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On Bounded Ei Polynomial lnduction

JAN KRAJÍÈEKl AND GAISI TAKEUTI

Abstract. We characterize the bounded first order consequences of theory
UJ in terrns of a lirnited use of exponentiation, we construct a sirnulation
of UJ by the quantified propositional calculus, and we plave that UJ is

not conservative over IL}.o and that it is stronger than a conservative L}.~.b-
extension of 52. As corollaries we obtain that UJ is not conservative over
T N C and that EJ-consequences of UJ are finitely axiornatizable (j ?: 2).

01
We also show that U 2 plus a version of II~ .b-5 EP is conservative over

UJ(BD) w.r.t. bounded forrnulas.

§O. INTRODUCTION

Bounded a-rithmetic S2( = T2) a-nd its second order versidn U2( = V2) were
introduced in Buss [1]. S2 is conserva-tive over I ~o + nI, cf. Paris-Wilkie
[12]. These theories a.nd their fra-gments S~, TJ, U~ a.nd V~ are closely
rela-ted to va-rious complexity cla.sses a.nd the sepa-ra-tion problems for them
a-re releva-ntto sepa-ra-tion problems in complexity theory. For exa-mple, the
colla-pse of S2 implies the colla-pse of the polynomia.l hiera-rchy, cf. Krajfèek-
Pudlák-Takeuti [10], a.nd U/ = V2I implies PSPAGE = EXPTIME, cf.
Buss [1].

In Clote-Takeuti [3] theory TNG (="theory for NG") wa.s defined, as a
subtheory of Si. Again, TNG = Si implies P = NG.

The problems whether Ui or V2I are conserva-tive over S2 were posed in
Buss [1]. In [8] it wa.s shown that V3I (in fact, V2I + "f is tota.l" for a-ny
rea.sonable f eventua.lly majorizing a.ll S2-terms) is not n~ -conservative
over S2. Here we investigate the problem whether U/ is conservative over

S2.

First we show a connection of quantified propositional calculus G to ui
in the sense of Cook [4], Dowd [5] and Krajfèek-Pudlák [9]. That is, we
show that Ui proves the refiection principles for G and that G simulates
Ui-proofs of bounded first order formulas.

The connection of G andUi is not surprising as by Buss [1] ui is closely
related to PS P AC E and by Dowd [5] G (or better, a calculus equivalent
to G) is related to PSA (PSP ACE-arithmetic), an equational theory with
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Jan Krajíèek and Gaisi Takeuti260

PSPACE-íunctions analogicalto PV oíCook [4]. However,írom this Dur
simulation and results do not íollow. This is because we want a proposi-
tional translation oí a >:::~-íormula to have i blocks oí the like quantifiers
(i.e. to be >:::1-propositional íormula oí [9]), but the quantifier complexity
oí a translation oí equations in Dowd [S] grows with the length oí the input
and with the space bound.

The translation we use is the same as in Krajíèek-Pudlák [9].

This gives the characterization oí V>:::~-consequences oí U~ as Sl + i-
RF N( G), and hence entajls finite axiomatizability oí VE~(Ul). (It also
allows to reduce the original question to a polynomial simulation problems
oí G, versus G, similarly as in [9].)

We also characterize the bounded first order consequences of uj, denoted
E~(Uj), as T NG + 1 - Exp, in the manner of Krajíèek [7, 8]. That is,
we show that for <p E E~ : uj I- <p(a) ~ TNG I- "2t(a) exists" -+ <p(a),
t(a) some term. This gives that Uj is not conservative over TNG, as
T NG + 1 - exp is stronger than T NG.

Then we construct a ~~.b-extension of 52 by adding ~~.b-CA and ~~.b-
IN Dto 52(a). This ~~.b-extension is conservative over 52. We show that
Ul is stronger than the ~~.b-extensionj in particular, Ul can define the
parity of the set {x E allxl = lal} while the later theory cannot-for this are
used results of Ha.stad [6] and Yao [16] about the complexity of the parity
function.

Finally we show that UJ is not conservative over I~o. This is proved by
showing that UJ proves a form of consistency of I~o unprovable in I~o.
The consistency notion is that one studied in Takeuti [14] and Krajíèek[7].

The paper is organized as rollows. In §1 we recall the definitions or
01

G, TNG and TNG + l-exp. In §2 we show that U2 is conservative over
U~(BD) w.r.t. E~-rormulas and in §§3, 4 we plave the reflection principles
for G in U~ and construct the simulation or U~ by G; the corollaries are
then derived in §5. In §6 we show the relation or T NG + 1 - Exp and U~
and finally in §§7, 8 we plave the non-conservativeness results or U~ versus
the ~~.b-extension or 82 and I~o respectively.

We assume knowledge or Buss [1] and Krajíèek-Pudlák [9]; knowledge or
Takeuti [14] or Krajíèek [7, 8] is userul.
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§1. PRELIMINARIES

In this section we reca11 some notions and facts around the quantified
propositional calculus and the definition of TNC to make the paper more
seli contained. The details and proofs can be found in Clote- Takeuti [3]
and Krajíèek-Pudlák [9] respectively.

