Sonderdruck

ISSN 0003-9268

Archiv für

MATHEMATISCHE LOGIK UND GRUNDLAGENFORSCHUNG

HERAUSGEBER:

HEINZ-DIETER EBBINGHAUS HANS HERMES JÜRGEN VON KEMPSKI KURT SCHÜTTE HELMUT SCHWICHTENBERG JOHN C. SHEPHERDSON ERNST SPECKER

 $26/_{3-4}$

VERLAG W. KOHLHAMMER STUTTGART · BERLIN · KÖLN · MAINZ

A NOTE ON PROOFS OF FALSEHOOD*

Jan Krajíček

In these notes we shall sketch a few results motivated by Švejdar's question (see below). To make the paper self-contained we repeat, in Chapter 0, definitions of some notions and some results (without proofs) used in it. For more details the reader can consult e.g. [Pu].

Chapter 0

Let us begin with an informal recall of a few familiar notions. Q is Robinson's arithmetic, a bounded formula (or Δ_0) is a formula in the language of Q whose quantifiers are of the form $\exists x < t$ or $\forall x < t$ (t term not containing x), and bounded arithmetic $I\Delta_0$ is the extension of Q by instances of the induction scheme for all bounded formulas. Exp is the Π_2^0 formula in the language of Q saying " $\forall x \exists y : y = 2^{x*}$.

A cut in a theory T is any formula I(x), s.t. T proves the conjunction of the conditions: (i) I(0), (ii) $I(x) \rightarrow I(s(x))$, (iii) $I(x) \& y < x \rightarrow I(y)$. We say that the cut is closed under the addition (resp. multiplication) iff T proves also: (iv) $I(x) \& I(y) \rightarrow I(x+y)$ (resp. $I(x) \& I(y) \rightarrow I(x \cdot y)$).

A theory T is called sequential iff it contains a reasonable fragment of a theory of finite sequences – for definitions and examples see [Pu]. Sequential theories and cuts in theories play an important role in the questions of interpretability (cf. [Pu]).

The last informal definition is: the *depth of a proof* is the maximal logical depth (not length) of a formula in it, where the logical depth is defined as usual.

We continue stating a few more formal definitions and recalling some results concerning the notions above. For proofs or details consult the cited papers.

Definition:

- (1) a) $\operatorname{Con}_{y}^{I(x)}(T) \Leftrightarrow$ "there is no proof d of 0 = 1 in T s.t. I(d) and d has the depth $\leq y$ "
 - b) $\operatorname{Con}^{I}(T) \Leftrightarrow \forall y; \operatorname{Con}^{I}_{y}(T)$
 - c) $\operatorname{Con}_{y}(T) \Leftrightarrow \operatorname{Con}_{y}^{x=x}(T)$
 - d) $\operatorname{Con}(T) \Leftrightarrow \forall y; \operatorname{Con}_y(T)$

^{*} Eingegangen am 16. 9. 1986, revidierte Fassung am 2. 2. 1987.

- (2) a) $HCon^{I}(T) \Leftrightarrow$ "for any t, s.t. I(t), t does not satisfy both (i) and (ii):
 - (i) t is a propositional tautology
 - (ii) t is a disjunction of Herbrand variants of a prenex normal form of a disjunction of negations of some axioms of T (cf. [Pu])"
 - b) $HCon(T) \Leftrightarrow HCon^{x=x}(T)$
- (3) $T \leq S$ iff T is globally interpretable in S
- (4) $T \vdash A$ iff formula A has a proof in T of depth $\leq m$

Fact 0.0 (P. Pudlák): For a reasonable sequential theory T and for any cut I(x) in T: (i) $T \not\vdash Con^{I}(T)$

and even

(ii) there exists $k < \omega$, $T \not\vdash \operatorname{Con}_{k}^{I}(T)$.

Fact 0.1 (P. Pudlák): Let T be a finitely axiomatizable, sequential theory or $T = I \Delta_0$. Then there exists a cut H(x) in T s.t.: $T \vdash HCon^H(T)$.

Fact 0.2 (P. Pudlák): For T a finitely axiomatizable, sequential theory or for $T = I\Delta_0$: not $Q + \{Con_k(T) | k < \omega\} \leq T$.

