FRAGMENTS OF BOUNDED ARITHMETIC AND BOUNDED QUERY CLASSES

JAN KRAJÍČEK

ABSTRACT. We characterize functions and predicates \sum_{i+1}^{b} -definable in S_{2}^{i} . In particular, predicates \sum_{i+1}^{b} -definable in S_{2}^{i} are precisely those in bounded query class $P^{\sum_{i}^{p}}[O(\log n)]$ (which equals to $\log \operatorname{Space}^{\sum_{i}^{p}}$ by [B-H,W]). This implies that $S_{2}^{i} \neq T_{2}^{i}$ unless $P^{\sum_{i}^{p}}[O(\log n)] = \Delta_{i+1}^{p}$. Further we construct oracle A such that for all $i \geq 1$: $P^{\sum_{i}^{p}(A)}[O(\log n)] \neq \Delta_{i+1}^{p}(A)$. It follows that $S_{2}^{i}(\alpha) \neq T_{2}^{i}(\alpha)$ for all $i \geq 1$. Techniques used come from proof theory and boolean complexity.

Bounded arithmetic, a subtheory of Peano arithmetic with induction axioms only for bounded formulas, was introduced in [Pa]. Later several other systems were considered, varying in their language or underlying logic, or restricting induction axioms even to a subclass of bounded formulas. Bounded arithmetic is relevant to topics like nonstandard models of arithmetic, interpretability of theories, computational complexity and complexity of propositional logic¹.

Fragments of bounded arithmetic in which we are interested here are theories S_2^i and T_2^i , subsystems of theory S_2 introduced in [B1]. The language of these theories consists of symbols: $0, 1, +, \cdot, \leq =, \lfloor \frac{x}{2} \rfloor, |x| \ (= \lceil \log_2(x+1) \rceil)$ and $x \# y \ (\approx 2^{|x| \cdot |y|})$. Both theories contain 32 universal axioms BASIC defining most elementary properties of functions represented in the language. T_2^i is axiomatized over BASIC by an induction axiom scheme IND:

$$A(0) \& \forall x (A(x) \rightarrow A(x+1)) \rightarrow \forall x A(x)$$

restricted to bounded Σ_i^b -formulas A, while in S_2^i the induction axioms are replaced by seemingly weaker scheme LIND:

$$A(0) \& Ax(A(x) \to A(x+1)) \to \forall x A(|x|)$$

restricted also to Σ_i^b -formulas.

It holds that $S_2^i \subseteq T_2^i \subseteq S_2^{i+1}$ for $i \ge 1$ and $S_2 = \bigcup S_2^i = \bigcup T_2^i$. All S_2^i and T_2^i are finitely axiomatizable and thus the important open question whether S_2 is finitely axiomatizable reduces to a question whether $S_2 = S_2^i$ or $S_2 = T_2^i$ for

Received by the editors February 21, 1991.

1980 Mathematics Subject Classification (1985 Revision). Primary 03F30; Secondary 03F05, 03F50.

¹A survey text covering most parts of bounded arithmetic (and containing also bibliographical and historical information) is in monograph [H-P].

©1993 American Mathematical Society 0002-9947/93 \$1.00 + \$.25 per page

some $i \ge 1$. This naturally leads to attempts to show that actually $S_2^i \ne T_2^i$ and $T_2^i \ne S_2^{i+1}$ for all $i \ge 1$.

The relationship between T_2^i and S_2^{i+1} is better understood than the relationship between S_2^i and T_2^i . In [B2] it is proved that S_2^{i+1} is $\forall \Sigma_{i+1}^b$ conservative over T_2^i while in [K-P-T] it was shown that $T_2^i \neq S_2^{i+1}$ provided that $\Sigma_{i+2}^p \neq \Pi_{i+2}^p$. As S_2^{i+1} can be $\forall \Sigma_{i+2}^b$ -axiomatized these two results seem to furnish rather complete understanding of the relation of T_2^i to S_2^{i+1} (provided that the polynomial-time hierarchy *PH* does not collapse).

About the relation of S_2^i to T_2^i considerably less is known. Conservativity of T_2^i over S_2^i was in [K-P and K-T] equivalently restated as certain combinatorial proof-theoretic problems but neither of them was solved. Problem whether S_2^i and T_2^i are equivalent was in [P] reduced to a problem in complexity theory but for rather unusual mode of computation: interactive computations with counterexamples, see also [K] for another presentation. A hierarchy theorem for such computations was proved in [K-P-S] but unfortunately not strong enough to separate S_2^i from T_2^i . Also a relation of this problem about counterexample computations to standard conjectures in complexity theory is unknown at present.

The main objective of this paper is to show that $S_2^i = T_2^i$ would imply that $P^{\Sigma_i^p}[O(\log n)] = \Delta_{i+1}^p$. Here $P^{\Sigma_i^p}[O(\log n)]$ is (a straightforward generalization of) a class introduced in [Kre], cf. [W]. It consists of those languages recognizable by a polynomial-time oracle machine quering a Σ_i^p -oracle at most $O(\log n)$ -times, *n* the length of an input. Δ_{i+1}^p is the familiar class of languages recognizable by polynomial-time oracle machines quering a Σ_i^p -oracle with no restriction (other than the obvious polynomial one) on the number of queries.