Quantified propositional formulas are formed from atoms (called free
atoms) p, q,..., constants O, 1, by UStlal connectives " A, V, :), and
by quantification: if A(p) is a formula then 3x'v'( x) and 'v'xA( x) are too
(with the semantical meaning A(O) V A(l) and A(O) A A(l) respectively).
They are classified by their quantifier complexity to a hierarchy El - lil,
analogically with the arithmetic hierarchy.

Quantified propositional calculus G is a Gentzen-style propositional cal-
culus allowing quantification of propositional variables and is formulated
completely analogically with predicate calculus LI(, cf. Takeuti [13].

Thus beside the UStlal structural rules (including the cut-rule) and the
propositional rules there are the following right quantifier rules:

r-.~, A(p)
right r-.~, VxV(x)'\{

provided p does not occur in the lower sequent,

r -..~, A(B)
right r -..~, 3xV( x) ,~

where B is a.ny propositiona.l formula., a.nd the corresponding left rules.
Atoms x, y,. .. are ca.lled bounded a.nd ha.ve never a. free occurence in a.

formula.
Initia.l sequents of G has the form:

p -t p,

O-t

-t 1.

Proofs in calculus G are sequences of sequents, not necessarily trees.

To any bounded arithmetic formulas A(a) (in the language of 52) and
any m < '" is assigned a propositional translation [A]m(p) with free atoms
(PI,'" ,Pm) = p. The crucial property of the translation is that it rep-
resents A(a) for a's of length ::; m. That is: if n has length ::; m and
EI,"', Em are its digits then A(n) is true if [A]m(pj/•;) is true.
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Extensiona1itv:

(Ixl = Iyl /\ Vi < Ixl, bit(x, i) = bit(y,i)):> x = y.

>:;t-L2IND:

(A(O) 1\ 'v'x, A(x) :J A(x + 1)) :J 'v'xA(llxll).

Formula A must be E~. (This axiom was in [8] denoted E~-LLIN D).

II~-SEP:

('v't,A(t) v B(t)) :) 'v'x3y < 2(1#x)
'v't < Ixl, (A(t) v bit(y, t)= O) A (B(t) V bit(y, t) = 1).

Here again formulas A, B have to be E~.
The principal use of n~-SEP in [3] is to derive a form of ~~ - CA :

('v't,A(t) = B(t)) :) 'v'x3y < 2(1#x)'v't < Ixli A(t) = (bit(y,t) = 1),

where A is ~~ and B is I1~. The extensionality axiom implies that the y
above is unique.

A crucial fact about TNG is that it ~~-defines precisely NG-computable
functions. For the details of the definition of T NG see Clote- Takeuti [3].

For R any system ofbounded arithmetic we define the set ofbounded first
order formulas R + 1- Exp, a particular case of the construction considered
in K~ajíèek [7,8].

A (bounded first order) formula A(a) belongs to R+ 1- Exp ~ there
is a term t(a) s.t.

R f- "2t(a) ~ c" -+ A(a),

where c is a free variable not occurring in A. The antecedent clearly standa
for "2t(a) exists".

Alternatively we can characterize R + 1 - Exp model-theoretically as a
ITl-theory of initial segments of models of R with element s bounded by
some Icl, c an element of the model. That is, A(a) is in R + 1- Exp <==}

for any model M 1= R and any l ~e M a substructure s.t. for each mEl,
M 1= "2m exists", it halda:

11= \1'xA(x).
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Pairs (I, M) are called in [8] l-fold models of R and we shall use this

terminology below.

01
§2. U2 AND Ui(BD)

Although we talk in the whole paper about Ui or Ui(BD) we consider
only second order variables for set s blit not for functions (such subsys-
tems are in Buss [1] named Ui and Ui(BD». The systems with function
variables are (fully) conservative over the systems without them and the
arguments are easier.

LEMMA 2.0. For any A a E~,b-formula, Ui(BD) proves:

3tpltlyx ~ ItliA(x) == tp(x).

PROOF: By }:;~.b-PIND prove that there is the maxima! k::; Itl + 1 s.t.
there is !pIti of cardina!ity k satisfying 'v'x ::; Itl, !p( x) :> A( x).

For details see Takeuti [15]. .

Now let us consider a form of bounded n~.b-SEP axiom:

(Vt, -,A(t) V -,B(t)) -+ Vx3rp"'Vt < x, (A(t) :) rp"'(t)) 1\ (B(t) :) -,rp"'(t)),

where A and B are n~.b-formulas.

1 lbTHEOREM 2.1. U2 (ED) proves the bounded llt' -BEP axioms.

PROOF: Take formula C(a,b):

Ys :$ b3cpbYt :$ b, (s:$ t :$ s + a:> ((A(t):> cpb(t)) A (B(t) :> -,cpb(t)))).

Obviously Ul(BD) proves the sequent

(Vt,-,A(t) V -,B(t»,

By }::;~.b-PIN Dit follows then:

(Vt,~A(i) V~ B(t)), C(O,b) -. C(b,b).

