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(1) V~f-A(a) iff for some term t: 5~f-"2t(a) exists-:-+A(a)", a bounded first-order formula,
i"" 1.

(2) V~ (resp. V2) is not m-conservative over 5~ (resp. over 52),
(3) Any model of V2 not satisfying Exp satisfies the collection scheme B~.
(4) V~ is not m-conservative over ~.

Second-order bounded arithmetic V2 and its fragments V~ were introduced in
[1]. Here we investigate the relation of these systems to the first-order systems ~.
and Si augmented by a limited use of exponentiation. The main connection is
the following: For A(a) a first-order bounded formula, V~ proves A(a) iff S~

proves

"2t(0) exists~ A(a )" for some term t(a).

From this we entail that V~ is not rn-conservative over S~.
The connection between second-order systems and exponentiation is proved by

a model-theoretic argument. This argument caD be used to show that a model of
V2 not satisfying Exp must satisfy B.l"f. This contributes to the question from [6]
whether there is a model of IL1o + -,Exp not satisfying B.l"f.

Finally we define a very weak provability notion for ~ devised for a
construction of a consistency statement which would separate ~ and V~. We do
not succeed; however, the provability notion caD be used to separate ~ and
V~ + "I is total", for any reasonably defined non-decreasing function I which
eventually majorizes all 21Xlk (k < co). In particular, V~ is not rn-conservative
over ~.

I would like to thank G. Takeuti for some valuable comments and suggestions
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1. Preliminaries

For the definition of 82, V2 and their fragments see [1 ]-we assume knowledge
of that paper.

L2= {O, 1,'s, +,., Lx/2J, Ixl, x#y,~, =}

is the language of~. LI denotes the language Lz without the function symbol #,
i.e. LI = Lz \ {#}.

Sl is a theory axiomatized by those axioms and rules of ~ which do not contain
#. In other words, Sl-proofs are ~-proofs consisting only of Ll-formulas.

Definition 1.1. Let A(a) be a bounded L1-formula all whose free variables are
arnong a. By induction on the logical cornplexity of A we define an L1-terrn
V A(a):

(i) A(a) is an atornic forrnula of the form t1(a) = t2(a) or t1(a) ~ t2(a). Put:

V A(a):= t1(a) + t2(a).

(ii) A(a) is of the forrn -'B(a). Put:

V A(a):= VB(a).

(iii) A(a) is of the form B(a) 1\ C(a), B(a) v C(a) or B(a) => C(a). Put:

VA(a):=VB(a) + Vc(a).

(iv) A(a) isof the forrn 3x ~ t(a) B(x, a) or Vx ~ t(a) B(x, a). Put:

VA(ii):=VB(x/t(a), a).

The intention of the definition is that in order to evaluate the truth value of
A(a) ODe has to compute only numbers ~V A(a). The following is essentially a
presentation of results of [2, 4].

Assume A(a) has the form

Vxl~tl(a)3Yl~sl(a,xJ.. .Vxk~tk(a,xl'... ,Xk-l,Yl'... ,Yk-J
3Yk~sk(a,xl'... ,Xk,Yl,... 'Yk-JB(a,i,y),

B quantifier free. Then A(a) is true iff there exist Skolem functions
A(a, xJ, . . . ,fk(a, Xl' . . . , Xk) such that:

(a) for Yj:=jj(a, Xl'. .., Xi) there holds:

if Xl ~ tl(a) then Yl is defined and Yl ~ Sl (a, xJ,
if X2 ~ t2(a, Xl' yJ then Y2 is defined and Y2 ~ S2(a, Xl' X2' yJ,

,Ylc-1) then YIr is defined and YIr ~
"f ,.:: (-
I Xk ~ tk a, Xl' . . . , Xk-l, YI, .
sk(ii, Xl' . . . , Xk, YI, . . . , Yk-J,

and
(b) B(o', x, Yj/fi) is trne.
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By (a) all these functions assurne values ~V A(ii). Thus the k-tuple (ft, . . . , fk)
can be coded ~2VA(ii)2k, in the sense of [4].