The problem whether $P^{\Sigma_1^p}[O(\log n)] = \Delta_2^p$ seems to be quite extensively studied, cf. [Kre, B-H, and W]; the case i > 1 was considered in [W]. In particular, the class $P^{\Sigma_1^p}[O(\log n)]$ was in [B-H and W] equivalently characterized in many different ways, most notably as the class of predicates log-space Turing reducible or truth-table reducible (via formulas or circuits) to SAT, or as predicates computable by polynomial-time Σ_1^p -oracle machines which are allowed only one round of parallel queries, or as the class of predicates definable by $\Sigma_2^b \cap \Pi_2^b$ formulas (i.e. formulas whose syntactic form puts them simultaneously to Σ_2^b and Π_2^b).

The arguments from [B-H and W] readily generalize to any oracle of the form $\Sigma_1^p(A)$ in place of Σ_1^p , and in particular to $\Sigma_i^p(A)$. This gives completely analogical characterizations of the classes $P^{\Sigma_i^p(A)}[O(\log n)]$.

Although the conjecture that $P^{\Sigma_1^p}[O(\log n)] \neq \Delta_2^p$ appears to be closer to standard conjectures about *PH* than is the conjecture about counterexample computations needed for separation of S_2^1 from T_2^1 (see [P and K-P-S]), no such reduction is in fact known. In particular, it is an open problem whether any $P^{\Sigma_i^p}[O(\log n)] = \Delta_{i+1}^p$ would imply the collapse of *PH*. (In [Kre] it is observed—for i = 1—that such an equality for classes of function instead of predicates would imply P = NP, and $\Delta_i^p = \Sigma_i^p$ for general $i \ge 1$. Unfortunately, this does not seem to be relevant at all to the case with predicates.)

However, we construct oracle A separating $P^{\sum_{i=1}^{p}(A)}[O(\log n)]$ from $\Delta_{i+1}^{p}(A)$

588

for all $i \ge 1$. The existence of such an oracle implies that theories $S_2^i(\alpha)$ and $T_2^i(\alpha)$ are different for all $i \ge 1$. Such oracle for i = 1 was constructed in [B-H]. That $S_2^1(\alpha) \ne T_2^1(\alpha)$ and $S_2^2(\alpha) \ne T_2^2(\alpha)$ was already proved by other means in [P and K], and by Buss (unpublished).

1. MODIFIED COMPUTATIONS WITH ORACLES

We first give the definitions for the case of Σ_1^p -oracles which generalizes easily to Σ_i^p -oracles.

(1.1) Let M be a polynomial-time oracle machine and $A(u) \equiv \exists v B(u, v)$ a Σ_1^p -oracle, where B is a polynomial-time predicate. We shall always assume that a polynomial time bound is a part of the specification of M and a polynomial bound to v, $|v| \leq |u|^k$, is a part of B.

An $\alpha(M, A, t(n))$ -computation is a computation obtained by the following modification of Δ_2^p -computations. On input x of length n M computes quering oracle A with the restriction that there are at most t(n) oracle queries in the computation, but with the addition that if the oracle returns affirmative answer to a query [A(u)?] it also provides M with a witness to it, i.e. with some v such that B(u, v). The witness is provided in the same computational step.

Clearly there might be more $\alpha(M, A, t(n))$ -computations on a given input as the oracle might have several options to choose witnesses from.

(1.2) A function $f: \omega \to \omega$ is $\alpha(M, A, t(n))$ -computable iff for any x all $\alpha(M, A, t(n))$ -computations on x output f(x). A predicate is a function assuming only values 0, 1.

(1.3) **Proposition.** Given machine M and oracle A as in (1.1), and a constant c, the following is provable in S_2^1 :

"For arbitrary x there exists an $\alpha(M, A, c \cdot \log(n))$ -computation on x."

Proof. We may assume that both M and B are defined by Δ_1^b -formulas. Let n^k be the time bound of M. Consider formula ψ :

 $\psi(a, h, w) :=$

(a) " $w = (w_1, \ldots, w_t)$ is a computation of length $t \le |a|^k$ on input a", and (b) "h is a sequence $\langle (i_1, j_1), \ldots, (i_r, j_r) \rangle$ for some $r \le c \cdot ||a||$ such that $i_1 < i_2 < \cdots < i_r \le t$ and $j_1, \ldots, j_r = 0, 1$ (we think of h as coding oracle answers in steps i_1, \ldots, i_r)", and

(c) "w correctly follows oracle answers coded in h and all oracle queries are answered in h", and

(d) "whenever $[A(u_s)?]$ is the query in step i_s $(s \le r)$ and $j_s = 1$ then w_{j_s} codes a witness v_s such that $B(u_s, v_s)$ is true".

Clearly formula ψ is Δ_1^b in S_2^1

Claim. S_2^1 proves formula

" $\exists \text{ maximal } m = (j_1, \ldots, j_r) \exists h, w$;" h is of the form $\langle (i_1, j_1), \ldots, (i_r, j_r) \rangle \& \psi(a, h, w)$ ".

(Observe that maximal *m* means the same as lexicagraphically maximal 0-sequence (j_1, \ldots, j_r) .)

Proof of the claim. Denote by $\Psi(a, m)$ formula

$$\exists h, w;$$
 "h is of the form $\langle (i_1, j_1), \dots, (i_r, j_r) \rangle$
where $m = (j_1, \dots, j_r)$ and $\psi(a, h, w)$ ".

Clearly Ψ is Σ_1^b in S_2^1 . As *m* is implicitly sharply bounded:

$$m \leq 2^r \leq 2^{c \cdot ||a||} \leq |a|^c$$

the existence of maximal m s.t. $\Psi(a, m)$ follows by Σ_1^b -LIND.