As C(O,b) is trivially provable (or instance of Lemma 2.0 for t = O-a.s.
parameters are allowed), the axiom of bounded n~.b-SEP follows. .
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01
THEOREM 2.2. U 2 is conservative over UJ(BD) w.r.t. nrst order bounded
formulas.

PR-OOF: We give a simple model-theoretic argument; an effective procedure
01

constructing a Uj(BD)-proof from a U 2-proof of a first order bounded
formulas can be given following the similar argument about Vi in [15J.

Assume Uj(BD) I- A(a), where A is a first order bounded formula. Thus
there is a model M = (M,X) of Uj(BD) and m EM such that:

(M,X) 1=-, A(m).
Moreover, by compactness we may assume that for some c EM,

M 1= t(m) < c

is true for all terms t.
Then define M' = (M',X') by:

M'={nEMI forsometerm t:Ml=n$t(m)},
X' = {OC nM'loc EX}.

01

We clMm that M' as a model of U2. It is obvious that

M' 1= B2(a) + ~~,b - CA.

Observe that for any bounded formula B(a) there is a term t s.t. B(a) =
Bt(a) where Bt(a) arises from B(a) replacing all set variables a, cp by at
resp. by cpt.

By Theorem 2.1, M 1= bounded n~.b -BEP. Applying bounded
n~,b -BEP to formulas B(a), C(a) E n~.b s.t. M 1= 'v'x, B(x) =., C(x)
gives an instance of bounded ~~.b - C A:

M F 3<pc'v'x ~ ci x E <pc = B(x).

By the observation above for 1/1 = Ipc n M':

M' 1= VXj x E 1/1 == B(x).

Finally M' 1= l::~.b -PIN D follows (again using the above observation)
from

1,b

M 1= 2:::-PIND.
1
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The theorem then follows, a.s obviously

M' F .,A(m)

holds too. .

§3. REFLECTION PRINCIPLES FOR G IN U/.

Here we show that all refiection principles i-RF N( G) are provable in Ui.
This is because ui caR E~.b-definetrue quantified propositional formulas.

THEOREM 3.0. For aJJ i < úl,

UJ I- i - RFN(G).

~

-.Tr(Sr, TJ) -+ [(3j .$ r - i3r E {O,l}*, -.Tr(Sj, r))v

v (3j.$ r, Sj is initia1 II 3r, -.Tr(Sj,r))].

As Sl must be initia1, taking i := r - 1 gives:

-.Tr(Sr,1]) -+ 3Sj initial 3r, -.Tr(Sj, r).
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Since a.11 initia.1 sequents are tautologica.1, Sr must be true for a.11 eva.1uations

77.
Finally, if Sr ~ El then Tr(Sr, 1]) -- SSati(Sr, 1]), where SSati(Sr, 1]) is

6~+1-truth definition for El-sequents used in [9]. .

(Observe that the above proof works also if D is a G-proof coded by a
set instead by a number. That is, D is a set {< 1, Sl >,...,< r, Sr >}
coding "proof" Sl,. .., Sr. Not every proof coded by a set can be coded by
a number ,as exponentiation is not total in Ui (cf. §6).)

§4. THE SIMULATION OF UJ BY G,

The aim of this section is to plave the following simulation theorem, a
result in the line of simulation of PV by EF in Cook [4] and of T~ by Ci
in Krajíèek-Pudlák [9].

THEOREM 4.0. Let A(a) be nrst order bounded formula and assume that

u~ I- A(a).

Then for each m < w there is a G-proof dm of [A]m whose length is poly.
nomial in m. Moreover, this is provable in S~:

s~ I- Vy, G I- [A]IYI .

We shall prove a stronger statement (Theorem 4.1) whose immediate
corollary Theorem 4.0 is. In Buss [1] a witnessing theorem for Ui-proofs
of L:i,b-formulas is proved where the second order existential quantifiers
are witnessed by PSPACE-functionals. Theorem 4.1 is a propositional
versi on of this theorem.

We shall work with Ui(BD) rather than Ui itself (allowed by Theorem
2.2) and to simplify the argument we shall assume that alt L:i,b(BD)-
formulas are of the form:

3<pt A(a, (jI', <pt),

where A is E~.b(BD). This can be achieved by introducing to the language
a functional coding finite sequences of sets:

nE(i,a) ~ (i,n)Ea,

and relevant axioms to BABIC implying (with P IND) }::;~,b-replacement.
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We shall also use a. propositiona.1 tra.nsla.tion of L::~.b(BD)-formula.s for
which we ma.ke the following convention: a. tra.nsla.tion [A( a, a )]m of A( a, a)
is constructed a.s in the first order ca.se, just a.tomic formula.s a( x) are tra-ns-
la.ted [a](ql'..., qn). Here [a] is a. new meta.va.ria.ble for qua.ntified propo-
sitiona.1 formula.s. Such meta.varia.bles sha.11 nevel occur in a. G-proof; they
a.re introduced only a.s a. convenient nota.tion. For exa.mple, [A(a, aj B)] is

[A(a,a)]([a]j[B]).
There is certajn a.mbiguity in this definition a.s n (the number of a.toms)

in the meta.va.ria.ble [a] is not explicitly specified. Trus is trea.ted a.s in
§1: n is la.rger tha.n the length of a.ny va.1ue of a. term occurring in a when
eva.1ua.ting the formula. on inputs of length .$ m.

