sequence

d = AI, . . . , Ak of L-formulas such that the obvious condition is satisfied: for
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each i ~ k there exist 4,

Ai"... ,Aij

, ij <i such that

{y E T I

A.I

is an instance of some schematic role of A\. Such a proof d is an A\-proof of Ak and
has ksteps:"A1,... ,Ak.

For a formula A (resp. a proof d) let us denote by IAI (resp. Idl) the length of A
(resp. d), i.e. the total number of symbols in it.

By a tree we shall mean a finite, structured tree with a root, i.e. a structure
(T, ~T, LT) where:

(i) Tis a finite set,
(ii) ~T is a partial ordering of T,
(iii) there is a unique element t of T, called the root of T, such that for any

x E T: x ~T t,(iv) for any x E T the set {y E T . X ~T y} is linearly ordered by ~T,

(v) the relation LT' called the structure of T, is a subset of T x (T x T),
(vi) for each x E T the set of all sons of x:

-- ,Y~TX/\X*Y/\('v'Z:Y~TZ-+(Y=ZVX~TZ»}

is linearly ordered by the relation:

L';.{x} = {[y, z] I [x, [y, z]) E LT}.

Roughly: "the structure of a tree orders sons of any node x of the tree from left
to right (L';.{x} is the ordering)".

Since there will be no danger of confusion, we shall use T also to denote the
whole structure (T, ~T, LT).

With a tree T we associate the rank function rT: T -+ (ù such that
(i) rT(t) = O,

(ii) rT(Y) = 1 + rT(x) for Y a SOD of x.
Hence x ~T Y implies rT(x) ~ rT(Y).

Let us define r(T) = max{rT(x) I x E T}; r(T) is called the height of T. It is the

maximallength of a path in T minus 1.
If TI' . . . , Tk are mutually disjoint trees, then the structure

(TI, . . . , Tk) = (U 1;, U ~7:, U L~)i~k j~k . j~k .

is called a forest. It is clear that the definitions of Tank function and height apply
to forests as well. It should be stressed explicitly that if x E (Ti, . . . , Tk), then
there is a unique i ~ k such that x E 1;.

A labelled tree (resp. forest) is a tree (resp. forest) with a label function
l: T-X, where X is sorne set (of labels). In our case the labels will be
L *-formulas.

With a forrnula A we associate a labelled tree T(A) defined inforrnallv as
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follows:

and similarly for other connectives,

(iii) T(3x :A) = 3x:A

I

T(A)

and similarly for V.

Thus T(A) is a tree of subformulas of A whose root corresponds to A and sons
of the node u correspond to the immediate subformulas of l(u).

We define the depth of a formula A, dp(A), to be the height of its tree T(A).
Thus dp(A) = O iff A is atomic.

The depth of proof d, dp(d), is the maximal depth of its steps, i.e. in the
example above: dp(d) = max{dp(A;} I i ~ k}.

If d =A}, . . . ,Ak is a proof, then T(d) will be itsforest defined as the disjoint
union of T(A;}'s, i ~ k.

Now we are coming to the first technical result about schematic systems. The
reader caD go through the proofs with some favourite example in mind, e.g. PC
(predicate calculus), PA (Peano's arithmetic) , An (n-th order arithmetic), ZF,
GB, etc.

1. Technical result

Let T be a forest. A set S ~ T satisfying:

U~TVES-UES

is called a filter on T. Since any filter on T is a forest the notions defined above
caD be applied to filters as well.

Lastly, given a forest T and u E T define a tree T[ u] by:

T[ u] = {v E T I V ~T U},

with the ordering and the structure inherited from T.
Throughout this paper an isomorphism of trees is assumed to preserve the

roots, the structure, the relation 'to be a SOD', the ordering and the Tank but not
necessarily the label even if the trees are labelled. Observe that there is at most
Dne isomorohism between anv two trees.
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Technical Lemma. Let T be a Jorest and S a filter on T. Then there exists another
filter C on T such lhal:

(i) C2S,
(ii) C[u] = C[v], whenever u, v ES and T[u] = T[v],

(iii) r(C) ~ ISI, where ISI is the cardinality o! the filter S,
(iv) Jor any u E C, u is either an end-node o! C or C contains all T -sons o! u.

Proof. Define the set

Co = {x e T 13y eS: T[x] =.: T[y]}

and let CI be the maximal filter such lhal CI ~ Co.
We claim lhal CI fulfils the conditions (i), (ii) and (iii) of the lemma.
Clearly CI;2 S since Co;2 S and S is a filter. Assume lhal u, v ES, T[u] = T[v]

and let x E T[u] correspond to Y E T[v] in the isomorphism T[u] = T[v]. Assume
also x E CI,

Since T[x] = T[y] we have y E Co. To plave lhal y E CI it is enough to plave

lhal for all z ~T y: z E Co.
Let Z ~T y. ff Z ~T v, then z ES and so z E Co too. ff V ~T Z and z ~T y, then

take t E T[ u] corresponding to z in T[ u] = T[ v]. X E CI implies t E Co, hence
z E Co too (since T[t] = T[z)). This proves (ii).

To plave (iii) let Xl' . . . , xn E CI be a sequence of nodes such lhal Xi+I is a SOD
of Xi' Let YI, . . . , Yn ES be the y's corresponding to the x's by the definition of
Co. In particular, T[xJ = T[yJ and so all Yi'S are mutually different (since

T[xJ f T[xj] for i =# j). Evidently then n ~ ISI. Thus in CI it is possible to find a
path of length at most jSI, i.e. r( CJ ~ S. This proves (iii).