To conclude the proof of the proposition observe that in h, w witnessing $\Psi(a, m)$ for the maximal m all negative oracle-answers (and therefore all answers as the affirmative ones are witnessed) must be correct. Otherwise a 0 in m could be changed to 1 leaving the earlier bits unchanged and setting the later bits to 0, and thus increasing m. Therefore w is a wanted $\alpha(M, A, c \cdot \log(n))$ -computation on a. \Box

(1.4) Remark. Analogically, $\alpha(M, A, t(n))$ -computations exist for every input provably in $S_2^1 + \forall x \exists y$; $||y|| \ge t(|x|)$ " (such y's are needed to code h's). For $t(n) = \log(n)^c$ this is S_3^1 .

(1.5) $\beta(M, A, t(n))$ -computations are defined as $\alpha(M, A, t(n))$ -computations with the change that a witness to a positive oracle-answer is provided only in the last query of the computation and not otherwise.

(1.6) **Proposition.** For any M, A, and t(n) as in (1.1) there are machine M' and Σ_1^p -oracle A' such that for every input x it holds: the set of outputs of $\beta(M', A', t(n) + 1)$ -computations on input x is nonempty and is included in the set of outputs of $\alpha(M, A, t(n))$ -computations on x.

Proof. Machine M' by binary search constructs maximal 0-1 sequence $m = (j_1, \ldots, j_r)$ such that $\Psi(x, m)$. This requires $|m| = r \le t(n)$ queries to oracle $A_1(u) := \exists v \Psi(x, u^{-1}v)$.

Having such maximal m, M' asks $[\Psi(x, m)?]$. The answer must be affirmative and a witness to it contains a correct $\alpha(M, A, t(n))$ -computation w on x, therefore also the output of w.

Oracle A' is composed of A_1 and Ψ . \Box

(1.7) Corollary. If a function $f: \omega \to \omega$ is $\alpha(M, A, t(n))$ -computable for some M, A, t(n) as in (1.1), it is also $\beta(M', A', t(n) + 1)$ -computable for some M', A'. \Box

(1.8) **Proposition.** The class of predicates which are $\alpha(M, A, c \cdot \log(n))$ -computable for some M, A as in (1.1) and $c < \omega$ equals the class $P^{\Sigma_1^p}[O(\log n)]$.

Proof. $\alpha(M, A, c \cdot \log(n))$ -computability of $P^{\Sigma_1^p}[O(\log n)]$ -predicates is trivial. Assume now that predicate P(x) is $\alpha(M, A, c \cdot \log(n))$ -computable and so—by (1.7)—also $\beta(M', A', c \cdot \log(n) + 1)$ -computable. In the computation of M' change the last query—see the proof of (1.6)—to:

[$(\Psi(x, m) \& "w \text{ witnessing } \Psi(x, m) \text{ outputs } 1")?$]

and do not require a witness to it. Clearly affirmative answer to this query is equivalent to the validity of P(x). \Box

(1.9) Generalization to i > 1. Clearly all preceding definitions and propositions generalize to i > 1: consider α^{i} - and β^{i} -computations which differ

from α - and β -computations in that we allow A to be a $\sum_{i=1}^{p} \beta_{i}$ -oracle. Then B is required to be Δ_{i}^{p} -predicate.

In particular, (1.3) generalizes to " S_2^i proves that $\alpha^i(M, A, c \cdot \log(n))$ -computations exist on all inputs" and (1.8) gives equivalence between $P^{\Sigma_i^p}[O(\log n)]$ and the class of $\alpha^i(M, A, c \cdot \log(n))$ -computable predicates, $c < \omega$.

2. Witnessing S_2^i -proofs

This section aims at proving the following proposition.

(2.1) **Theorem.** For $i \ge 1$, a predicate is $\sum_{i=1}^{b}$ -definable in S_{2}^{i} iff it belongs to class $P^{\sum_{i=1}^{p}}[O(\log n)]$.

Proof. The if-part follows from (1.3), (1.8) and (1.9). Therefore it remains only to prove the only if-part of the theorem. This is done by a witnessing type argument.

Let $\psi(x, y)$ be a \sum_{i+1}^{b} -formula such that for all $x < \omega$ either $\psi(x, 0)$ or $\psi(x, 1)$ holds but not both, and assume that S_{2}^{i} proves $\forall x \exists y$; $\psi(x, y) \land y \leq 1$. We want to show that the predicate $\psi(x, 1)$ is in $P^{\sum_{i=1}^{p}[O(\log n)]}$.

Adding possibly to the language some polynomial-time functions (coding and decoding sequences) we may assume, by cut elimination, that we have an S_2^i -proof d of the sequent $\rightarrow \exists y \psi(a, y)$ in which every sequent has the form $\Gamma_1, \Delta_1 \rightarrow \Gamma_2, \Delta_2$ where

(i) Γ_1 , Γ_2 are cedents of Σ_i^b - and Π_i^b -formulas,

(ii) Δ_1 is a cedent:

 $\exists \overline{y}_1 \theta_1(\overline{b}, \overline{y}_1), \ldots, \exists \overline{y}_r \theta_r(\overline{b}, \overline{y}_r)$ and Δ_2 is a cedent:

 $\exists \overline{z}_1 \eta_1(\overline{b}, \overline{z}_1), \ldots, \exists \overline{z}_s \eta_s(\overline{b}, \overline{z}_s)$, where θ_j 's and η_j 's are \prod_i^b -formulas and bounds to \overline{y}_j 's and \overline{z}_j 's are part of θ_j 's and η_j 's respectively.