Fact 0.3 (A. Wilkie): Let M be a countable model of $I\Delta_0 + \text{Exp}$, I(x) any formula of depth $\leq k$ which is a cut in $I\Delta_0$ and have terms of depth ≤ 1 . Let a, $b \in M$ be two nonstandard elements of M s.t.: $M \models 2^a_{(2 \cdot k+3)} \leq b$. Then there exists an initial substructure $M' \subseteq_e M$ s.t.:

(i) $M' \models I \Delta_0$

(ii) $a \in M', b \notin M'$

- (iii) $M' \models I(a)$.
- $(2_x^y \text{ is the function defined: } 2_0^y = y \text{ and } 2_{x+1}^y = 2^{(2_x^y)}).$

The results of this note are inspired by Švejdar's question: "When is it consistent for inconsistency-proofs to lie *between* cuts?" (the question is inspired by 0.0(i)). More precisely; for which T, I(x) and J(x) cuts in T is the theory " $T + \text{Con}^{J}(T)$ $+ \neg \text{Con}^{I}(T)$ " consistent?

The arguments are sometimes only sketched and the paper should be considered as a preliminary report.

I am indebted for discussions to P. Pudlák, V. Švejdar, J. Paris, and A. Wilkie. I thank to a referee for important suggestions.

Chapter 1

For making results and arguments more readable let us extend the languages of the theories under consideration by constants e_1, e_0, e_1, \dots with the meaning:

(i) e is the least proof of 0=1 in T or e=0 if Con(T)

(ii) e_k is the least proof of 0=1 in T of depth $\leq k$ or $e_k=0$ if $\operatorname{Con}_k(T)$.

Proposition 1.0: For any cut I(x) in $I\Delta_0$ there exists natural k s.t.

$$I \Delta_0 \not\vdash I(e) \rightarrow I(2_k^e).$$

Proof: Let $M \models I \Delta_0 + Exp + \neg Con(I \Delta_0)$ be countable (it is known that $I \Delta_0 + Exp \not\vdash Con(I \Delta_0) - \text{see [P-W]}$). By 0.3 there exists $M' \subseteq_e M$ s.t.: (i) $e \in M'$ but $2^e_k \notin M'$, (ii) $M' \models I(e)$, (iii) $M' \models I \Delta_0$. It is enough to choose k = 2. "the depth of cut I when written using terms of the depth $\leq 1^n + 3$. We have done. q.e.d.

Proposition 1.1. For any cut I(x) in theory T, where T is a finitely axiomatizable, sequential Π_1^0 theory or $T = I\Delta_0$, there exist natural k, m s.t.:

$$T \not\vdash I(e_k) \rightarrow I(2_m^{(e_k)})$$
.

Proof. According to 0.1 we can define a cut $H_0(x)$ in T closed under multiplication s.t.:

$$T \mapsto HCon^{H_0}(T)$$

Define a cut H(x):

$$H(x) \equiv [(\operatorname{HCon}(T) \land x = x) \lor (\neg \operatorname{HCon}(T) \land H_0(x))]$$

Clearly:

$$T \vdash \mathrm{HCon}^{H}(T)$$
.

Assume that for all $k < \omega$ the theory " $T + I \subseteq H + \neg \operatorname{Con}_{k}^{I}(T)$ " is inconsistent, i.e.

(1) $T+I \subseteq H \vdash \operatorname{Con}_{k}^{I}(T), \quad k < \omega.$

Since evidently:

$$(2) T+I \subseteq H \leq T$$

(relativize to the cut H(x); here $T \vdash H^H = H$ is needed, but this is easily verifiable) also:

(3)
$$T + \{\operatorname{Con}_{k}^{I}(T) | k < \omega\} \leq T.$$

Now:

(4)
$$Q + \{\operatorname{Con}_{k}(T) | k < \omega\} \leq T + \{\operatorname{Con}_{k}^{I}(T) | k < \omega\}$$

(relativize to I(x) or to a suitable shortening of I(x) if it is not closed under multiplication).

From (3) and (4): $Q + {\operatorname{Con}_{k}(T) | k < \omega} \le T$,

which is a contradiction with 0.2.

Hence, since (1) is false there exists $k < \omega$ s.t.:

$$T + I \subseteq H + \neg \operatorname{Con}_{k}^{I}(T)$$

is consistent.