Now define:

C = CI U {X E T 3y, z E Ci: "x, Y are sons of z"}

C is clearly a filter satisfying (i) and (ii) since CI satisfies them. Also r(C) ~ ISI
since r(C) = r(CJ. C satisfies (iv) by its definition. We are done. O

2. The estimate of the depth from the number of steps

Let us fix some schematic system A\ and some A\-proof d = Ai, . . . , Ak of a
formula B = Ak together with information I which determines the schematic rules

of A\ and Aj's which were used to infer A;, for all i ~ k.
ff d should be an A\-proof, then it most satisfy some substitutability conditions

given by the information I above. E.g., if d contains an application of the role
modus ponens (cut-rule) such that Aj is derived from Aj and Ar = Aj --. A;, then
the left immediate subformula of Ar most be identical with Aj and the right ODe
with Aj. In the language of trees and forests: if Xj and Xj are the left and the right
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sons of t(A,) (i.e. of the root of T(A,» resp., then:

T(d)[t(AJ] = T(d)[Xi] and T(d)[t(Aj)] = T(d)[xj]'

On the other band: if we have a forest fulfilling these conditions, it is possible to
label it in such a way that modus ponens is applicable to these forrnulas.

Let us now be more general and give more detail. li Z is an L *-forrnula and A
is an instance of Z, then it is possible to inject the tree T(Z) into T(A) without
necessarily preserving labels. Call the image of T(Z) in T(A) under this injection
the Z-part oj T(A) (since the root is assumed to be preserved, such a part is
unique). Thus any Z-part is a filter on T(A).

For our fixed proof d and its fixed inforrnation I we define the basic part oj
T(d) as the least filter S on T(d) satisfying: for io ~ k, if Aio is derived using an
instance

Ait' ,Aij-
Aio

of the schematic role

Zit' , Zj;-
ZiO

then S contains all Z;.-parts of T(A;.)'s, u ~ j.
The basic part of a proof is, roughly speaking, the 'image' of all schematic rules

used in it. Let us denote by Sd the basic part of d. (A better notation would be
Sd(/), referring also to information I, bot we shall omit this.)

Let us have any filter C;2 Sd on T(d) for which the following holds:
(a) any x E C is either an end-node of C or C contains all T(d)-sons of x,
(b) if x, Y E Sd and T(d)[x] = T(d)[y], then C[x] = C[y].
Now we caD define labelled trees T(A;}C, for i ~ k, as follows ([ is the label

function of T(d), [c is the new label function):
(i) T(A;}C = T(A;} n C,

(ii) the structure, the ordering and the Tank of T(A;}C are the same as in

T(A;},
(iii) define [c by:

(a) if x E T(A;}C is an end-node of T(A;} pot: [C(x) = [(x),
(b) if x E T(A;}C is an end-node of T(A;}C bot not of T(A;} pot: [C(x) =Á1(X),

O-ary formula variable (this means that the [c-Iabels of such nodes x, y are equal
iff their [-labels are equal),

(c) for x, y,z E T(A;}C, y resp. z the left resp. the right SOD of x pot: if
[(x) = [(y) /\ [(z) define [C(x) = [C(y) /\ [C(z), and analogously for other connec-

tives and 'for quantifiers.
Observe that condition (a) pot above on C implies that (iii)(c) is a correct

definition.
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Let Af be the unique L *-formula such that T(AJc = T(Af) and let dc =

Af,... ,Af.
Definition. The relation R on the set of end-nodes of T(dC) which are labelled by

formula variables is defined by:

uRv iff T(d)rul = T(d)[v]

(we use u resp. v for an end-node of T(dC) and also for its image in T(d), but

this does not lead to any confusion).
Clearly, R is an equivalence relation.

Definition. VA is the set of all L-variables occurring in forrnula variables used in
the schernatic rules of A\, i.e., if Ái(xi, . . . ,x~), i ~ m, are all of the formula
variables used in the schernatic rules of A\, then:

, X~i}.VA= U {X~,i~m

Let E be a substitution of L-formulas for formula variables in dc. We shall call
E a suitable substitution iff for any equiva1ence class P of the equivalence
relation R:

either (i) for some L-formula H and for a11 u E P: E(Á[(uJ = H, and H contain

no variables from VA or variables occurring in d,
or (ii) for al1 u E P: E(Á[(uJ = l(u).

Lemma. Let C be a filter on T(d) such lhal:
(i) C 2 Sd,

(ii) for x, Y E Sd, T(d)[x] = T(d)[y] implies C[x] = C[y],

(iii) any x E C is either an end-node of C or C contains all its T -sons.
Then any suitable substitution E of L-formulas for formula variables in dc

transforms dc into an A\-proof, i.e. E(dC) is an A\-proof.

Proof. Let E(Af),..., E(Af) be any substitution-instance of dc given by a
suitable substitution E.

We shall show, for io~ k, that if Aio was derived using an instance

C" Ait,...,Ai;
,T) A.

10

li the schematic role

Zit,..., Zij

liO

:hen
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It is enough to specify an (o + b + c)-tuple Xl' . . . , Xa, tI, . . . , tb, BI, . . . , Bc
from the domain of the rule which would determine (tt). Let
YI, . . . , Sl' . . . , CI, . .. be the (O + b + c)-tuple determining (t). Define Xl =

YI,...andtl=Sl, Assume that Ci was substituted for Di in the schematic rule. Di occurs as the

label of some end-nodes of the forest T(Z;) l:J . . . l:J T(Z;o). AII these end-nodes

(more precisely their images) are in Z;.-parts of T(A;.)'s, u ~j, so in the basic
part Sd of d.

Moreover, for any two such nodes X, Y we have: T(d)[x] = T(d)[y], since
T(l(x» = T(l(y» = T(CJ.

By the assumption about C: C[x] = C[y] for any such X and y.