ThusA(a) is true ii! "3ft,... ,fk~2VA(ii)2k, ft,... ,fk are functions and (a), (b)

above are satisfied".
As L1-terrns can be evaluated in S~, there is a L1~ (w.r.t. S~) definition of truth

for open L1-forrnulas. In formula ". . ." above there is hidden universal quan-
tification over xi's and existential quantification over Yi's corning frorn (a) above.
But as xi' Yi ~ V A(ii), Xi' Yi ~ 12VA(ii)~1 so these quantifiers are sharply bounded.
Thus the forrnula ". . ." above is I~ in S~ in pararneter 2VA(ii)2k. As the sarne
holds for -,A, forrnula ". . ." is L1~ in S~.

Let us surnrnarize the discussion in a lernrna. For details of the truth definition

see [2, 4, 7].

Lemma 1.2. There exists a formula TR(x, y, z) which is L\~ w.r.t. S~ and is such

lhal S~ proves:

"ife ~2VA(á)2k then TR(A, (o), e) satisfies Tarski's truth conditions".

More precisely, ". . ." reads as follows:

"if VA and k are defined from A as above and e ~ 2VA(á)2k then:

if A =-,B then TR(A, (o), e) =-'TR(B, (o), e),
if A = B 1\ C then TR(A, (o), e) =TR(B, (o), e) 1\ TR(C, (o), e),
if A = (3x ~ t(a) B(x, o)) then TR(A, (o), e)

= 3x ~val(t(o))TR(B, (x, o), e)".

2. V~ and exponentiation

Consider first case i = 1. We define a theory S~ + 1-Exp which is a special case

of theories considered in [3].

Definition 2.1. For a formula A(a),

(denoted d:S~+ l-Expf-A(a))d is an S~ + l-Exp-prooJ o! A(a)

iff

d is an S~-proof of a sequent of the form: t(o') < Icl-+ A(o'),

c a free variable not occurring in t or A.

Definition 2.2. Wl = (Wl1, W"lz) is a l-fold model of S~ iff

(i) Wl11:: S~, W"lz I:: S~,

(ii) Wl1 ~e W"lz,
(iii) 2Wl1 ~ W"lz (i.e. Vm E Wl13n E W"lzW"lzl::m < Inl).
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A l-fold model [Tl is large l-fold if there holds moreover:
(iv) 3c E~'v'm E[Tl13n E ~~Fm < Inl & n <co

Lemma 2.3. Let A(a) be a bounded formula. Then (i), (ii) and (iii) are

equivalent.
(i) S} + l-Exp ~ A(a).

(ii) For any l-fold model Wl = (Wl1, ~) of S~, Wl11= Vi A(i).
(iii) For any large l-fold model Wl = (Wl1, ~), Wl11= Vi A(i).

Proof. (i) ~ (ii). Assume S~ + l-Exp I- A(ti), i.e.

S~ I- t(ti) < Icl- A(ti).

As ~FS~,

~Ft(ti) < Icl-A(ti).

By 2~1 ~ Wlz we have for any ni ~ Wl an element n E Wlz such that

Wlz~t(ni)<lnl.

Thus for all ni ~Wl, Wlz~A(ni). As Wl1 ~eWlz,

Wl1 ~ Vi A(i).

Not (i) ~ not (iii). Assume lhal for any term t(a), S~ + t(a) < Icl + oA(a) is
consistent. By compactness, the theory (with a, c as constants)

s~ + oA(a) + {t(a) < Icll ta term}

is consistent. Let Wlz be a model of this theory, a, c !;; Wlz. Define

Wl1 = {m E Wlz I for some term t, Wlzi;:m ~ t(a)}.

Then the pair (Wl1, Wlz) contradicts (iii). As (ii) ~ (iii) is trivial, we are done. O

Let ~b denote the class Ui.l'~, the class of first-order bounded formulas. ~.b
is a proper subclass of .l'~.b, the class of bounded second-order formulas without
second-order quantifiers, cf. [1].

Lemma 2.4. Let A(a) be a ~.b-formula. Then

S~ + l-Exp I- A(a) iff V~ I- A(a).

Proof. Recall that V~ is (fully) conservative over V~ (a version of V~ without
second-order function variables), cf. [1].

(1) Assume V~)' A(a), i.e. V~)' A(a). Thus there is a model (m, .1:) such that
for some Iò ~ m:

(m, .1:) ~ V~ + -'A(Iò).