We say that u is a witness to Γ_1 , Δ_1 for parameters \overline{b} if u has the form $u = \langle \overline{b}, \overline{y}_1, \ldots, \overline{y}_r \rangle$ and conjunction $\bigwedge \Gamma_1(\overline{b}) \& \bigwedge_{j < r} \theta_j(\overline{b}, \overline{y}_j)$ is true.

We say that v is a witness to Γ_2 , Δ_2 for parameters \overline{b} if v has the form $v = \langle \overline{b}, \overline{z}_1, \ldots, \overline{z}_s \rangle$ and disjunction $\bigvee \Gamma_2(\overline{b})v \bigvee_{j \le s} \eta_j(\overline{b}, \overline{z}_j)$ is true.

Claim. For every sequent in d of the above form there is a polynomial-time oracle machine M, a Σ_i^p -oracle A, and a constant $c < \omega$ such that: if u is a witness of Γ_1 , Δ_1 for parameters \overline{b} and v is an output of any $\alpha^i(M, A, c \cdot \log(n))$ computation on u then v is a witness of Γ_2 , Δ_2 for parameters \overline{b} .

Proof of the claim. The proof of the claim goes by induction on the number of sequents in d above the sequent, distinguishing several cases according to the type of the inference giving the sequent. We treat only two nontrivial cases:

 $\exists \leq :$ left and Σ_i^b -LIND (see [B1, K], or [P] or other witnessing arguments).

 $\exists \leq :$ left case. We consider two subcases according to the complexity of the principal formula of the inference. If the principal formula is Σ_{i+1}^{b} but not Σ_{i}^{b} then the machine remains (essentially) the same: only a parameter becomes a bounded variable and hence a part of the witness u.

Assume now that a Σ_i^b -formula $\exists t \xi(\overline{b}, t)$ was inferred from $\xi(\overline{b}, b_0)$, b_0 not among \overline{b} . Assume M witnesses the upper sequent in the sense of the claim. Construct new machine M': on input $u' = \langle \overline{b}, \ldots \rangle$ it first asks a query

 $[\exists t\xi(\overline{b}, t)?]$. If the answer is negative, M' outputs 0 and stops (u' is not a witness of Γ_1, Δ_1). If the answer is affirmative then M' is also provided with a witness t to it, i.e. $\xi(\overline{b}, t)$ is true. Then M' forms $u := \langle \overline{b} t, \ldots \rangle$ and runs as M on input u.

 Σ_i^b -LIND case. Assume the inference is of the form

$$\frac{\xi(b_0) \to \xi(b_0+1)}{\xi(0) \to \xi(|t(\overline{b})|)}$$

omitting the side formulas. We may also assume that b_0 is not among \overline{b} . Let M be a machine witnessing the upper sequent.

Machine M' on input $u' = \langle \overline{b}, ... \rangle$ first computes value w = |t(b)| and asks $[\xi(w)?]$. If the answer is affirmative it outputs 0 and stops (any v' is a witness to the succedent). If the answer is negative it asks $[\xi(0)?]$. If the answer to this query is negative, it outputs 0 and stops.

In the case that the answers to $[\xi(w)?]$ and $[\xi(0)?]$ were negative resp. affirmative, M' finds by binary search t < w such that: $\xi(t)$ holds but $\xi(t+1)$ does not; this takes $\log(w) = O(\log(\log(|u'|))) = O(\log n)$ queries. Having such t, M' forms $u = \langle \overline{b} t, \ldots \rangle$ and runs as M on input u. Any output v is a witness to the succedent of the upper sequent but as $\xi(t+1)$ fails it is also a witness to the succedent of the lower sequent.

This proves the claim.

Clearly, the claim together with (1.8) and (1.9) completes the proof of the theorem. \Box

Remark. Similar witnessing theorem remains true even if S_2^i is extended by a certain version of induction for Σ_{i+1}^b -formulas arising in a connection with second order bounded arithmetic, offering thus (with (1.4)) a conservation result. This will be considered elsewhere.

(2.2) Corollary. Let $i \geq and$ assume $S_2^i = T_2^i$ Then

 $P^{\sum_{i=1}^{p} [O(\log n)]} = \Delta_{i+1}^{p}.$

Proof. By [B2] every Δ_{i+1}^p -predicate is Σ_{i+1}^b -definable in T_2^i This with (2.1) implies the corollary. \Box

(2.3) Corollary. Assume there is an oracle A such that

 $P^{\Sigma_i^p(A)}[O(\log n)] \neq \Delta_{i+1}^p(A)$

for all $i \ge 1$. Then $S_2^i(\alpha) \neq T_2^i(\alpha)$ for all $i \ge 1$.

Proof. The proof of Theorem (2.1) relativizes as does also a proof in [B2] characterizing $\sum_{i=1}^{b}$ definable functions of T_{2}^{i} . Therefore (2.2) relativizes too. \Box

3. A CONSTRUCTION OF AN ORACLE

In this section we construct oracle A separating $P^{\sum_{i=1}^{p}(A)}[O(\log n)]$ from $\Delta_{i+1}^{p}(A)$ for all $i \ge 1$. For i = 1 such oracle was constructed in [B-H] and we shall later, in (3.12), make use of that construction.

Theorem. There exists oracle A such that for every $i \ge 1$ it holds that

$$P^{\Sigma_i^p(A)}[O(\log n)] \neq \Delta_{i+1}^p(A).$$

(3.2) The proof of the theorem occupies the rest of the paper and is summarized in (3.13). Methodologically we follow a construction of an oracle separating the levels of the polynomial hierarchy as presented in [H1], following [S]. The strategy is the following.