Now lC(x) and lC(y) have forms:

lC(x) = Ei(Xl/PI, . . . , xn/Pn, Á,(uv' . . .)
and

IC(y) = EÁxl/rl, . . . , xn/rn, Á,(vv, . . .),

where Xl' . . . , Xn are all the variables of Dj, (Ul' vJ, . .. are all the pairs of
corresponding end-nodes of C[x] resp. C[y] labelled (in dG, i.e. by LG) by
formula variables and Pl, . . . , rl' . . . are L-terms obviously determined by the

(a+b)-tupleYl'... ,Sl'...'
Since E is suitable there are two possibilities:
either (a) E(Á,(u,» = E(Á,(v,» = H; and H; does not, in particular, contain any of

Xl'. . . ,Xn,
or (b) E(Á,(u,» = l(u;), E(Á'(vJ) = l(v;).

In case (a) we trivially have Hi(Xl/Pl'.. .)=Hi(xl/rl'.. .)=H;. In case (b) we
have: l(uJ = I';(Xl/Pl, . ..) and l(vJ = I';(xl/rl, . . .), where the formula I'; is

determined by the formula Ci.
Thus we define:

Bj = EÁXl, . . . , Xn, Gl, . . .),

where Gi is either H; or I'; according to which of the above cases occur for the
particular i.

To show that the (a + b + c)-tuple Xl' . . . , tI, . . . , Bl, . . . lies in the domain
of the schematic role it is sufficient to go through the conditions defining the
domain and to check that they are preserved. This is easy by the discussion of the
possibilities above (and using the fact that E is suitable). O

The intuition behind the next result is that the important information about a
proof d is determined by the structure of the upper part of the forest T(d).
Compare the following two results with Theorem 2 of [17].

Theorem 2.1. For any schematic system .A\ there exists a constant c > O such lhal if
d is an .A\-proof with k steps, then there exists a sequence Bl"." Bk of
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L *-formulas containing no metavariables or term variables and satisfying
(i) dp(BJ ~c. k, for i~k;
(ii) any instance of Bl' . . . , Bk given by a suitable substitution is an A\-proof;

and
(iii) d is also an instance of B,. . . . , Bk given by a suitable substitution.

Proof. Define c' =max{dp(A') ,A' is an L*-formula occurring in some schema-
tic role of A\}. Thus c' depends only on A\. Then the basic part Sd of d fulfils:
ISdl ~2c'+1. k.

By the Technical Lemma there exists a filter C ;2 Sd satisfying the hypothesis of
the lemma from Section 2 and

r(C):!E;ISdl:!E;2c'+1.k.

By the lemma above dc is the required sequence Bt, . . . , Bk. Also dp(dC) ~
2c'+t. k, since dp(dC) = r(C).

To obtain d as an instance of dc define the substitution E by: E(Á[(x») = l(x) (I is
the label function of T(d)). So if we pot c = 2c'+t, we are done. O

Theorem 2.2. For any schematic system A\ there exists a constant c > O such that
for any L-formula B the following holds:

lf B has some A\-proof with k steps, then B has a/so an A\-proof d satisfying:
(i) d has k steps;
(ii) dp(d) ~ c . k + dp(B).

Proof. Let d be ~n A\-proof of B with k steps. Let dc = Bl, . . . , Bk be a sequence
of L*-formulas constructed in Theorem 2.1.

Define a suitable substitution E:
(i) if A1(u) is a label of end-node u (of T(dC» which is in relation R with some

end-node of T(Bk), then put E(A1(uJ = l(u),
(ii) and put E(A1(u» = H, for all other end-nodes u, where H is the formula

(y = y), y a variable occurring neither in d not in VA,
Since dc does not contain metavaraibles or term variables, the above definition

of the substitution is complete.
Now, if u is in relation R with some end-node v ocurring in T(Bk), then clearly

dp(l(u» ~ dp(l(v» ~ dp(B). Thus dp(E(dC» ~ c . k + dp(B). O

Remark. In Section 6 we shall prove that the above result cannot be essentially
improved, i.e. the bound cannot be less than some linear function.

A result similar to the following was proved independently by Pudlák (cf. [22]).
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Theorem 2.3. Let A be a schematic system, B an L-formu/a, d its shortest
A-proof, i.e. Idl is minima/. Then:

dp(d):5; v'21dl (max(dp(B), c) + 1),

where the constant c depends on A\ only.

Proof. Let A be a step in d and let us write:

dp(A) = t . VIJI, for some t > O.

Let S denote the forest Sd U T(B), where B is the last step of d. Hence for some
constant c > O, depending only on A\, r(S) ~ max(c, dp(B».

Let C be the filter on T(d) constructed from S in the proof of the Technical
Lemma. Since d is the shortest proof of B, necessarily C = T(d); otherwise there
would be a shorter proof of B-some instance of dc.

It follows that for any x E T(A) there exists a node x' E S such that
T(d)[x] = T(d)[x'], and thus also rT(d)(x') ~ max(c, dp(B».

Define c' = max(c, dp(B» + 1. Assume that xs' . . . , Xo is a maximal sequence
of nodes from T(A) such that

(i) Xl <T(d) Xi+l' and
(ii) rT(d)(x;) = (s - i) . c'.

So we have:

týj"(lj us=---c' c"(A) for some o~ u <c

Let x;, . . . , x~ be the nodes from S corresponding to Xs, . . . , Xo as above, i.e.
T(d)[xJ = T(d)[x;] and rT(d)(x;) < C'.

Finally let ~ be a maximal path in T(d)[xí] into which xi' . . . , Xo are mapped
by the isomorphism T(d)[xj] = T(d)[xi], i.e. ~ =Yo, . . . , Yr is such that each Yi+l
is a SOD of Yi and each YU-k)c' is the image of Xk (so Yo = xi). Hence:

r=j.c'+l+u.

Now observe that for i * j, x; ~~. Otherwise, since rT(d)(x;) < c', Dne would
have x; =Yw for some w <c'. So for the counterimage z of Yw it would hold that
xi >T(d) z >T(d) Xi-I' In particular, z *xp But also T(d)[z] = T(d)[xJ and z <T(d)
Xi or Xi <T(d) z. This would be a contradiction.