Exponentiation and second-order bounded arithmetic 265

Claim. There is a model ml 01 S~ such that m ~e ml and 2í11l ~ ml,

proor or Claim. The idea-developed in [7]-is to use pairs of the form (a, a),
a E Wl, a E I, to code numbers with value Ei<a,iEa 2i. We shall use only pairs
(a, a) with a bounded, i.e. u E a implies u ~ v for some vand all u.

In [7] it was shown that there are L1~,b-definable relations

R=((al, aJ, (ab a2», R~((al' aJ, (ab a2» and for any fa function symbol ofLb
~((al' aJ, . . . , (an+l, an+J), where n is the arity of f, such that if R= resp. R~
interprets "(al' aJ = (a2' a2)" resp. "(al' aJ ~ (a2' a2)" and ~ interprets
"[((al' aJ, . . . , (an, an» = (an+l' an+J" then ù~ proves the translation of
BASIC andof the equality axioms.

As we deal only with pairs (a, a) such that a is bounded we need only bounded
L1~,b-CA and not full L1~,b-CA of Ù~. Any instance of bounded L1~,b-CA:

3a'v'x <ax E a=A(x),

caD be proved by I~,b-IND on a, i.e. in V~. Thus we caD prove the translation of
the basic properties of function and relation symbols of Lb as well as the
translations of axioms of BASIC and of equality axioms, in V~.

In this translation the original numbers of Wl are best represented as pairs
(Iml, am) where am = {io <. . . < ik} such that m = 2io + . . . + 2i,.

Let WlI be the structure Wl X I/R= with relation ~ and functions f E L2

interpreted according to R~ and ~. We claim that Wl ~e WlI (i.e. Wl is isomorphic
to an initial segment of WlI, 2!11l ~ WlI and WlI F S~).

For Wl ~e WlI it is essentially only needed to prove:

(b, fJ) R~ (Ia/, aa) ~ 3c ~ a (b, fJ) R= (Icl, ac)
and

F,«lall, aaJ, . . . , (Ian+ll, aao+J) ::} /(al, . . . , On) = an+l.

This is proved by induction (L1},b-IND) on a resp. on al + . . . + an+l'
Condition 2!!n~ml is easy as the pair (a + 1, {a}) represents a number greater

than "2(lal,"'.)". This is proved by induction (L1},b-IND) on a using the formula:

F+«b + 1, {b}), (b + 1, {b}), (b +2, {b + I}».

To see that mlI:: s~ take a .l'~-formula A(a, 6). We construct a translation of the
formula A into a .l'},b-formula

A *«a, a), (~»
such that for (m, p,) and (ni' 71;) from ml,

mlI::A«m, p,), (~» iff (m, 1)I::A*«m, p,), ("».
Translate functions and relations according to R=, R.. and F,'s. Translation *
commutes with propositional connectives. Quantifiers are translated as follows:

(a) (3x~t(a1'" .)B(x, a1," .»*

=3x~•(a1'" .)3a"t«a1' aJ,.. .)~(x, a)" I\B~
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where term t1 is chosen such that

b ~t(a)~ Ibl ~tl(lall,.. .),

(b) ('v'x ~ It(al' . . .)1 B(x, a»*

= 'v'x ~ t1(a) 30 "(Ixl, o) = x" " B*((lxl, o»,

(c) (3x ~ It(a)1 B(x, a»*

= 3x ~ t1(a) 30 "(Ixl, o) = x" " B*((lxl, o»

where t1 in (b), (c) has the same properties as in (a).
To show that the translation in (b), (c) is correct ODe needs:

'v'x 30 "(Ixl, o) = x".

This is proved by I~.b_PIND on x.
We may assume that A is in a prenex form (as it is sufficient to verify PIND

only for prenex formulas). A * is then a I~.b-formula.

Assume:

mIFA(O, (~» t\ VxA(Lx/2j, (~»-+A(x, (~».

Then (let us forget the parameters (n, 11»

(m, I) FA *«1, {O}» t\ V(x, a) A *( L "(x, a)/2" j)-+ A *«x, a».