Now we ca.n sta.te the theorem.

THEOREM 4.1. Let 34>tA(a,u.,4>t) and 3lprB(a,u.,lpr) be );:::~,b(BD)-
formulas, A and B );:::~.b(BD)-formulas, and assume:

Ui(BD) I- 34>tA(a, u', 4>t) -- 3lprB(a, u', Ipr).

Then for each m there is a quantified propositionaJ formula with metavari-
ables

Wm([aS], [4>t])

such that for any quantified propositionaJ formulas C, Dit holds;

G f- [A]m(p, [aS]/C, [4>t]/D)

-.. [B]m(p, [aS]/C, [r.pr]/Wm([aS]/C, [4>t]/ D)).

Moreover, this is provable in S~ :

S~ f- Vy3WIYIVC,Dj

IG f- [A]IYI(p, [a"]/C,[4>t]/D)
-. [B]IYI(p, [a"]/C, [<pr]/WiYl([a"]/C, [4>t]/ D).

Here C and Dare assumed to have the appropriate number of atoms and
W m may contain atoms p too.

PROOF: Fix m. To simplify the reading of formulas we shall write [ ]
instead of [ ]m and we shall not explicitly write superscript bounds in
predicate variables.
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Let d be a Ui(BD) praaf af:

3</>A(a, a, </» -+ 3<pB(a, a, <p).

By cut-elimination (cf. [1]) and the discussion above we may assume that
all sequents in d have the form:

34>iAi(a,b,a,.a,4>i)'.' .,r -.~,.. .,3cpjBj(a,b,a,.a,cpj),

where r, ~ are cedents of }:::~.b(BD)-formulas and Ai,..., Bj,... are
}:::~.b(BD) too (b and øJ will be omitted further).

By induction on the number ofinferences above the sequent we construct
propositional formulas with metavariables

wj([a],m,...,[4>i],...

and show that for any C,..., Di,... G proves:

. . ., [Ai]([a]/C,..., [4>i]/ Di""),,, ., [r] -+

[~],..., [Bj]([a]/C,..., [lpj]/Wj([a]/C,.. .,[4>i]/Di,.. .)).

(Here [r] resp. [~] denotes the cedent oftranslations offormulasin r resp.
in ~.) Formulas wj will be called witnessing formulas.

Moreover, to be a,ble to formalize the construction in S~ we have to
show that the length of wj is polynomial in m and that the length of the
G-proofs is polynomial in m, ICI a,nd IDil's.

We proceed by considering several cases according to the type of the last
inference.

(a) /\ : right. The principal formula

E(a,a) t\ F(a, a)

,,",,1 b( ) -j =i .
must be LIG' BD and belongs to~. Let W resp. W be the wltness-
ing formulas already constructed for the upper sequents of the inference
containing E resp. F. Then define:

. =i
Wi ;:: [E A F] V ([~E A F] A WJ) V ([~F] AW

It is obvious that the sequent is correctly witnessed but we have to show
that all its instances have actually polynomial G-proofs, as it is required.

The G-nroof con!1irler!1 three C~.O;P!1
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(i) [E /\ F]([a]/C) is true,

(li) ([,E /\ F]([a]/C) is trne,

(iii) ([,F]([a]/C) is trne.
The formulain (i) is itselfin the succedent and so there is nothing to prove.

In the second case first show:

= Wj([a]jC,Wi([a]jC,(1) , [4>i]/ Di, , [1>i]/ Di,

and then:

( [Bj]([a]/C,... [lpj]/Wj([a]/C,..., [4>i]/ Di,"'))2) .- -J= [Bj]([a]/C,...,[lpj]/W ([a]/C,...,[4>i]/Di,...)).

(1) is proved from the definition of wj and (2) is proved by induction on
the logical complexity of Bj using proofs of the same for subformulas of Bj
and (1).

The third case is handled similarly. Then by cuts these three cases are
joined into a proof of the required instance.

(b) contraction : right. The non-trivial case is only when two occurrences
of a proper l:~.b(BD)-formula are contracted:

-+ , 3lpB(a, a, Ip), 3lpB(a, a, Ip),
-+

Let W resp. W be the two witnessing formulas corresponding to the two
occurrences of the formula in the upper sequent. Then define:

W;=: ([B]([a],[cp]/W):) W) /\ (~[B]([a],[cp]/W):) W).

A G-proof of an instance is constructed as above considering two cases
whether [B]([a]/C,[cp]/W([a]/C,...,[4>i]/Di"")) is resp. is not trne.
Then W([a]/C,..., [4>i]/ Di,. ..)~ either equivalent to

W([a]/C,..., [4>i]/ Di,"') or to W([a]/C,..., [4>i]/ Di,"') and the proof
is completed as before.