We define predicates $\Psi_i^{\alpha}(x)$ contained always in $\Delta_{i+1}^{p}(\alpha)$, a straightforward generalization of ODDMAXSAT problem. From a characterization of $P^{\Sigma_i^{p}(\alpha)}[O(\log n)]$ as tt-reducible to $\Sigma_i^{p}(\alpha)$ in [B-H, W] we deduce that containment of Ψ_i^{α} in $P^{\Sigma_i^{p}(\alpha)}[O(\log n)]$ would imply that corresponding boolean functions (deciding truth-value of $\Psi_i^{\alpha}(m)$ for m fixed and α variable) are computable by boolean circuits of certain type. Utilizing a switching lemma we then show that this is impossible. (Predicates Ψ_i^{α} are defined in a way allowing a direct use of a switching lemma as formulated and proved in [H1, 2].) This will imply that all tt-reducibilities to $\Sigma_i^{p}(\alpha)$ can be diagonalized and alternating this diagonalization for all $i \geq 1$ will give the required oracle.

(3.3) For $i \ge 1$ define formulas

- (a) $\psi_1(x, y_1) := y_1 = 0 \lor \alpha(\langle i, x, y_1 \rangle),$
- (b) $\psi_2(x, y_1) := y_1 = 0 \lor \forall y_2 < \sqrt{x \cdot \log(x)}; \alpha(\langle i, x, y_1, y_2 \rangle),$

(c)
$$\psi_i(x, y_1) := y_1 = 0 \lor \forall y_2 < x \exists y_3 < x \cdots Q_{i-1} y_{i-1} < x$$

$$Q_i y_i < \sqrt{\frac{i \cdot x \cdot \log(x)}{2}}; \ \alpha(\langle i, x, y_1, \dots, y_i \rangle)$$

Thus ψ_i is a $\prod_{i=1}^{b} (\alpha)$ -formula. Consider predicate

 $\Psi_i^{\alpha}(x) :=$ "maximal $y_1 < x$ satisfying $\psi_i(x, y_1)$ is odd"

Lemma. Predicate $\Psi_i^A(x)$ is in $\Delta_{i+1}^p(A)$ for all $i \geq and A \subset \omega$

(3.5) Now we define depth i-1 boolean circuites $\hat{\psi}_i(m, u)$ with input variables $x_{u, y_2, \dots, y_{i-1}, t}$ for every choice of $y_2, \dots, y_{i-1} < m$ and $t < \sqrt{\frac{i \cdot m \cdot \log(m)}{2}}$ computing the truth value of $\psi_i(m, u)$ for every $A \subset \omega$ under evaluation of variables

$$x_{u, y_2}$$
 $y_{i-1, t} = 1$ iff $(i, m, u, y_2, ..., y_{i-1}, t) \in A$

Precise definition of circuits $\hat{\psi}_i(m, u)$ is by induction

- (i) circuit $G_0(u)$ is just variable x_u ,
- (ii) circuit $G_{k+1}(u)$ is conjunction $\bigwedge_{v < m} G_k^*(v)$ with variables x_{v, v_1, \dots, v_k} replaced by $x_{u, v, v_1, \dots, v_k}$, where $G_k^*(v)$ is $G_k(v)$ with AND's replaced by OR's and vice versa,
- (iii) $\hat{\psi}_i(m, u)$ is $G_{i-2}(u)$ with variables $x_{u, y_2, \dots, y_{i-1}}$ replaced by conjunction for *i* even respectively by disjunction for *i* odd of variables

$$x_{u, y_2, \dots, y_{i-1}, t}, \qquad t < \sqrt{\frac{i \cdot m \cdot \log(m)}{2}}$$

Circuit C_i^m is a disjunction of $\frac{[m]}{2}$ conjunctions:

$$\hat{\psi}_i(m, u) \& \bigwedge_{u < v < m} \neg \hat{\psi}_i(m, v),$$

one for each odd u < m. Clearly C_i^m computes $\Psi_i^A(m)$ for every $A \subset \omega$. (3.6) $(B_i)_i$ is a partition of variables of C_i^m consisting of m^{i-1} classes

$$\left\{x_{y_1,\dots,y_{i-1},t} \mid t < \sqrt{\frac{i \cdot m \cdot \log(m)}{2}}\right\}$$

for every choice of $y_1, \ldots, y_{i-1} < m$. So these are classes entering a gate at level 1 of C_i^m .

 R_q^+ , for 0 < q < 1, is a probability space of restrictions ρ (i.e. maps of variables into $\{0, 1, *\}$) defined by

- (i) with probability $q: s_j = *$, and $s_j = 0$ with probability 1 q,
- (ii) for every variable $x \in B_j$, with probability $q: \rho(x) = s_j$, and with probability $1 q: \rho(x) = 1$.

Space R_q^- is defined analogically, interchanging the roles of 0 and 1 in the definition of R_q^+ (see [H1, 2] for more details).

For restriction ρ from \mathbb{R}_q^+ , $g(\rho)$ is a restriction and renaming of variables defined as follows: For all B_j with $s_j = *$, $g(\rho)$ gives value 1 to all $x_{y_1,...,y_i} \in B_j$ given value * by ρ except one, say the one with minimal last index y_i , to which $g(\rho)$ assigns new name $x_{y_1,...,y_{i-1}}$. If ρ is from \mathbb{R}_q^- , $g(\rho)$ is defined identically using 0 instead of 1.