Assume also:

(*) (m, I) F-,A *«k, K»,

for some (k, K) E ml. As

"L(x, K)/2j = (x -1, K) v (x, K) = (x -1, K)" and "(1, K) = (1, {O})",

the formula above implies:

(m, I) FA *«1, K» t\ Vx ~ k A *«x, K»-+ A *«x + 1, K».
Thus, by .l'~,b-IND in (m, I), we have:

(m, I) FA *«k, K»,

contradicting (*). So

(m, I)FVxVaA*«x, a», i.e. ml FVxA(x).

This proves the claim. (Let us remark that a different translation of bounded
formulas was used in [7].) The claim together with Lemma 2.3 implies:

S~+ 1-Exp~A(a).

l-{otd(2) Assume now S~ + l-ExpJ" A(a). By Lemma 2.3 there is a large
model of S~, Wl = (Wll, ~), such that for some Iò ~ Wll,

WlII=-,A(Iò).
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Let C E a7lz witness condition (iv) oí Definition 2.2, i.e. 2m. < c.
Take .I = {a: ~ ml I a: is coded (in ~) ~c}.

, a ~b-

" is a

Clairo. (Wl1, x) I:: v~.

Let B be a second-order bounded formula. Translate B into B**
formula with parameter c, as follows:

(a) First-order relations and functions are left unchanged.
(b) x E a is translated as "x is an element of the set coded by a", ",

~b-formula, cf. [2],
(c) ** commutes with Boolean connectives,

(d) (Vx ~ tB(x))** = Vx ~ Icl (x ~ t~ B(x))**,

(3x ~ tB(x))** = 3x ~ Icl (x ~ t 1\ B(t))**,

(e) (3aB(a))**=3a~c(B(a))**,
(Va B( a))** = Va ~ c (B( a))**.

Now let A be a It,b-formula. So A ** is a I~-formula. Assume:

(Wl1, x) I::A(O) 1\ VxA«x))~A«x + 1)).

Thus for all u E 2!1JlI,

~ I:: A **(0) 1\ (A **(Iul)~ A **(Iul + 1)).

That is, for all u E 2W11,

~ I:: A **(0) 1\ (A **(llu/2j I)~ A **(Iul)).

As A ** is I~ and ~ I:: S~, we have for all u E 2':)]11:

~ I:: A **(Iul).

But this implies:

(Wl1, 1)I::'VxA(x), i.e. (Wl1, 1)1::~(a)+I~.b_IND.

ft remains to show that

(Wl1, 1) I:: I}b_CA.

This reduces to show that for any I~-formula A(a) (with parameters in ~):
there is d E~, ~ I::d ~ c such that

~ I:: 'Vx ~ Icl, A(x) = "x is an element of the set coded by d".

This is proved by PIND on a in the following I~-formula:

3d ~ c 'Vx ~ lal A(x) = "x E d".

This completes the proof of the claim.
From the claim it follows lhal V~)" A(a). This proves the lemma. o
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In the same way the following theorem is proved (S~ + 1-Exp is defined
completely analogically with Definition 2.1).

Theorem 2.5. Let i ~ 1 and let A(a) be a first-order formula without any
occurrence ota second-order variable, i.e. a ~b-formula. Then

V~ f- A(a) iff S~ + l-Exp f- A(a).

CoroUary 2.6. For all i, j ~

if S~ = S~ then V~ = V~.
X2,b

CoroUary 2.7. For i ~ 1, V~ is not 1I~-conservative over S~. Also Vz is not
m-conservative over Sz.

Proof. Theory S~ + Exp is equal to the theory IL1o + Exp of [5]. There it was
shown that IL1o + Exp proves certain consistency statements (i.e. m-formulas)
unprovable in IL1o + !J1, which is equivalent to Sz. Hence in particular, S~ + Exp
is not n~-conservative over S~ which immediately implies lhal neither is
S~+ l-Exp. This entails the corollary. D

Corollary 2.7 extends a result trom [7] where it was shown that V~ is not
conservative over S~.