This clearly implies that all Po, . . . , Ps are mutually disjoint and thus:

s s
Idl ~ 2: I~I = 2: (j. C' + 1 + u).

j=O j=O
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By (A) tben

Since O~ u <c':

:~2c' , t~\f2?Idl~ i.e

We have

dp(A) ~ \f2Idl(max(c, dp(B)) + 1 n

Remark. From the results of Pudlák [23] it follows that the best upper bound
which caD be proved in the above proposition cannot be better (i.e. smaller) than
cVfdj/log Idl (for B of some bounded depth).

We sketch the argument (for the necessary details see [23]). We should note
that systems used in [23] contain schematic rules defined using the condition "t is
closed". We caD allow this condition too ,see the discussion in Section O-since
any subterm of a closed term is also closed.

Let Prf(n, r A 1) formalize the sentence: "A has an A\-proof of length ~ n". The

symbol n denotes, in this remark Doly (cf. Section 4), the 'dyadic numeral' of n.
Thus Inl = O(log(n».

Let Con(n) be the formula -'Prf(n, r x * xl). Pudlák proved that for a suitable

system A\ the shortest proof dn of Con(n) (all Con(n)'s are A\-provable) has length
Idnl at least cln/(logn)2 (Theorem 2.9 of [23]).

Assume now that F(x) is some upper bound from a proposition analogous to
2.3 (for B of a bounded depth). More precisely, assume that F(x) is a
non-decreasing function and that:

(*) for any formula B such that dp(B) ~ dp(Con(x» and any shortest proof d
of B it holds that dp(d) ~ F(ldl).

Then we disprove -'Con(n) in A\ by the concatenation of A\-proofs of the
following propositions (Satk is the partial-truth definition for formulas of depth

~k):
(i) Prf(n, r x * xl) ~ "x * x has a proof of depth ~F(n )".
(ii) "x * x has a proof of depth ~F(n )" ~ SatF(n)( r x * xl).
(iii) SatF(n)(rX *x l)~x *x.
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We assume A\ to be sufficiently strong to prove proposition (*) above; thus in
particular (i) has an A\-proof of length O(log n).

According to Lemmas 3.4 and 3.5 of [23], the parts (ii) and (iii) have A\-proofs
of length O(F(n )2).

Thus -'Con(n) caD be disproved in A\ by a proof of length c2(log n + F(n Y). SO,
by Pudlák's theorem:

n ( 2C1Q~~c2(logn +F n».

From this it follows, for some 0< C3 < cli C2 and n sufficiently large, that:

We are done o

Tbe following two results are easy observations which, however, are not
without some interest.

CoroUary 2.4. Let A\ be some schematic system of first-order arithmetic in the
language {O, 1, =, ~, +, .}. Let an L-formula B ha ve an A\-proof with k steps
which are alll:o-formulas (i.e. bounded). Then B has another A\-proof d with k
steps which are alll:o-formulas and with depth dp(d) ~ c . k + dp(B), where the
constant c depends only on A\.

Proof. The same as the proof of 2.2. It is enough to observe that the whole
construction of dc preserves the arithmetical complexity of formulas, i.e. if some
quantifier is bounded. O

Before we state the next proposition let us recall the result about lengthening
of proof after cut-elimination (cf. [25]).

Let G be the first-order predicate calculus formulated in Gentzen style, i.e.
'more rules, less axioms' (cf. [8] or [29]). A G-proof is a tree labelled by sequents
(we shall use ~ as a 'sequent arrow') and its cut-rank is the maximal depth of a
formula occurring in it as a cut-formula.

Define a useful function 2~: 2b = y and 2~+1 = 2(ZI).

Proposition (cf. [25]). Let D be a G-proof of a sequent ~C, k its height and r its
cut-rank. Then ~C has another G-proof D' such lhal:

(i) D' has cut-free,
(ii) D' has height at most 2~:1.

Now we caD state our observation. Let H be a Hilbert-style forrnulation of
predicate calculus-say as in [26].
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CoroUary 2.5. Let a formulae B ha ve an H-proof with k steps. Then the sequent
~ B has a G-proof D such lhal:

(i) D is cut-free,
(ii) D has the height at most 2~~, where the constant c depends on H and G

onlv.

Proof (sketch). Let R have an H-proof with k steps and let dc = Rt, . . . , Rk be a
sequence of L*-formulas assured by Theorem 2.1. In particular, dp(R;}~Ct' k,
Ct some constant depending on H.

It is a straightforward task to transform dc into a 'G-proo• of ~ Rk' i.e. to
construct a tree D' labelled by a sequents.of L *-formulas (in D' would occur only
subformulas of Ri's) such that any substitution which transforms dc into an
H-proof transforms D' into a G-proof.

Now we apply the cut-elimination procedure to D' to obtain a tree D labelled
by sequents of L *-formulas with the root labelled by an (end-) sequent ~ Rk such

that any substitution making D' a G-proof makes D a cut-free G-proof.
Tree D' has height at most C2' k, C2 a constant depending on H, G, and

'cut-rank' at most Ct . k. Thus by the above proposition the height of D is at most
2~i taking c:= 1 + max(ct, C2). O

Let us tinish this section noting that by using essentially the same ideas, results
similar to 2.1, 2.2 and 2.3 can be proved also for some other formal systems
which are not covered by our detinition of schematic systems, e.g. Gentzen's
sequential calculus. However, the new estimate obtained is generally not linear.

3. From tbe number of steps to tbe lengtb

In this section we prove an upper bound to the length of a proof in terms of the

number of steps in the proof.
A related result has been proveï by Orevkov [15]. He has shown that there

exists a proof-analysis (see below) such that the set of formulas provable using
instances of this proof-analysis is not recursive (cf. also [10]). Hence the length of
the proofs cannot be recursively bounded using the size of the proof-analysis and

the size of the proveï formula.
We prove our result only for special schematic systems, which we call simple

(since they contain only simple terms). For general systems no bounds are
known. In fact, the following seems to be open.