(c) 3 : right, L::~.b(BD) - CR. This inference has the form:

-+

where E is l:~.b(BD). Simply put:

W ~ [E]([a]),
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(d) }:::;~.b-PIND. Consider two cases when the induction formula, is resp. is
not }:::;~.b(BD).

The first case is a,n insta,nce of the tra,nsla,tion of first order induction a,nd
by [9] is prova,ble in G, cf. property (d) of [ ] in §1.

In the second case assume the induction is:

.. .,3</>E(lfJ,a,</» -+ 3<pE(b,a,<p), ...
...,3</>E(0,a,</»-+ 3<pE(t,a,<p),...

and let W(a,b,a,.. .,</>;,.. .,</» be the witnessing formula constructed for
the upper sequent.

Define terms tk, k = n, n -1,...,0 by: tn := t, tk := l~J. Observe
to = O. Here agajn n is the maximallength of value of t when parameters
have length :::; m. Then put:

W(l) ~ W(a,b/tl,a,<!>.,<!»

and
W(k+l) ~ W(a,b/tk+l,o,4>i,4>/W(k»),

for k < n, and
W.". w(n),

It is easily seen that W(k) witnesses implication:

34>E(O,a,4» -+ 3tpE(tk, a, tp),

and hence W has the required properties. A G-proof verifying this is
constructed by joining by cuts n G-proofs verifying correctness of instances
for the upper sequent with band 4> being respectively q and 4>, t2 and
W(l),..., tn and w(n-l). As n is polynomial in m we have only to verify
that W is polynomial in m. However, we must be careful here: if 4> has at
least two occurrences in W then the length of W(k) grows exponentially in
k and so W would not have the length polynomial in m. Hence before the
construction we have to put first W into G-equivalent form with only Dne
occurrence of 4>, following some standard trick, cf. [11].

The remaining rules are analogical or dual (or trivial) to the rules treated
above and we skip the details.

The construction of the witnessing formulas as well as of the required
G-proofs is effective with polynomial bounds and so is readily formalized
. SlIn 2.
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Finally, let us note that the witnessing formulas can be chosen fairly
uniformly as quantified boolean formulas coding computations of orac1e
PSPACE machines, cf. [11]. This would, however, require more detailed
construction. .

§5. COROLLARIES TO THE SIMULATION

THEOREM 5.0. For i ~ 2, the set of Et-consequences of Ul is axiomatized
by S~ + i-RFN(G). Thus the set offirst order bounded consequences of
Ul is axiomatized by S~ + {i - RFN(G)li < (,}}.

PROOF: The second part of the statement follows from the first part.
Formula i - RFN(G) is Et, cf. §1, and by Theorem 3.0 provable in Ul.

Let A(a) be a Et consequences of U~j then by Theorem 4.0:

SJ I- Vy; G I- [A]IIII.

By the reflection principle then

SJ I- i - RFN(G):) "Vy; [A]IYI E TAUT".

But by Krajíèek-Pudlák [9],

SJ I- "[A]IYI E T AUT" -+ Vx, Ixl $ ly! :) A(x).

Putting this together we get:

s~ + i - RFN(G) I- A(a).

This proves the theorem. .

COROLLARY 5.1. For each i ~ 2, the set of Et-consequences of ui is
nnitely axiomatizable. .

§6. UJ AND TNG

In Krajíèek [8] it was shown that the set of bounded first order con-
sequences of V2', denoted E~(Vl), is exactly S~ + 1 - Exp. Also it was

01
observed that E~(U 2) proves

E~ - L21 ND + 1 - Exp,

(and analogically for i > 1. Rule L2lN D is in [8] denoted LLIN D.) Here
we show that E~(UJ) is precisely T NG + 1 - Exp and, in general,
E~(U~) is

TNC + E~ - L2IND+ 1- Exp.
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THEOREM 6.0. For i ;?: 1 it holds: the set of bounded nrst order conse-
quencs of U~ is precisely

TNC+ Et - L2IND + 1- Exp.

PROOF: The proof is analogical to the proof of Thm 2.5 in [8]. We recall
the idea of the proof and then discuss only steps needed for the extension
of the proof from [8] to Dur case. The idea is the following.

01
Having (M,X) a model of U2 we define a model M' of TNG: the el-

ements of M' are pairs (a, a), a ex, a e M. We think about (a, a) as
coding number }:::{2ili < a, a( i)}. With this interpretation in mind it is
easy to define in the obvious way operations on M' (for these definitions
Dne needs bounded ~~.b - GA). As an element a e M can be identified

with the pair (aa, laj), where aa is the set {ilbit(a, i) = 1}, M is naturally
.identified with an initial segment of M'. Pair (M,M') then forms a l-fold
modelofTNG.