Corollary 2.8. For i ~ 1,

v~ ~b V~(BD),l:m'

Proof. In the construction of Wl1 in the proof of Lemma 2.4, Drny the assumption
Wl to V~(BD) is actually used. D

Let v'S:f; denote a theory arising from S~ by replacing .l'?-PIND by the role

A(lv'aJ), r- L1, A(a)
A(O), r-. Li, A(t)

VS1: implies the soundness of the following rule which may be ca11ed .l'~-LLIND:

A(a), r~ L1, A(a + 1)
A(O), r-. L1, A(llall)

Then analogically with the first part of the proof of Lemma 2.4 we have (recall
U~f- L1~.b-IND, cf. [1]):

U~ + bounded L1~,b-CA f- ~ + l-Exp.



Exponentiation and second-order bounded arithmetic 269

Another way to generalize the method of this section is to consider higher-
order extensions of ~ (based on induction and appropriate comprehension
axioms for variables of higher orders). Then similarly the bounded first-order
consequences of the (k + l)-th order extension are characterized as ~ + k-Exp.
(That is, ~ + k-Exp I- A(a) iff

~I-t(a) < ICII, CI < Ic21,..., Ck-l < Ickl-A(a).)

The characterization of bounded first-order consequences of fragments of such
theories is more complicated and needs further weakenings of the induction role
in the line of LIND. LLIND. . . . .

3. Another corollary to the construction

In connection with the problem of existence of end-extensions to models of IL1o
the question whether there is a model of IL1o satisfying neither Exp nor BI'l was
posed in [6]. (Exp is a m-formula Vx 3yx = ly I.) A modest contribution to this
problem is the flexi theorem.

Theorem 3.1. Let M = (m, .1:) be a model oj Vz not satisfying Exp, i.e.

...tl F V2 +-'Exp.

Then Wl F BI~.

Proof. Take model ~1 of ~ (extending ~) constructed from (~, .t) in the proof
of Lemma 2.4. Thus ~ ~e ~1 and 2!1n ~ ~1.

From the assumption ~ I:: -,Exp it follows that ~1 is a proper end-extension of
~. It follows easily that ~I::B.l1, cf. [6]. O

4. A restricted provabiIity notion

Definition 4.1. (1) D is a restricted ~-prooJ o! A (denoted D:~ I-RA) iff the
following conditions hold: D is a S-tuple D = (d, w, V, di, ï), and:

(i) d is an Sl-proof of a sequent of the form:

2:s;; Co, laol:s;; Icol, o o o , lani :s;; Icol, Icollcol :s;; ICll,

IClllcol:s;; IC21, o o . , ICj-lllcol:s;; Icjl-A,

where Co, o o o , Cj do not occur in Ao In particular, A is an Ll-formulao
(ii) AII formulas in dare bounded and in prenex formo

(iii) ff ti' = (ao, . . o , an) and c = (co, o o o , ci) are all parameters of d (ioe. free
variables of the end sequent) and 6 = (bo, . o o , bk) are all other free variables
occurring in d then it holds (I, m:S;; k):

(a) the sequents of d where bl occurs form a connected subtree of d,
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(b) if the elimination rule of bl is below the elimination rule of bm then
l<m,

(c) the elimination rate of bl is either V ~ : right, 3 ~ : left or PIND.
(iv) w = < wo{a, è), . . . , wk{a, è) > is a sequence of L1-terms such that for I ~ k

it holds: if the elimination rule of bl has the form:

A{lbl/2J), T- Li, A(b/)
A(O), r-+.:1, A(t[(a, è, boJ , b1-J}

or

or

r-.+ L1, Vx ~ ([Ca, è, bn, , b1-JA(x)
then

(*)/ w/(a, c) ~ t/(a, c, bolwo, . . . , b/-llw/-J.
(v) -;ji = (d~, . . . , d~) is a sequence of proofs such that d; is a quantifier-free

and induction-free Sl-proof of (*)1-
(vi) ti is a sequence of Ll-terms such that if a formula B(a, h, c, i) (with

a, h, c, i variables free in B) which occurs as a subformula in d (we consider B
associated with its occurrence), then the sequence ti contains the Ll-term
VB(a, h, c, i) defined in Section 1.