Problem. Given a schematic system, is there a recursive function f(x, y) such
that for any formula A, ifA has a proof with ~k steps, then A has a proof of
length ~f(k, IAI)? (For related problems and some results see [11] and [10].)
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, Zk of L *-formulas together with information
, in < i and

(n ~ O)

a proof -analysis.
A proof d = B1' . . . , Bk is an instance of the proof-analysis iff there exists a

substitution E such that Bi = E(ZJ, i ~ k, and each Bi was inferred according to
the information f, i.e.

Ul, , VnB;,...,B;.. f h A\ II . lS an Instance o t e -TU e TY .
B; Vo

Let A\ be any schematic system with a finite language. A\ is simple iff it does not
contain n-ary function symbols with n > 1 and contains at most ODe uDalY
function symbol.

Define t(B) to be the maximal depth ota term in B, i.e. the maximallength of
a term in B minus 1 if the system is simple.

Theorem 3.1. Let A be any simple schematic system and B any formula having
A\-proof with k steps.

Then B has an A\-proof d with k steps and length:

Idl ~ 22ck+2dP(B) . t(B),

where the constant c > O depends onlv on A\.

Proof. Since the proof is rather long we shall divide it into several parts.

Part 1. Define two formulas A, Bto be similar, A - B in symbols, iff they are

identical when all terms and variables are omitted (the inductive definition is
obvious). Similarly define two proofs d, ï to be similar, d - ï, iff they have the

same number of steps and the corresponding pairs of formulas are similar.
A proof d from a particular --class has a fixed number of quantifiers and

maximal terms. Since all functions are at most unary, all terms contain at most
ODe variable (this is not the sole essential use of the assumption that functions are
at most unary). Thus the total number of variables in d is also fixed.

Assume that together with the --class of d we have also a proof-analysis.
Then, in order to specify a proof d, it is sufficient to specify a finite number of
terms and variables. Since there are also auly a finite number of orders of
variables and a finite numbet of possible conditions on variables when defining
domains of schematic rules, it is sufficient to specify which variables occur in
which quantifiers and terms. There are, of course, infinitely many of such
possibilities but auly finitely many essentially different ones (e.g. formulas x =y
and u = v are essentially the same).
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Thus let us define: a type of a proof is given by:
(i) specifying its --class,

(ii) proof-analysis,
(iii) for all quantifiers' (resp. term) specifying the variable (resp. the variable or

the constant) occurring in it.
We assume that all types considered are specified correctly, i.e., if a step is

assumed to be an axiom, it has the particular form, if x is assumed to be of order i
in a given scheme, then the variable x specified for it is of order i, etc. (Put
otherwise, a type is correct iff there exists at least ODe proof of this type.)

Part 2. Without loss of generality assume that the language of A\ contains a
unary function symbol f. By an individua! we shall mean a variable (not
necessarily of order 1) or a constant of L. F = {f}* is the set of all words over the
alphabet {I}, including the empty word A and ~ denotes concatenation.

In this terminology we can represent any L-term t as an ordered pair [a, a],
aEF and a an individual. Obviously [f(n), a] corresponds to f(f(... f(a).. .),
where f appears n times.

In order to obtain a particular proof from its type, it remains to determine its
(maxima!) terms. Since all individuals are already given by the type, it is enough
to specify the 'prefixes' of function symbols applied to them. In other words, we
have to specify a finite number of words from F such that certain conditions will
be fulfilled. (This is one important use of the assumption that L-functions are at
most unary. Otherwise we would be faced with labelled trees instead of words.)

Now let us see which ones. Consider an example of the scheme:

Vi: B(f(i»-+ B(f(l).

Then the corresponding maximal terms in the instances of tJ(f(i» and tJ(f(l)
must have the forms [Po~f, x] and [Po~f ~ PI, a], where Po is given by the formula

substituted for tJ and [PI' a] is the term substituted for (.
More generally, an occurence of a term-variable ( in a scheme is always within

an L *-term of the form [f(n), 1] and may additionally be within an argument of a
formula-variable. (Here we use the assumption (given in Section O) that term
variables have no arguments.) Thus the general description of a maximal L-term
occurring in an instance of a scheme is [PO~U~PI' a], where Po originates from a
formula variable in the scheme, u E F originates from a word in the scheme, and
[PI' a] originates from a term variable in the scheme. (Note: each of Po, u and PI
may be empty.)

For a given type T of a proof (say T = (X, I, A), where X is its --class, I its

proof-analysis and A its assignment of individuals) we shall construct the set of
conditions as follows. Variables ao, aI, . . . , Po, PI, . .. and constants u, v, . . .
stand for words from F.

(i) For each occurrence of a maximal term in T (i.e. for a 'place' for it)
introduce ODe variable aoo a" . . .
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(ii) Each application of some schematic role in T given by I determines a
condition of the general form

1\ a'ij = fJkj~Ulj~fJmj
J

3{Jn, {Jl,

18 a

:not
the

as explained above.
In the example above introduce lXo, lXI, variables for maximal terms in the

instance A(f(x» and A(f(t» resp., and form the condition

3{Jo, {JI: lXo = {Jo~f 1\ lXI = {JO~f~{JI'

We ",ha" state this as a lemma.

Lemma 1. Let R be an A\-rule and

AI' ,Ak-
An

be an instance oj it; let tI, . . . , trn be all maximal terms in Ao, . . . ,Ak' Then there
exists a system S oJfinitely many conditions (the number is bounded in terms oj R,
k and m) oj the Jorm

aj, = fJk;~ul;~fJm"

such lhal:
(i) ij ~ m and the Ulj'S are constant words given by Ao, .. . . , Ak,
(ii) the system S together with the conjunction a'1 = tI /\ . . . /\ a'm = tm has a

solution for the {3;'s,
(iii) if S together with the conjunction a'1 = t~ /\ . . . /\ a'm = t;", for any terms

(i.e. their prefixes) t~, . . . , t;" has a solution then replacing tI by t~, . . . , t;" by t;"
in Ao, . . . , Ak we obtain an instance oj the rule R.