On the other side, having a l-fold model (I, M) of T NG we define X as
the class of alt bounded subsets of I coded in M. That is:

X={a~lla bounded, a={ilbit(a,i)=l}, forsome aeM}.
. 0.1

Then (I, X) I=U 2 (BD). An easy compactness argument, together with
Theorem 2.2, then establishes the result.

In [8] it was shown that model M' satisfies }:::t - L21N D. As extension-
ality is obvious it remains to observe that

b
M' 1= n -BEP.

1

This follows - via the construction of M' in [8] - from:

l,b
(M,X) 1= bounded II -BEP,

1

which is true by Theorem 2.1.

01
On the other side, (I,X) J=U2 (BD) follows immediately: for example

~~,b - C A follows from T N C proving a weak form of ~~ - C A:

(Vt,A(t) ==~ B(t)) -- 3yVt < Jxl(A(t) == (bit(y,t) = 1)),

where A, B are ):;~-formulas, cf. Clote-Takeuti [3].
Cases for i > 1 are completely analogical. .
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COROLLARY 6.1. UJ is not n~-conservative overTNC.

PROOF: As T NG + 1 - Exp is E~(UJ), in particular:

TNC+I-Exp I- S2.

Thus:
T N C + Exp = 82 + Exp.

lt is well-known that 82 + Exp is not n~-conservative over 82, cf. Paris-
Wilkie [12], and hence TNC+Expis not n~-conservativeoverTNC ~ 82.
As TNC+(k+l)-Exp = (TNC+k-Exp)+l-Exp and TNC+Exp =
UkTNC + k - Exp, this immediately implies that TNC + 1- Exp is not
n~-conservative over TNC and hence neither is U~. .

§7. ui AND A ~~.b EXTENSION OF T2.

We are not able to show that U~ is not conservative over 82. In trus
section we at least show that it is stronger than a ~~.b-extension of 82;
The formula we constructed to separate U~ from the ~~.b-extension is of
second order.

The class of the formulas without any second order quantifiers is denoted
~~.b. The ~~.b extension of 82 is obtained from 82 by introducing the
following initial sequents and inferences.

(1) Sl = tl"..,Sn = tn, a(sl,...,Sn) -+ a(tl,...,tn)

(2) F({Xl,...,xn}A(Xl,...,Xn)),r -+ ~
'v'4>F(4»,r -+ ~

r -+ ~,F({Xl,...,xn}A(Xl,...,Xn))
r -+ ~,34>F(4»

where A( al, . . ., aR) is a ~~.b-formula.

Ir -+ ~,F(a) F(a),r -+ ~

r -+~, V</>!«/» 3</>F«/»,r -+ ~

where a satisfies the eigenvariable condition i.e. a does not occur in the
lower sequent.

(3) ~~.b - PIN D

A([ta]),r -+ ~,A(a)

A(O),r -+ A(t)
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where a satisfies the eigenvariable condition and A(a) is a ó~.b-formula.
The Ó~.b-extension of T2 is obtained from T2 by introducing (1), (2) and
the following inference:

(4) Ó~.b - IN D
r -+ A,A(S(a))A(a),

-A(O), r -+ ~, A(t)

where a satisfies the eigenvariable condition and A(a) is a ~~,b-formula.
The ~~,b-extension of 82 is obtained from 82 by introducing (1), (2'),

and (3'), where (2') and (3') are obtained from (2) and (3) respectively by
replacing ~~,b by ~~,b with respect to 82. (3') is called the ~~.b-PIND.

Analogically, the ~~,b-extension ofT2 is obtained from T2 by introducing
(1), (2'), and (4'), where (4') is obtained from (4) by replacing ~~,b by ~~,b
with respect to T2o (4') is called the ~~,b-IND.

LEMMA 7.1. Let F«f» E ~~.b and -+ 3<f>F«f» be provable in the ~~.b
extension o[ 82 (or T2). Then there exists a sequent o[ the [orm

_n
x}An(x, u)),

_1 _1 -
3 u ~ t F({x}A1(X, U

_n _n
v3u ~t F

A are in Á1,bn obere AI which is also provable in 82 (or T2.

PRoor: ff ~ 3tf>F(tf» is provable, there exists a free cut free proof P of
3tf>F(tf». Without los s of.generality, we assume that P satisfies the following
conditions.

(1) P is in a free variable norma! formo
-+ ~

(2) Let c be a sequence of all pararneter variab1es in Pand b be an
enumeration of al1 other variab1es in P satisfying the condition that if the
e1imination inference for bi is be1ow the elimination inference for bj then
i < j. There exists an assignment ti (c) for bi satisfying the fo11owing
conditions.

(i) ti(C) is a term in the 1anguage of S2o

(ii) ff the e1imination inference of bi is

A(O), -+ A,A(t(b1,

or
b; :$t(b},...,b;_},-è),A(bJ),J-

3x:$ t(b},...,b;, c)A(x),r

~
~
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or
bi $ t(bl,...,bi-l, c),r -+ 6.,A(bi)
r -+ 6.,Vx $ t(bl,...,bi-l,C)A(x)

then al $ tl(C),...,ai-l $ ti-l(C) -+ t(al,...,ai-l'C) $ ti(C) is prov-
able without using logical inferences, induction, or any free variables other
than al, . . ., ai-l and c.