(vii) For A(a, h, c) a formula of the form

QlXl ~ 4(a, h, c) Q2X2 ~ t2(a, h, c, xJ, . . . ,

Q,xr ~ 4(a, h, c, Xl' . . . , xr-J CCa, h, c, i),

C quantifier free which occurs in d, ti contains terms P A,i(a, c) (i = 1, . . . , r) and
a term qA(a, c) such that the following holds:

(**)A,l P A,l(a, c) ~ 4(a, b/lw/, c),
(** )A,2 P A,2(a, c) ~t2(a, b/lw/, c, xII P A,J,

(**)A,r P A,r(a, c) ~ 4(a, b/lw/, c, xII P A,u . . . ,xr-IIP A,r-J
and

(***)A qA(a,c)~Vc(a,b/lw/,c,xjIPA,J.

(viii) d" is a sequence of quantifier-free and induction-~e Sl-proofs and for
all A occurring in d and i~ the quantifier complexity of A, d" contains proofs d~,i
of (**)A,i and d~ of (***)A.

(2) Thenumberjin (i) (=thenumberofformulasoftheform ICi-Illcol ~ ICil in the
aótecedent of the end-sequent of d) is called the dimension of D and denoted dim( D).

(3) A restricted Sz-proof D is called strictly restricted if it holds:

dim(D)~ IIDII.
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We denote by D: Sz I-SR A the formula
" D : Sz I-R A and D is strictly restricted".

This prova~ility notion is motivated by [3, 7]. Recall that by [2, 3, 5] the
formula "D:S2I-SRA" caD be chosen as L1-formula, L1~ w.r.t. S1. We also
assume that the formula is in a prenex formo

Lemma 4.2. For any bounded LJ-formula it holds.

S21- A i.ff Sz I-SR A.

Proof. The 'i• part is true as ~ proves sequents of the form

~3x Ici-lllcol ~x.

The 'only i• part follows essentially by cut-elimination and a compactness
argument, cf. [3, 7]. Recall that PIND caD be proved only from its instances for
prenex formulas. O

The following two lemmas are usual probability conditions needed for the
proof of Godel's theorem.

Lemma 4.3. S~I-(D :~I-SR B)~ 3D! ~ t(D)[(D!:~I-SR(D :~I-SR B»] for some
fixed L2-term t.

Proof. Argue in S~. As D: ~ I-SR B is a true (L1~ n LJ-sentence there is an
S}-proof d of it with length

k' kIdl ~ I(D :S2I-sRB)1 ~ ID I

for some fixed k' ~ k < w -cf. [5]. Moreover, all formulas in dare substitution
instances of formulas with Godel number ~k", for some fixed k" < w (cf. [5]).
Thus there exist terms w, ti, instances of some standard iterations of terms,
needed for the strictly restricted proof. (As d is an S}-proof with empty
antecedent, dim d = O. ) D

Lemma 4.4.

S~ I- [(Dl :Szl-sRA, r-+ L1) 1\ (Dz:Sz f-sRr' -+ L1', A)]-+

3D3~t(DI, Dz) (D3:Szf-sRr, r'-+L1, L1'),
for some fixed Lz-term t.

Proof. Argue in S~. There exists an obvious restricted proof D3: join Dl and D2
by an application of cut-rule.

Clearly:

dim D3 ~ dim Dl + dim D2'

Thus it is sufficient to add to D'\ some dummv inferences to I!et D.. such that the
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Godel number of D4 fulfills

2(D1 # D2)2 ~ D4.

So
IID411 ~ 112(Dl # D2fll ~ 121Dl # D211

~ 1 + IIDl # D211 ~ 1 + 11 + IDlIID211

~ 1 + (IIDlll + IID211 -1) ~ IIDll1 + IID211.

Hence
IID411 ~ IIDIII + IIDzl1 ~dimD1 + dimDz~dimD3 = dimD4,

Thus D4 is the required strictly restricted proof. o

5. V~ versus Sz

In this section we investigate the problem whether V~ is conservative over Sz

Definition 5.1. A dyadic numeral o! n, denoted ll, is defined:

Q:=O, 1:=1, ~:=(1+1),
2!1:= (~ °ll) and 2!1..::U: = (2!1 + 1).

In the following detinition we assume that the formalization is based on dyadic
numerals, i.e. Godel numbers are represented by them. q denotes a formalization
of the dyadic numeral.

Definition 5.2. (a) SRPr(a, b) is an L1-forrnula forrnalizing:

"3D ~a (D :.szf-SR b)".