The proof proceeds by detailed inspection as outlined above and we leave it to
the reader.

In fact, the bound will be correct for any simple system for which Lemma 1
holds trne, not only of the systems whose rules are defined using conditions of
type 1, . . . ,5 on p. 5 (e.g. the condition "t is closed", already mentioned, caD be

allowed).

Part 3. Let ,00«<, P) be the conjunction of all conditions above obtained for
each application of some schematic role deterrnined by the proof-analysis Iof the
type T. Since we have assigned the variables aj to the maximal terms in the whole
proof globally, we may conclude that all instances of the schematic rules are
properly linked together and not only individually correct.

Assume that a forrnula B has an A\-proof of type T. Let ,0«<, P) be the
conjunction of ,00«<' P) with conditions of the form ar; = us;, where the ar;'s are
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all variables assigned to the maximal terms in the last formula of T and the us.'s
,

are the corresponding maximal terms from B.
Thus there exists an A\-proof of B of type T iff 3u, IJ: Q(u, IJ).
Now, for u, v, W E F evidently u~v = W iff lul + lvi = Iwl, where lul is the

length of the word u. (This is another essential use of the assumption that there is
at most ODe unary function symbol.) Hence the conditions above caD be written
in the form:

1\ aj = bk + lull + bmj'. J J JJ
3bn. b,. /\ ar = lusl

. J J
]

which we shall abbreviate also by 3a, b: .Q(a, b).

Part 4. Assume now that the condition Q(a, b) corresponds to the type T. li
we were able to deduce some upper bound on the smallest solution a, b of
Q(a, b), we would also be able to deduce some upper bound on the length of the
shortest proof of type T. This is done as follows.

Let Cl be the depth of proofs in type T and C2 be the maximum arity of the
predicates of L. A formula of depth ~Cl has length ~2Cl+1C2h, where h is the
maximum length of a term in the formula.

li b is an upper-bound on some solution of Q(a, b) then, clearly, h ~ b + 1.

Part 5. Now we shall search for an upper bound b on some solution a, b of
Q(a, b).

We can rewrite Q in a more standard form:

M.x=c.

where M is some integer matrix, x is the vector of ai's and bi's, and c is the vector
of constants IUil's.

This is a pleasant situation, since we caD use a result proved by Papadimitriou
[19, p. 320, Theorem 13.4].

Lemma 2 (Papadimitriou). Let M be m x n integer matrix, c an m-vector,
Pl = rn,~ IMiil and pz = m!ix ICil.

I,} 1

Then: if the equation M. x = c has a nonnegative integer so/ution x, then there
exists a nonnegative integer so/ution y such lhal Yi ~ b, i = 1, . . . , n, where:

b = n(mpJ2m+3(1 + pz).

For the particular case that we consider, Pl = 1 and pz is max(c, t(B» where c

is some constant given by A\ only. Thus we need only to estimate n (the number
of ai's and bi's) and m (the number of equations in .Q). This is done as follows.
We assume that the proofs of type T have k steps.

By Theorem 2.2 we may assume that a proof of type T has depth ~
c k + dp(B), hence it has ~k . 2ck+dp(B) atomic formulas and so ~czk .2ck+dp(B)
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maximal terms, i.e. the variables aj. Evidently there are at most K times more
variables bj then aj, for a constant K.

Thus for c possibly bigger,

n ~ 2ck+dp(B).

The number o• equations in .Q is estimated analogously:

m ~ 2ck+dp(B)

(again for c possibly slightly bigger).
Using Lemma 2 we caD estimate:

b ~ 2Ck+dP(B)(2ck+dP(B»2.2Ck+dp(B)+3. (1 + max(c, t(B)}

By slightly increasing c this caD be simplified to

b ~ 22c'+2dP(8)

Part 6. If B has a proof of type T (i.e. having k steps) it has a proof of the
length

~2ck+dp(B)+ c2(b + l)k (Part 4)

By Part 5

b ~ 22ck+2dP(

Thus again slightly increasing c we obtain the required bound. o

Remark. The assumption that the term variables have no arguments affects the
size of .Q(a, b). ff Dne allows term variables to have arguments, then essentially
the same proof works but the bound is greater-there would be more variables
and equations in .Q(a, b) and the equations would have more members.

Corollary 3.2. Under the same assumption as in Theorem 3.1 B has an A\-proo/ d

0/ length:

Idl ~ 22co+181

where c > o depends only on A\.

Notice that since the 'shorter proof ï constructed in Theorem 3.1 has the same
proof-analysis as the original Dne, we cannot expect a similar result for a general
case of schematic systems. This would contradict Orevkov's result.

Let us also stress the relation of Dur proof with

Kreisel's conjecture. This conjecture says: "Assume that there exists a positive
integer k such that for any nonnegative integer n, A(n) has a PA-proof with k
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steps. Then Vx: A(x) is PA-provable". (Here n is the DomeTal for n, i.e. the term
s(s(... (O).. .), where s occurs n times.)

Using the same methód as in the proof above (and, in fact, the same as in [17])
we caD prove this conjecture for all simple arithmetical (cf. next section)
schematic systems. We omit the details since they are essentially those of [17].

4. Ap{Jlication to finitistic consistency statements

In this section we shall use Theorem 3.1 for proving some lower bound on the
number of steps in the proofs of finitistic consistency statements introduced by
Friedman [4] and by Pudlák [22].

This will allow us to construct (in Section 5) for a system a formula A(x) such
that all its instances A(n) are provable in the system but there is no common
upper bound to the number of steps in the proofs.