Finally, if G is a circuit with variables among those of C_i^m then $(G \upharpoonright \rho) \upharpoonright g(\rho)$ denotes a boolean function with variables $x_{y_1,\dots,y_{i-1}}$ computed by G after applying to it successively ρ and $g(\rho)$.

(3.7) Lemma (Hastad). Fix $q := \sqrt{\frac{2 \cdot i \cdot \log(m)}{m}}$. Then it holds. (a) Let G be a depth 2 subcircuit of C_i^m , so G is either an OR of AND's

(a) Let G be a depth 2 subcircuit of C_i^m , so G is either an OR of AND's of size $\leq \sqrt{\frac{i \cdot m \cdot \log(m)}{2}}$ or an AND of OR's of size $\leq \sqrt{\frac{i \cdot m \cdot \log(m)}{2}}$. Then for a random restriction ρ from R_q^+ in the former case or from R_q^- in the latter one the probability that $(G \upharpoonright \rho) \upharpoonright g(\rho)$ is an OR (resp. an AND) of at least $\sqrt{\frac{(i-1) \cdot m \cdot \log(m)}{2}}$ different variables is at least $1 - \frac{1}{3}m^{-i+1}$.

(b) For $i \ge 3$ and m sufficiently large and ρ random from R_q^+ if i is even or from R_q^- if i is odd it holds: with probability at least $\frac{2}{3}$ circuit $(C_i^m \upharpoonright \rho) \upharpoonright g(\rho)$ contains C_{i-1}^m , i.e. for some renaming κ of variables

$$(C_i^m \restriction \rho) \restriction g(\rho) \restriction \kappa = C_{i-1}^m.$$

(c) For i = 2 and ρ from R_q^+ random, circuit $(C_2^m \upharpoonright \rho) \upharpoonright g(\rho)$ contains with probability at least $\frac{2}{3}$ circuit C_1^n , for $n = \sqrt{\frac{m \cdot \log(m)}{2}}$.

Proof. This is Hastad's lemma broken into parts which we will later need separately. For completeness we outline the proof, for details see [H1, 2].

(a) Assume G is an OR of AND's and ρ is from R_q^+ . An AND gate corresponds to a class B_j of variables and takes value s_j with probability at

least

$$1 - (1 - q)^{|B_j|} = \left(-\sqrt{\frac{2 \cdot i \cdot \log(m)}{m}}\right)^{\sqrt{\frac{i \cdot m \cdot \log(m)}{2}}} > -\frac{1}{6}e^{-i \cdot \log(m)} = -\frac{1}{6}m$$

So with probability at least $1 - \frac{1}{6}m^{-i+1}$ this is true for all *m* AND's in *G*.

Expected number of AND's assigned s_j and not 0 (in the definition of ρ) is $m \cdot q = \sqrt{2 \cdot i \cdot m \cdot \log(m)}$ and we can get with probability $\geq 1 - \frac{1}{6}m^{-i}$ at least $\sqrt{\frac{(i-1) \cdot m \cdot \log(m)}{2}} s_j$'s assigned.

Thus with probability at least $1 - \frac{1}{3}m^{-i+1}$ $(G \upharpoonright \rho) \upharpoonright g(\rho)$ is an OR of at least $\sqrt{\frac{(i-1) \cdot m \cdot \log(m)}{2}}$ variables.

(b) There is m^{i-2} different subcircuits G of depth 2 in C_i^m . Thus with probability at least $1 - \frac{1}{3}m^{-1} \ge \frac{2}{3}$ all of them are restricted as required in (a). Hence additional renaming κ produces C_{i-1}^m .

(c) If i = 2, $\hat{\psi}_i(m, u)$ are just AND's of size at most $\sqrt{m \cdot \log(m)}$ corresponding to classes B_j , and there is m different of them. Thus, by (a), with probability at least $\frac{5}{6}$ they all take value s_j which is, again with probability at least $\frac{5}{6}$, equal to * for at least $\sqrt{\frac{m \cdot \log(m)}{2}}$ of them. \Box

(3.8) A boolean circuit is $\sum_{i,m}^{S,t}$ if it has depth i+1 with top gate OR, with at most S gates in levels 2, 3, ..., i+1, bottom gates have arity at most t and variables are those of C_i^m .

A tt-reducibility $D = \langle f; E_1, \ldots, E_r \rangle$ of type (i, m, k) is a boolean function $f(w_1, \ldots, w_r)$ in $r \leq \log(m)^k$ variables together with a list of $r \sum_{i,m}^{S,t}$ circuits E_1, \ldots, E_r , where $S = 2^{\log(m)^k}$, $t = \log(m)^k$.

D naturally computes a boolean function on variables of C_i^m : first evaluates $w_j := E_j$ and then f on w_j 's.

(3.9) The following switching lemma is crucial. For the proof we refer to [H1, 2].

Lemma (Hastad). Let G be an AND of OR's of size $\leq t$ of variables of C_i^m and ρ a random restriction from $R_q^- \cup R_q^+$. Then probability that $(G \upharpoonright \rho) \upharpoonright g(\rho)$ cannot be written as an OR of AND's of size $\langle s \rangle$ is bounded by $(6 \cdot q \cdot t)^s$.

The same probability is for converting an OR of AND's into an AND of OR's. \Box

(3.10) Lemma. Let D be a tt-reducibility of type (i, m, k) and ρ a random restriction from $R_q^- \cup R_q^+$ with $q := \sqrt{\frac{2 \cdot i \cdot \log(m)}{m}}$.