Moreover, SRPr is L1~ w.r.t. S~ and a natural forrnalization-in the sense
of [1,5,7] - such that S~ caD prove Lemmas 4.3 and 4.4 for the formalization.
a. [3].

(b) SRCon(.sz)(a) is an L1-formula defined as

SRCon(.sz)(a) :=-,SRPr(a, rO = 11).

Thus 'Vx SRCon(.sz)(x) expresses: ".sz is strictly restricted consistent".

Lemma 5.3. S~ + l-Exp f- SRCon(~)(a),

Proof. Assume D:~f-SRO= 1, i.e. D = (d, w, v, ï, ï), where d is an Sl-proof
of the sequent of the form:

2 ~ Co, laol ~ Icol, . . . , lani ~ Icol,

Icollcol ~ IcII, . . . , ICj-Illcol ~ Icjl ~ 0= 1.
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By substituting O for all a; in the whole d, and adding a few inferences, we caD
assume that the end-sequent of d has the form:

2 ~ Co, Icollcol ~ IcII, . . . , ICj-Illcol ~ Icjl-+ 0= 1.

Call it S(è).
Let b = ho, . . . , bk be all non-parametrical free variables of d.
By soundness of the rules, using terms w guaranteeed by D, prove: "if S(è) is

not trne, then there is an initial sequent So(b, è) and bl ~ wÁè), 1 = O, . . . , k, such

that 5o(b, è) is not trne". As any initial sequent is trne, so must be S(è).
This argument caD be formalized in S~ using the trnth definition of Lemma 1.2.

Statement ". . ." is .l'~ and is proved by induction on the number of inferences in
d. The only point is to have a number so large ~at the trnth definition of Lemma
1.2 caD be applied to all formulas in d. Proofs dli are used to verify that terms w
have been correctly chosen. -

Terms in v and proofs in d" are used for the proof that terms V A'S are defined
correctly. Also we have that

V A(b, è) ~ qA(È) for bl ~ wÁè).

Thus qA'S, being coded in D, satisfy

IqAI~IDI.

Also k of Lemma 1.2, i.e. the quantifier complexity of A, satisfies k ~ IDI. Thus
the equa1ity:

2qA(C)2k ~ e

from Lemma 1.2 follows from:

2QA(c)2IDI ~ e. (t)

As for any L1-form t(è), val(t(c), è) ~ max(2, È)ltl we have

val(qA' è) ~ (È)IQAI.

So (t) follows from:
,?

Vè)2IDI-

Thus we have:

~e.

S~f- (C)2 # D # D < lel- [(D:Sz f-SRO= 1) =>TR(S(c), (c), e)]

Define to:= 2, ti:= 2(ti-l . ti-J, for i ~j. Then for i ~j

l( ) - 2(2i+1_1) 2(2"D"+1_1) (D)Va t. - ~ ~sI ,

where s(x) is some term.
Thus ti's can be defined in S~ and (to, . . . , tj) can be coded ~S(D)"DII. We now

substitute in S(è), ti's for Ci'S. Adding a few (quantifier free and induction free)
inferences we get a strictly restricted proof D' of O = 1 with dím D' = O. (tt)
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implies, as D' ~ D . S(D)hIlDII for some h < w, that for some L2-term t(x) it holds:

S~f-t(D) < lel- [(D :~f-SRO = 1)-TR(0 = 1, O, e)],

i.e., using Lemma 1.2,

S~ + 1-Exp 1-0 = 1.

This is a contradiction. O

Unfortunately we are not able to show that SzJlSRCon(Sz)(a). The lemmas in
Section 4 are the usual probability conditions needed for the Godel theorem but
the obstacle to the standard proof is that the strictly restricted provability is
not - provably in Sz - closed under the substitution of numerals for free
variables, i.e. Sz cannot prove that Szf-sRA(a) implies Szf-sRA~), for all n. Thus
we have to use another construction giving a weaker result.

Consider a .l'~, #-free formula cp such that

Sl f- 3x cf>(X) = (3d, d: ~ f-R o cf> (a )).

By a standard argument (using Lemma 4.2) it follows:

Szy,cp(a).
Let us look under which conditions V~ could prove ,cp(a). Assume.;!,l = (Wl, .I) is

a model of V~ and 3x CP(x), i.e.