The idea is this. For certain provable formulas lower bounds are known for the
minimum length of their proofs (cf. [22]). For a simple system we caD use
Theorem 3.1 to compute from these bounds lower bounds on the number of steps
in the proofs. This idea works for 'simple arithmetical system' (defined below).

For general schematic systems it seems that no lower bounds on the number of
steps are known (cf. Problem in Section 3). An affirmative solution of Kreisel's
conjecture (cf. Section 3) would offer an elegant method: if Vx: A(x) is not
provable, then either ODe of the A(n)'s is not provable or there is no common
upper bound on the number of steps in proofs of the A(n )'s.

Let us call a schematic system A\ simple arithmetical iff:

(i) A\ is simple.
(ii) The language of A\ contains O and s (thus the successor is the only unary

function symbol of A\).
(iii) A\ contains Robinson's arithmetic Q (cf. [30]); that is there are three

formulas N(x), U(x, y, z) and V(x, y, z) such that U and V define addition and
multiplication on the domain N and A\ proves (the translation of) all axioms of Q
(i.e. s(x) =s(y)~x =y, s(x) *0, x *O~ 3y: s(y) =x, x + O =x, x + s(y) =
s(x +y), x. O = O and x . s(y) = x . y + x) together with "U and V define total

functions on ".
It is clear that any simple arithmetical system is able to formalize its own

syntax, in particular a provability predicate.
Let ConA(x) be a formula saying "there is no A\-proof of O = s(O) whose length

is at most x".
In [22] a finitization of Godel's second incompleteness theorem is proved: "for

any reasonable A\ containing Q and reasonable formula ConA(x) there exists E > O
such that for any closed numerical term t the least A\-proof of ConA(t) has length
at least te" (for details see [22], cf. also [4]). Observe that this result is trivial for
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simple arithmetical systems since in that case the only closed numerical terms are
numerals and already: I ConA,(n) I > In I ~ n.

Define the sequence of functions /;, i < W, by: fo(x) = s(x) and /;+t(x) =
ffx+2)(X), where f(y) denotes the y-th iterate of f.

Call any system A\ regular, if it arises from some simple arithmetical system by
adding finitely many function symbols for functions from the sequence /; and
natural axioms defining them.

We have chosen the particular /;'s since these are primitive recurisve, any
primitive recursive function is majorized by some Ii and the system with terms
built up from /;'s is reasonable in the sense of the informal statement above. We
sball present, without details or proof, the following result:

Proposition 4.1 (Pudlák). Let A\ be any regular schematic system which contains a
simple arithmetical system IIJ,. Then there exists a formula ConA(x) in the langauge
of lIJ, (having the above explained sense) and E > O such that for any closed term t
of A\ and any A\-proofd ofConA(t) it holds that Idl >t".

(In [22] also an upper bound is proved. The results there are proved for
first-order systems, bot the general proof is essential the same.) Let us stress the
obvious fact that any instance ConA(t) has an A\-proof.

We would like to combine Results 3.1 and 4.1 to obtain a lower bound on the
number of steps in ConA(t). However, if the language of A\ contains at least two
unary functions, then we cannot apply 3.1, and if it does not contain 8 we are not
able to use the result for results of the next section Sloce they deal with theories
always containing the successor function. But, if the language of A\ contains 8,
then any term t has length Itl ~ t (A\ is simple) so 4.1 gives no information. We
shall overcome this difficulty by the following construction.

Instead of using terms for defining big numbers we shall define these by (short)
formulas. So we need a formula B(x, y) which defines some rapidly growing and
provably total function. It is easy to observe that this caD be done at least for
primitive recursive functions (by formalizing their definitions) without any strong
assumptions about A\. In particular, any primitive recurisive function is definable
by a I}-formula in a simple arithmetical system which proves (the translation of)
induction axioms for all I}-formulas.

Let Con;:(x) be the formula (3y: B(x, y) 1\ ConA(Y»' Now, the Result 4.1 caD
also be proved using these 'definitions' of terms instead of terms themselves.
Hence we state:

Proposition 4.2. Let A\ be a simple arithmetical schematic system and let B(x, y)
define in A\ a primitive recursive function from the sequence j;, say f. Then there
exists an E > O such that the least A\-proof of Con~(n) has length at least (f(n »E.
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Theorem 4.3. Let A be a simple arithmetical schematic system which proves (the
translation on induction axiom for each Ii-formula. Let f be any primitive

recursive function.
Then there exist a formula B(x, y) such that for each n: (i) A does not prove

Con~(n) in ~f(n) steps, while (ii) Con~(n) is A-provable.

Proof. Using 3.1 and 4.1. The length of Con':(n) is O(n).
Using the estimate from 3.2, for the given f, choose the detinition B(x, y) of

some primitive recursive function from the sequence t, say.tj, such that

22c(f(ft)+ft) < (jj(n ))E.

J:1-induction is sufficient for defining any primitive recursive function; c and E
depend only on A\. Finally, since ConBA\(n) is a trne J:1-sentence, it is A\-prova~le.
(Altemative proof: enumerate all proofs of length at most jj(n) and verify that
none of them is an A\-proof of 0= s(O).) O

5. Some speed-up results

In this section we shall use the results of Section 4 for proving some unbounded
speed-up's, namely between arithmetics of lower and higher order and between
ZF and GB.

Let An denote the usual schematic system of the n-th order arithmetic where +
and . are treated as relations. So the An's are simple arithmetical.

More specifically: AI is Peano's arithmetic formulated in the language having
ternary relations "x + y = z" and "x. y = z" instead of functions + and ., An+I

extends An by adopting variables of (n + 1)-th order and the full comprehension
scheme for them. So the An's are simple arithmetical. (The exact formulation of
the An's is not so important for the results below. What is important is that An+I
proves the consistency of An.)