Then with probability at least $\frac{1}{2}$,

$$(D \quad \rho) \quad g(\rho) = \langle f; (E_1 \quad \rho) \quad g(\rho), \quad , (E_r \restriction \rho) \restriction g(\rho) \rangle$$

is a tt-reducibility of type (i - m, k)

Proof. Lemma (3.9) with $s = t = \log(m)^k$ gives probability of a failure to convert one depth 2 subcircuit of any E_i at most

$$(6 \cdot q \cdot t)^s = \left(6 \cdot \sqrt{\frac{2 \cdot i \cdot \log(m)}{m}} \cdot \log(m)^k\right)^{\log(m)^k}$$

which can be made smaller than any $2^{-h \cdot \log(m)^k}$ increasing *m* sufficiently.

There is at most $2^{\log(m)^k}$ such subcircuits so taking h = 2 makes probability of a failure to convert any of them at most $2^{-\log(m)^k} < \frac{1}{2}$. When all such subcircuits are converted, they can be merged with gates at level 3. \Box

(3.11) **Lemma.** Assume that there is a tt-reducibility D_i of type (i, m, k) computing $\Psi_i^A(m)$ for every $A \subset \omega$. Then there is a tt-reducibility D_1 of type (1, m, k) computing $\Psi_1^B(\sqrt{(m \cdot \log(m))/2})$ for every $B \subset \omega$.

Proof. $\Psi_i^A(m)$ is computed by C_i^m . By Lemmas (3.7) and (3.10) (and q as there) a random restriction ρ from R_q^+ if i is even or from R_q^- if i is odd converts simultaneously C_i^m into C_{i-1}^m and D_i into D_{i-1} of type (i-1, m, k) with probability at least $\frac{1}{6}$. Therefore there exists such a restriction ρ . Clearly $(C_i^m \upharpoonright \rho) \upharpoonright g(\rho)$ and $(D_i \upharpoonright \rho) \upharpoonright g(\rho)$ compute the same predicate.

Applying this (i - 1)-times, clause (c) of (3.7) in the last application, gives the statement. \Box

(3.12) Now we complete the chain of reductions by a lemma which is essentially an oracle construction from [B-H].

Lemma. Let k be arbitrary. Then for m sufficiently large there is no ttreducibility D of type (1, m, k) computing $\Psi_1^A(\sqrt{(m \cdot \log(m))/2})$ for every $A \subset \omega$.

Proof. Let $D = \langle f; E_1, \ldots, E_r \rangle$ be type (1, m, k) tt-reducibility and denote circuit C_1^n for $n = \sqrt{(m \cdot \log(m))/2}$ by C. In successive steps we shall construct sets A_s^+ , A_s^- and I_s satisfying

- (a) $A_s^+ \cap A_s^- = \emptyset$ and both contain only numbers $< \sqrt{(m \cdot \log(m))/2}$,
- (b) $|A_s^+| \le s$, $|A_s^+ \cup A_s^-| \le s \cdot \log(m)^k$,
- (c) at least half of numbers $\leq \max(A_s^+)$ belong to $A_s^- \cup A_s^+$,
- (d) $I_s \subset \{1, \ldots, r\}, |I_s| = s$,
- (e) for every $B \subset \omega$ such that $A_s^+ \subset B$ and $A_s^- \cap B = \emptyset$, and every $j \in I_s$ it holds: $E_i^B = 1$.

Initiate $A_0^+ := A_0^- := I_0 := \emptyset$.

Step s + 1. Assume we have sets A_s^+ , A_s^- , I_s satisfying the above conditions. Put $B := A_s^+$; therefore $E_j^B = 1$ for all $j \in I_s$. Consider three cases

- (1) $D^B = 1$ but max B is even or $D^B = 0$ but max B is odd. Then STOP.
- (2) $D^B = 1$ and max $B = \max A_s^+$ is odd. Take set

$$S = \{x < 2^{\log(m)^k} | \max A_s^+ < x, x \text{ is even, } x \notin A_s^- \}$$

S is nonempty by conditions (a), (b), and (c) There are two possible subcases:

- (2a) We can add some $x \in S$ to B to form $B' := B \cup \{x\}$, such that $D^{B'} = D^B = 1$. Then put $A^+_{s+1} := A^+_s \cup \{x\}$, $A^-_{s+1} := A^-_s$ and STOP.
- (2b) Not (2a). Take $x := \min S$ and form $A_{s+1}^+ := A_s^+ \cup \{x\}$. As D changes value some E_{j_0} for $j_0 \notin I_s$ had to become true. Take an AND of E_{j_0} (containing x) which becomes true and add indices of all variables negatively occurring in it to A_s^- to form A_{s+1}^- (note that none of them is in A_s^+). Put $I_{s+1} := I_s \cup \{j_0\}$ and GO TO STEP (s+2).

Note that A_{s+1}^+ , A_{s+1}^- , I_{s+1} satisfy the conditions (a)-(e); in particular, (c) holds as we have chosen for x the minimal element of S.

(3) $D^B = 0$ and max A_s^+ is even. Take set

$$S = \{x < 2^{\log(m)^{n}} | \max A_{s}^{+} < x, x \text{ odd}, x \notin A_{s}^{-} \},\$$

and proceed analogically with case (2).