From Herbrand's theorem it is known how to transform a proof d of 0=1 of depth $\leq k$ into a Herbrand's disjunction of size $\leq 2_m^d$, m polynomially depending on k, contradicting a given theory (in the sense of Definition (2)). If it were true that:

$$T \vdash I(e_k) \rightarrow I(2_m^{(e_k)}),$$

we would also have:

(5) $"T + e_k \neq 0 + H(2_m^{(e_k)})" \text{ is consistent.}$

But this is in a contradiction with the choice of the cut H(x). q.e.d.

Remark: When speaking about T as a Π_1^0 -theory we implicitly assume that T is in the language of arithmetic. The assumption that T is Π_1^0 implies that in models of T the axioms of T are also satisfied in all initial segments closed under multiplication. An example: any theory of the form (Q+A), A a true Π_1^0 -sentence, is a finitely axiomatizable, sequential Π_1^0 -theory.

Chapter 2

Now we shall use the preceeding chapter to obtain some results related to Švejdar's question.

Theorem 2.0: For any cut I(x) in $I\Delta_0$ there exists $k < \omega$ s.t. for any cut J(x) in $I\Delta_0$ satisfying:

$$I \Delta_0 \vdash J(x) \rightarrow I(2^x_k)$$

the theory.

$$I \Delta_0 + \operatorname{Con}^J (I \Delta_0) + \neg \operatorname{Con}^I (I \Delta_0)$$

is consistent.

Proof: Let k be the natural number assigned to I(x) by Proposition 1.0. Assume that ${}^{"I} \varDelta_0 + \operatorname{Con}^{J} (I \varDelta_0) + \neg \operatorname{Con}^{I} (I \varDelta_0)$ " is inconsistent, i.e.:

 $I \Delta_0 \vdash I(e) \rightarrow J(e)$

By the hypothesis of the theorem

$$I \varDelta_0 \vdash J(e) \rightarrow I(2^e_k)$$

172

and thus:

$$I \varDelta_0 \vdash I(e) \rightarrow I(2_k^e)$$

This contradicts the choice of k. q.e.d.

Theorem 2.1: For any cut I(x) in T, where T is finitely axiomatizable, sequential Π_1^0 -theory or $T = I\Delta_0$, there exist k, $m < \omega$ s.t. if a cut J(x) in T satisfies:

$$T \vdash J(x) \rightarrow I(2_m^x)$$

then the theory.

$$T + \operatorname{Con}_{k}^{J}(T) + \neg \operatorname{Con}_{k}^{I}(T)$$

is consistent.

Proof: Similar to the proof of 2.0 using 1.1 instead of 1.0. q.e.d.

The following observation complements the preceeding two results.

Proposition 2.2.: For any cut I(x) in a finitely axiomatizable, sequential Π_1^0 -theory T or in $T = I\Delta_0$ there exists a cut J(x) in T s.t.:

(i) $T \vdash J(x) \rightarrow I(x)$

- (ii) $T \not\vdash I(x) \rightarrow J(x)$
- but
- (iii) $T + \operatorname{Con}^{J}(T) + \neg \operatorname{Con}^{I}(T)$ is not consistent (and analogously when using Con_{k} 's instead of Con).

Proof: With I(x) given define:

$$J(x) \leftrightarrows (I(x) \& (\operatorname{Con}(T) \to (\forall y; I(y) \to I(y+2^{x}))))$$

Evidently:

(i) $T \vdash J$ is a cut"

(ii) $T \vdash J(x) \rightarrow I(x)$

(iii) $T \vdash \neg \operatorname{Con}^{I}(T) \rightarrow \neg \operatorname{Con}^{J}(T)$, since $T \vdash \neg \operatorname{Con}^{I}(T) \rightarrow I = J$.

It remains to show (ii) of the proposition. Assume the contrary

$$(1) T\vdash I(x) \to J(x).$$

Then:

(2)
$$T + \operatorname{Con}(T) \vdash I(x) \to I(2^{x}).$$

According to [P-D] there exists a model $M \models PA + Con T$ and an initial substructure $P \subseteq_e M$ s.t. in the structure $\langle M, P \rangle$ there is no definable a cut in P closed under 2^x . Choose such $\langle M, P \rangle$. Since $I \varDelta_0 \subseteq PA$ and $PA \vdash Con(T) \rightarrow T$ for T a Π_1^0 finite theory we have: $P \models T + Con T$.

By (2) then: $P \models I(x) \rightarrow I(2^x)$. A contradiction. q.e.d.