Let r -+ 6. be a sequent in P. Let bl,...,bn, C be all free variables
in r -+ 6. and below r -+ 6.. Then we transform P to P' by replacing
r -+ 6. by bl $ tl(c),...,bn $ tn(c), r -+ 6.', where 6.' is obtained by
transforming:

r -+ 6.o,F({x}A(x,bl,...,bn»

r -+ 6.0, 34>F( 4»
to:

bl $ tl(c),...,bn $ tn(c),r -+ ó.~,F({x}A(x,bl,...,bn))

bl $ 4(c),... ,bn $ tn(c), r -+ ó.~, 3 ;$ -; (c)F( {x }A(x, ;)).
The provable sequent we are looking for is easily obtained from trus proof
P'. (See also Proposition 16.7 and Proposition 16.9 in [13]). .
LEMMA 7.2. Let A be a ó.~,b-formula with respect to the ó.~,b-extension
of 82 (or T2)' Then there exists a ó.~,b-formula B such that A + B is
provable in ó.~,b-extension of 82 (or T2).

PROOF: We treat only the cMe that A is V</>F«/», V</>F«/» +---+ 31/1G(1/I) is
provable in the system, and F«/» and G(1/I) are ~~,b-formulM. Then by
Lemma 7.1, there exist ~~,b-formulM AI"", An, BI"", Bn such that

_I _I _I _n _n _n
Vu ~t F({x}AI(X,U ))/\.../\Vu ~t F({x}An(x,nu))

_I _I _I _m _m ( _m ))-3 V ~s G({X}BI(X,V ))V...V3 V ~s G({x}Bm x,v .

Since 31/1G(1/I) -+ V</>F«/» is provable in the system,
_I _I _I _m _m ({ } ( _m ))3 v ~s G({x}B1(x,v ))v...v3 v ~s G x Bm x,v ,

31/1G(1/I),
V</>F«/»,

and
-+1 -+1 -+1 -+n -+n -+n

'v'U:S;t F({x}A1(x,u ))A...A'v'u:S;t F({x}An(x,v))

are equivalent. Obviously the first formula and the last formula are ~~.b.
formulas. .
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COROLLARY 7.3. The systems: the 6~.b -extension a• 82, the 6~.b-

PROOF: This immediately {ollows {lom Lemma 7.2 since S2(a) and T2(a)
are the same systems. .

COROLLARY 7.4. The ~~.b-extension oi 82 is a conservative extension oi
82.

PaOOF: This immediately follows from Corollary 7.3 since the ~~.b
-extension of 52 is conservative over 52. (See also Corollary 16.3 in 13). .

Now we shall work in ui. We include sequents (1) above among initial
sequents of Ui. Define formulas F(a, a,j3) and G(a, k, a,j3) as follows.

F(a,a,j3) ~ \lx.$ 2a((lxl = laj :) (j3(x) - a(x»)

1I(lxl < laj :> ({3(x) ({3(2x) II -,{3(2x + 1)) V (-,{3(2x) II {3(2x + 1))).

G(a,k,a,fJ) <=:-- 'v'x ~ 2a(lal- k ~ Ixl:) «Ix I = lal :) (fJ(x) +-+ a(x)))

1\(lxl. < la•:) (fJ(x) +-+ (fJ(2x) 1\ -,fJ(2x + 1)) V (-,fJ(2x) 1\ fJ(2x + 1))))).

Observe that if F( a, a, tJ) is true then fJ(l) resp. -,fJ(l) is equiva1ent to the
fact that the parity ofthe set {xlix! = lal & a(x)} is odd resp. is even.

LEM MA 7.5. Ui 1- 3fJF(a,a,fJ).

PROOF: This is easily shown by LIND on k applied to3{iG(a, k, a,{i). I

LEMMA 7.6. Ui I- F(a,a,{3), F(a,a,1), Ibl ~ lal, {3(b) -+ 1(b).

PaOOF: This is easily shown by LIND on k applied to 'v'x ::; 2a(lal - k ::;
Ixl :) (f3(x) 'Y(x»). .

LEMMA 7.7. Ui 1-3{J(F(a,a,{J)J\{J(1))+--+'v'{J(F(a,a,{J):>{J(1))..

extension ofT2' the ~~.b-extension of 82, and the ~~.b-extension ofT2 are
equivalent.
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THEOREM 7.8. 'v'a(3(3(F(a,a,(3) A (3(1)) +--+ 'v'(3(F(a,a,(3) :) (3(1))) is
prova,ble in ui but not prova,ble in the ~~,b-extension of 52.