If we do not stop at step s, necessarily I_s is a proper subset of I_{s+1} . Therefore we stop in at most $r \leq \log(m)^k$ steps. Take $A := A_s^+$ for final s. Clearly D^A does not agree with C^A . \Box

(3.13) Proof of Theorem (3.1). We construct oracle A such that for all $i \ge 1$, $\Psi_i^A(x)$ is not in $\le_{tt}^p (\Sigma_i^p(A))$. Let $(M_j)_j$ enumerate all polynomial-time machines. Considering successively all pairs (i, j) we shall build A in stages assuring that M_j does not provide a tt-reducibility of $\Psi_i^A(x)$ to $\Sigma_i^p(A)$.

Let A_s be an approximation to A constructed in first s stages and let (i, j) be the first pair not yet considered. Choose $m = m_{s+1}$ so large that all numbers considered up to now are small w.r.t. m. M_j outputs on input m a boolean function $f(w_1, \ldots, w_r)$ and queries z_1, \ldots, z_r to a (canonical complete one) $\Sigma_i^p(A)$ -oracle (we do not have to worry how f is presented). A query z to the $\Sigma_i^p(\alpha)$ -oracle naturally correspond to an evaluation of a $\Sigma_{i,m}^{S,\log(S)}$ -circuit on variables corresponding to atomic statements " $n \in \alpha$," where $S = 2^{\log(m)^k}$, k a constant. We first evaluate variables corresponding to " $n \in \alpha$ " according to A_s and then set equal to 0 all those for which n is not of the form $\langle i, m, y_1, \ldots, y_i \rangle$, as these are the only variables on which truth-value of $\Psi_{\alpha}^{\alpha}(m)$ depends.

This leaves us with a tt-reducibility of type (i, m, k) and by Lemmas (3.11) and (3.12) no such reducibility computes $\Psi_i^{\alpha}(m)$ correctly for all α . Define $A_{s+1} \supset A_s$ in such a way that the tt-reducibility fails, i.e. M_j fails too. Then proceed to the next pair (i, j).

This completes the proof of the theorem. \Box

(3.14) Combining Lemma (2.3) and Theorem (3.1) gives

Corollary. $S_2^i(\alpha) \neq T_2^i(\alpha)$ for all $i \ge 1$. \Box

ACKNOWLEDGMENT

A part of this work was performed while I was enjoying the hospitality of S. Buss and the University of California at San Diego during the workshop *Proof Theory, Fragments of Arithmetic and Complexity* organized as a part of a joint project of NSF and ČSAV.

References

- [B1] S. Buss, Bounded arithmetic, Bibliopolis, Naples, 1986.
- [B2] ____, Axiomatizations and conservations results for fragments of bounded arithmetic, Contemp. Math., vol. 106, Amer. Math. Soc., Providence, R. I., 1990, pp. 57-84.
- [B-H] S. Buss and L. Hay, On truth-table reducibility to SAT and the difference hierarchy over NP, Proc. Structure in Complexity, June 1988, IEEE, pp. 224-233.
- [H1] J. Hastad, Computational limitations for small-depth circuits, MIT Press, 1986.
- [H2] ., Almost optimal lower bounds for small depth circuits, Randomness and Computation (S. Micali, ed.), Ser. Adv. Comp. Res., vol. 5, JAI Press, 1989, pp. 143-170.
- [H-P] P. Hájek and P. Pudlák, Metamathematics of first-order arithmetic, Perspectives in Mathematical Logic, Springer, New York, 1993.
- [K] J. Krajíček, No counterexample interpretation and interactive computation, Proc. Workshop Logic from Comp. Science, Berkeley, November 1989 (Y. Moschovakis, ed.), Math. Sci. Res. Inst. Publ. 21, Springer-Verlag, 1992, pp. 287-293.
- [K-P] J. Krajiček and P. Pudlák, Quantified propositional calculi and fragments of bounded arithmetic, Z. Math. Logik Grundlag. Math., Bd 36(1), (1990), pp. 29-46.
- [K-P-S] J. Krajíček, P. Pudlák, and J. Sgall, Interactive computations of optimal solutions, Mathematical Foundations Comput. Sci. (B. Rovan, ed.), Lecture Notes in Comp. Sci., vol. 452, Springer-Verlag, 1990, pp. 48-60.
- [K-P-T] J. Krajíček, P. Pudlák, and G. Takeuti, Bounded arithmetic and the polynomial hierarchy, Ann. of Pure Appl. Logic 52 (1991), 143-153.
- [K-T] J. Krajiček and G. Takeuti, On induction-free provability, Ann. Math. and Artificial Intelligence 6 (1992), 107–126.
- [Kre] M. W. Krentel, *The complexity of optimizations problems*, Proc. 18th Annual ACM Sympos. on Theory of Computing, ACM Press, 1986, pp. 69–76.
- [Pa] R. Parikh, Existence and feasibility in arithmetic, J. Symbolic Logic 36 (1971), 494-508.
- [P] P. Pudlák, Some relations between subsystems of arithmetic and complexity of computations, Proc. Workshop Logic from Comp. Sci., Berkeley, November 1989 (Y. Moschovakis, ed.), Math. Sci. Res. Inst. Publ. 21, Springer-Verlag, 1992, pp. 499-519.
- [S] M. Sipser, Borel sets and circuit complexity, Proc. 15th Annual ACM Sympos. on Theory of Computing, ACM Press, 1983, pp. 61–69.
- [W] K. W. Wagner, Bounded query classes, SIAM J. Comput. 19(5) (1990), 833-846.

MATHEMATICAL INSTITUTE, ŽITNÁ 25, PRAHA 115 67, CZECH REPUBLIC E-mail address: krajicek@csearn.bitnet