Chapter 3

The aim of this chapter is to prove the following result.

Theorem 3.0: For $T = I\Delta_0$ or T a finitely axiomatizable, sequential theory there exists an assignment of natural numbers to cuts in T, say $I \mapsto k_I$, s.t. the theory:

$$T + \{ \neg \operatorname{Con}_{k_{I}}^{I} | I \text{ cut in } T \}$$

is consistent.

Observe that since for all $k < \omega$ there is a cut I in T s.t. $T \vdash \operatorname{Con}_{k}^{I}(T)$ the theorem is equivalent with the proposition: "there is a model $M \models T$ s.t. e_{i} 's are cofinal in all definable cuts (i.e. for each I a cut in T there exists e_{i} s.t. $M \models (I(e_{i}) \& e_{i} \neq 0)$ and $e \neq 0$ lies in all these cuts."

We shall need the following result proved in [F] (it can be also obtained from [Pu]).

Fact 3.1 (H. Friedman): Let S, T be finitely axiomatizable, sequential theories. Then the following are equivalent: (i) $S \leq T$ (ii) $I \Delta_0 + Exp \vdash HCon(T) \rightarrow HCon(S)$. (This formulation is closer to [Pu]).

Another result we shall use is the "effective" version of 0.0(ii), namely:

Fact 3.2 (P. Pudlák): Let T be a finitely axiomatizable, sequential theory. Then for any cut I(x) in T there exists $k < \omega$ s.t.:

 $I \varDelta_0 + \operatorname{Exp} \vdash \operatorname{HCon}(T) \to \operatorname{HCon}(T + \neg \operatorname{Con}_k^I(T))$

(3.2 is obtained by an inspection of the proof of 0.0(ii)).

Finally we shall need:

Fact 3.3 (P. Pudlák): $I \Delta_0 + Exp$ proves: "Let S, T be sequential theories, $S \leq T$ and i be some interpretation of S in T. Then there exist cuts I(x) in T and J(x) in S s.t. there is a (definable) isomorphisms between $\langle I(x), +, \cdot \rangle$ and $\langle J(x)^i, +^i, \cdot^i \rangle$ (the structures definable in T)".

(3.3 is proved in [Pu], while its $I\Delta_0 + Exp$ -provability is easily verifiable).

Proof of the Theorem 3.0: Let J_0, J_1 , enumerate all cuts in T and define cuts I_0, I_1, \ldots :

 $I_n(X) \Leftrightarrow J_n(x) \& \& J_n(x)$

174

So we have:

(i) $T \vdash I_0 \supseteq I_1 \supseteq \dots$ and

(ii) for any cut J in T there is $k < \omega$ s.t.

 $T \vdash J \supseteq I_k$

T is from now on assumed to be finite.

Step 1: By 3.2 there exists $k_0 < \omega$ s.t.

$$I \Delta_0 + \operatorname{Exp} \vdash \operatorname{HCon}(T) \rightarrow \operatorname{HCon}(T + \neg \operatorname{Con}_{k_0}^{I_0}(T))$$

Hence by 3.1:

$$T + \neg \operatorname{Con}_{k_0}^{I_0}(T) \leq T$$

(and this is provable in $I\Delta_0 + Exp$ since it is true Σ_1^0 -sentence) and let i_0 be the interpretation.

Step 2: Take a cut $I_1(x)$. We claim that there is $k_1 < \omega$ s.t.

$$I \Delta_0 + \operatorname{Exp} \vdash \operatorname{HCon}(T) \rightarrow \operatorname{HCon}(T + \neg \operatorname{Con}_{k_0}^{I_0}(T) + \neg \operatorname{Con}_{k_1}^{I_1}(T))$$

Firstly argue informally: assume that we choose k_1 sufficiently big and that:

$$\neg \operatorname{HCon}(T + \neg \operatorname{Con}_{k_0}^{I_0}(T) + \neg \operatorname{Con}_{k_1}^{I_1}(T)).$$

Then there is $m < \omega$ s.t.:

$$T + \neg \operatorname{Con}_{k_0}^{I_0}(T) \models^m \operatorname{Con}_{k_1}^{I_1}(T).$$

Using the interpretation i_0 we can construct, by 3.3, a cut $I'_1(x)$ in T and m' s.t.:

 $T \stackrel{\underline{m}}{\vdash} \operatorname{Con}_{k_1}^{I_1}(T)$.