PROOF: 8uppose Va(3j3(F(a,a,j3) 1\ j3(1)) +---+ Vj3(F(a,a,j3) ::> j3(1))) is
provable in the 6.~,b-extension of 82. Then 3j3(F(a,a,j3) 1\ j3(1)) +---+

Vj3(F(a, a, j3) ::> j3(1)) is provable in the 6.~,b-extenesion of 82. 80
3j3(F(a, a, j3)I\j3(1)) is equivalent to a 6.~,b-formula. This is a contradiction
siRce
3j3(F(a,a,j3) 1\ j3(1)) expresses the parity of a and the parity cannot be
expressed by a 6.~,b-formula as follows from A. Yao [16], cf. J. Hastad [6]
for a plODí. .

REMARK: In the proof of the theorem # is not used. Therefore

Va(3j3(F( a, a, j3) 1\ j3(1)) +---+ Vj3(F( a, a, j3) ::> j3(1)))

is also provable in Ul.

§8. ul versus 160

We sha!l separate ui and I ~o by showing that a consistency statement
unprovable in I ~o is provable in Ui. We assume that I ~o is formulated
in a sequentia! forma!ism with IN D-rule instead of IN D-axioms, cf. [1,
Theory TI] or [7].

We sha!l use a notion of norma! consistency from in [14], for its varianta
see [7, 8,15]. For details of the definition see the references, we only sketch
the idea here.

Norma! Proofs in I ~o are proofs containing only bounded formulas and
which are in a free variable norma! formo li bI, . . . , bk are all non-
parametrica! free variables then if the elimination rule of b; occurs below
the elimination rule of bi, then j < i. The norma! proof is augmented by a
list of terms tI (a), . . . , tk(a) where Ii are the parametrica! free variables.

The elimination rule of bi is either IN D, 3 .$left or V.$ right. Moreover,
if the elimination inference of bi is

A(bi),r -+ ~,A(bi + 1)
A(O),r -+ ~,A(8(a,bI,. ..,bi-I»

or
bi ~ s(li, bl,. .., bi-l), A(bi), r -+ L\.

3x ~ s(li, bl,... ,bi_l)A(x), r -+ L\.
or

bi ~ s(li,b1,...,bi-l),r-+ ~,A(bi)
r -+~, \Ix ~ s(li,b1,. ..,bi-l)A(x)'
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then Xl ~ tl(a)"",Xi-l ~ ti-l(a) implies s(a, Xl,...,Xi-l) ~ ti(a) and
trus implication is provable without induction or quantifier rules. These
supplementary proofs are also required.

Thus the normal proof is a bounded proof augmented by a list of terms
and supplementary proofs with the above properties.

Normal consistencv of I ~o asserts that the empty sequent isnot normally

provable.

THEOREM 8.1. UJ I- N Con(I~o)

PROOF: The proof is rather sketchy as the material is elaborated in
[14, 7,8,15] and the details can be found there. The idea is that Dne can
find in ul a 6~.b_partial truth definition for formulas occurring in a normal
16o-proof and thus plave its soundness.

For any #-free term t, the value of t on c, val( t , c), satisfies the in-
equality: val( t , c) $ max(c,2)1 t I, and can be defined in S!.

Let D be a normal 16o-proof with a parametrical variables. To check
the truth value of the end-sequent for given a following the derivation D,
Dne has to know the truth-values of the sequents in D only for b; $ t;(a),
where t; are the terms guaranteed by D. ff D is a proof of a contradiction
its end-sequent does not contain any variables and 50 t; are closed. Hence
it is sufficient to construct a partial truth definition for bounded formulas
A(b) occurring in D s.t.: A $ m, max(b) $ n and quantifier complexity
of A $ k. Obviously: m $ D, n $ max; (val(t;)) $ 21DI $ D and k $ IDI.

Let Tr( I' m, n, k) be formula

'v' A ~ m'v'b ~ n, ["q-complexity of A ~ k"] :)

:) [(A q-free :) ("Y( A ,b) == T( A ,b)))/\

/\( A = (Qx ~ sB(x) :)

:) ("Y( A ,b) == (Qx ~ val(S,b)"Y( B(x) ,b*x))))/\

/\ . . . . and clauses for Tarski conditions for /\, V, -, and :) ],

where T is a truth definition for quantifier free formulas.
Thus we only need to prove that there is a unique "Y satisfying

Tr("Y,m,n,k) for m, n ~ D and k ~ IDI. This is easily proved by }:::;~.b-

LIND on k.
Having such "Y the soundness of D is easily verified. .
I ~o does not prove its own normal consistency, this is proved by a tech-

nique based on length-of-proof considerations completely analogical to [7,
8], cf. also [14, 15]. Thus we have the following statement.
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THEOREM 8.2. UJ is not tonservative over I~o. .
1

Let us mention another possible argument giving Thm. 8.1. In [15], a
transformation of 16.0-proofs to S~-proofs is described. In particular, in SJ

01
we can from N Con(S~) derive N Con(l6.o). As (by {14]) U 2f- N Con(S~),
ui f- N Con(l6.o) follows using also Theorem 2.2.

In Krajíèek [8] it was shown that V31 (and weaker theories of the form
V21 + "f is total", cf. [8]) is not conservative over S2. Using the results of
§§2, 6 here it is possible to obtain the same result for Us too.
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