In 1936 Godel announced a result (cf. [7]) that for any recursive function g(x)
and any n there exists a natural number k and a formula B such that B has an
An+I-proof of length ~k, B has an An-proof but the shortest such An-proof has
length at least g(k). It is not clear from the abstract that Godel considered the
length of the proof as the number of symbols, but Kreisel communicated to us
that thiswas the case.

Later some related speed-up's were proved in [14], [2], [17], [27], We are going
to prove a result in the spirit of [7]. The result is, in fact, that of [17] but the proof
is new. (Parikh proved his result only for the particular case n = 1 but the method

easily extends to the general case.)

Theorem 5.1. For any n ~ 1 there exists a constant c such lhal for any m there is a
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formula Cm for which
(i) Cm has an An+l-proofwith c steps,
(ii) Cm is An-provable,

(iii) any An-proof of Cm has at least m steps.

Proof. Chaose any primitive recursive function which grows {aster than s(x), say
2x. By Theorem 4.3 we caD chaose a {oTrnula B already in the language o{ A1
such that Con~.(m) does not have an An-proo{ with ~2m steps.

We finish by observing that An+1 proves the {oTrnula Vx: Con~.(m) is
An-provable. O

Remark. The idea of another proof of the result is as follows.
Let a formula Pr(y, x) say: "forrnula x has an A\-proof with length ~y" (cf.

[22]). Using diagonalization construct a formula A(x) such that for any n < aJ, A\
proves "A(n)~-'Pr(24, rA(n)l)". Using Theorern 3.1 show that each A(n) has
no A\-proof with n steps. But clearly Vx: ConA(x) irnplies Vx: A(x).

We used the results of Section 4 since they seem to be of some independent
interest and they also allow us to prove Proposition 5.3.

We shall finish this section by proving a speed-up result of GB over ZF
analogous to 5.1. We shall use the result of Pudlák proved in [22].

Proposition 5.2 (Pudlák). There exist formulas Bn' n = 1,2, . .. and constants
E, c > O such lhal:

(i) each Bn has a GB-proof of length nc,
(i i) each Bn' while ZF-provable, does not have a ZF-proof of length less

than (2~)E.
(The Bn's are suitable translations of the formulas ConzF(2~).)

, and constantsProposition 5.3. There exist ZF-formulas Bn' n = 1, 2, . .
CI' C2> O such lhal:

(i) Bn has a GB-proof with n(cv steps,
(ii) Bn is ZF-provable,
(iii) Bn does not have a ZF-proof with less than 2?n-c.,) steps.

Proof. Take the Bn's {Tom 5.2; then (i) and (ii) are trivial.
(iii) {ollows {Tom the preceding result 5.2 and {Tom Theorem 3.1 o

6. ODe more application

Let us briefty recall the Paris- Harrington modification of the finite Ramsey
theorem (for details see [20]). We fix some notation: [x, y] denotes the set
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{x,x+l,...,y}, the nurnber v is identified with the set [O,v-l] and x<n)
denotes the set of all n-elernent subsets of X.

The symbol [x, y]~ (u):;' stands for the proposition: . "for any function

f: [x, y ](w)-+ V there exists a set H ~ [x, y] such that u:s; IHI, rnin(H):S; IHI and f
is constant on H(n)".

Write PH(w) for Vxuv 3y: [x, Y]~(U):;,+l. The Paris-Harrington staternent is
the forrnula Vw: PH(w). It is now widely known that this forrnula is not provable
in PA (cf. [20)) but all of its instances PH(k) are provable. We shall provide an
upper and a lower bound on the nurnber of steps in the PA-proofs of PH(k)'s.

Theorem 6.1. There exist constants CI' C2 > O such lhal for any natural number k:
(i) PH(k) does not have a PA-proof with CI. k steps,
(ii) PH(k) has a PA-proofwith C2. k steps.

Thus both upper and lower bounds are linear.

Proof. First we recall the result of Paris (cf. [18]) that I.l'k does not prove PH(k),
where I.l'k is the fragment of PA with induction axioms only for .l'k-formulas. Let
dk denote the shortest proof (in PA) of PH(k) and Sk the number of its steps.

The result above clearly implies dp(dk) > k. By Theorem 2.2 there exists a
constant co> O such that dp(dk) ~ Co' Sk' hence Co! . k < Sk. This proves part (i).

Part (ii) is proved by a detailed inspection of the proof of PH(k) obtained by
formalization of an infinite Ramsey theorem for k-tuples (an instance of it) and of
Konig's lemma (an instance of it) (cf. [1]).

In some detail, -'PH(k) implies (using a particular instance of Konig's lemma)
the falsity of a particular instance of the infinite Ramsey theorem for (k + 1)-
tuples. AIso there is a uniform method to prove a particular instance of the
infinite Ramsey theorem for (k + l)-tuples from a particular instance of the
infinite Ramsey theorem for k-tuples using a particular instance of Konig's
lemma.

The uniformity of these proofs assures that they have a constant number of
steps. Thus repeating the whole procedure k times we prove, from -'PG(k), the
falsity of a particular instance of the infinite Ramsey theorem for 1-tuples - this
takes c . k steps. But any such instance is easily - and uniformly - provable in a
constant number of steps. So, for some c, a contradiction can be derived from
-'PH(k) in c . k steps.

The details are left to the reader (cf. [20] and [1]). O

Now we use this result for proving that the Result 2.2 is in a sense optimal

CoroUary 6.2. Let K be a natural number such that K ~ dp(PH(x». Let F(x) be
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Proof. Use the dk's from the preceding proof. We have Sk ~ C2 . k, i.e. there exist
PA-proofs d~, k = 1, 2, . . . of PH(k) such that dp(d~) ~ F(C2. k).

Also k < dp(d~), so k < F(C2 . k); hence, ci! . k < F(k). O

Notice that by the same argument Theorem 2.1 can also be proveï to be
optimal.
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