(roughly speaking: I'_1 is the image of I_1 in the interpretation i_0 intersected with the initial part of numbers common to the universe and to the universe of the interpretation), i.e.:

 $\neg \operatorname{Con}_{m'}(T + \neg \operatorname{Con}_{k_1}^{I'_1}(T)), \text{ for some } m'' \ge m$

From this it follows that:

$$\neg \operatorname{HCon}(T + \neg \operatorname{Con}_{k_1}^{I_1}(T)).$$

If we choose k_1 sufficiently large w.r.t. $I'_1(x)$ we have, by 3.2.:

Hence we proved:

$$\operatorname{HCon}(T) \to \operatorname{HCon}(T + \neg \operatorname{Con}_{k_0}^{I_0}(T) + \neg \operatorname{Con}_{k_1}^{I_1}(T)).$$

 \neg HCon(T).

Now, the whole argument of Step 2 can be formalized and proved in $I\Delta_0 + Exp$. For this we need only 3.2, 3.3 and the observations: (1) for all m greater then the depth of A:

 $I \Delta_0 + \operatorname{Exp} \vdash \operatorname{HCon}(A) \equiv \operatorname{Con}_m(A).$

(2) if $S \leq T$ is true and *i* is the interpretation then

 $I \Delta_0 + Exp \vdash "S \leq T$ and *i* is the interpretation".

So finally we have:

$$I \Delta_0 + \operatorname{Exp} \vdash \operatorname{HCon}(T) \to \operatorname{HCon}(T + \neg \operatorname{Con}_{k_0}^{I_0}(T) + \neg \operatorname{Con}_{k_1}^{I_1}(T))$$

and, by 3.1.:

$$T + \neg \operatorname{Con}_{k_0}^{I_0}(T) + \neg \operatorname{Con}_{k_1}^{I_1}(T) \leq T.$$

In the same manner we prove, in the Step(n+1), the formula:

$$T + \neg \operatorname{Con}_{k_n}^{I_0}(T) + \ldots + \neg \operatorname{Con}_{k_n}^{I_n}(T) \leq T$$

(k_n 's being constructed through the proof). By compactness we obtain consistency of the theory $T + \{\neg \operatorname{Con}_{k}^{I_j}(T) | j < \omega\}$ and we have done.

The result for $T = I\Delta_0$ is derived as follows. There is a finite, sequential $S \subseteq I\Delta_0$ and a cut J(x) in S s.t. $S \vdash (I\Delta_0)^J$ (see [Pu]). Let M be a model of the theory $S + \{\neg \operatorname{Con}_{k,j}^{I,j}(S) | j < \omega\}$ assured above. If we define the initial segment K of M:

$$K = \{m \in M \mid M \models J(m)\},\$$

then clearly $K \models I \varDelta_0$.

Moreover, if I(x) is a cut in $I\Delta_0$ then for some $m < \omega$: $K \models \neg \operatorname{Con}_m^I(I\Delta_0)$. This is because for some $I_i(x)$ a cut in $S, S \vdash I_i \subseteq I(x)^J$, i.e.

$$\{m \in M \mid M \models I_i(m)\} \subseteq \{m \in K \mid K \models I(m)\}$$

and any proof in S (in particular of 0=1 – we have $M \models \neg \operatorname{Con}_{k_j}^{I_j}(S)$) is a proof in $I\Delta_0$, too. We have done. q.e.d.

REFERENCES

- [F] Friedman, H.: Translatability and relative consistency. II. Manuscript, 1980.
- [P-D] Paris, J., Dimitracopoulos, C.: A note on the undefinability of cuts. J. Symb. Logic 48, 564–569 (1983).
- [P-W] Paris, J., Wilkie, A.: Δ_0 -sets and induction. Ann. Pure Appl. Logic (to appear).
- [Pu] Pudlák, P.: Cuts, consistency statements and interpretability. J. Symb. Logic 50, 423-441 (1985).
- [W] Wilkie, A.: On sentences interpretable in systems of arithmetic. In: Logic Colloquium '84, pp. 329-342. Paris, J.B., Wilkie, A.J., Wilmers, G.M. (eds.). Amsterdam: North-Holland 1986.

Jan Krajiček Math. Inst. Acad. Sci. Žitná 25, CS-11567 Praha 1 Czechoslovakia