.;!,lI: V~ + cp(m),

for some m E Wl.
By the definition of cp and by Parikh's theorem there is d E Wl, such that:

Wll:d ~mr 1\ (d:Szf-R,cp(a»,

for some fixed r < m.
The end-sequent of d has the form

2~co laj ~ Icol,..., ICj-llICol ~ ICjl~-'cI>(a).

Adding some inferences to d we easily get a proof dl of:

2~m, Iml~lml,..., ICj-lllml~lcjl~-'cI>(m).

A code of such a proof dl will satisfy dl ~ mc.f (m' for d, m°(j) for the
end-sequent and this itself j-times for its derivation). Thus to guarantee that dl
exists we need the assumptionj~lmI1, for some l<co. Then d1~(I(m) caD be
assumed for some fixed term (1'

On the other side, as ci> is .l'~, cI>(m) implies that there is a restricted proof d2 of
cI>(m) (cf. the proof of Lemma 4.3). Again we may assume d2~(2(m), (2 some
term. Moreover-by the proof of Lemma 4.3-dim d2 = O.
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Joining proofs dl and d2 by the cut-rule gives a proof d3 of:

2~m, Iml ~ Iml,..., Ici-11lml ~ Icil-.

Again d3~t3(m), for some fixed term t3 (cf. Lemma 4.4) obtained from tI, t2.
Proof d3 is not restricted as its end-sequent does not have the appropriate formo

We construct from d3 a restricted proof d4 by cutting out formulas 2 ~ m, Iml ~
Iml from the antecedent and replacing formulas Imllml ~ Ic11 and Ici-11lml ~ ICil
there by cedents:

2~C-k' IC-kllc-kl ~ IC-k+II,..., IC-Illc-kl ~ Icol,

Icollc-kl ~ IcAI, . . . , IC~-lllc-kl ~ IcII

and
2 ~ C-k, IC;-lllc-kl ~ IC}-II, IC}-lllc-kl ~ Icf-ll, , Ic~-=-lllc-kl ~ ICil,

respectively, where k:= 11m II.
This is done quite straightforwardly, the resulting restricted proof d4 satisfies:

d4~d3.j, dimd4=j .llmll,

and its end-sequent has the form:

, Ic:=~llc-kl ~ IC:-ll,2~C-k' , Ic;-=-lllc-kl ~ ICjl- (t)

Now we would like to get a contradiction by taking the truth definition of
Lemma 2.1 and as in the proof of Lemma 5.3 show that (t) is true for some c:'s
satisfying the antecedent.

The simplest choice for values of c:'s is obviously

.- 2v 1 ._ 222 1 .- 2W+I)lImll+l)C-k.- -, C-k+l.- -, . . . ,Cj.= 2 -1.

Hence the whole (U + 1) Ilmll + 1)-tuple would be coded below u = 22(U+I)-lImll+2).

Having such u, the use of the truth definition entails the contradiction.
Let us summarize the discussion. We took a diagonal formula 4> and from the

assumption .,« to 4>(m) we have derived a contradiction under the assumption:

~~ I- 22«d;md+I)-lImll+2) .
./lit I- exlsts,

where d ~ m' is the restricted proof of -'cJ>(a) guaranteed by cJ>(m). Hence we
have to pot a suitable restriction on the dimension of proof d, say dim d ~f(d).
To have an analog of Lemma 4.2 valid we need that f(d) is non-decreasing and
eventual1y greater than any j < w. To have an analog Lemma 4.3 valid, i.e.

«d: ~ f-R B) 1\ dim d :.s;f(d»

-+3d}, dl:~f-R r«tj:~f-R/}) 1\ dimtj:.s;f(tj»l,

we need that the relation y :.s;f(x) is I~ and #-free definable in S~. An analog of
Lemma 4.4 is used on ly for dl, d2 where dim d2 = O and so is always valid.



276 J. Krajíèek

Furthermore, we used the assumption j = dim d ~ Idl to guarantee the exist-

ence of proofs dl, . . . , d4. Thus the following assumptions on f(d) are sufficient
to carry out the argument:

(i) S~ f- f(d) ~ Idl.
(ii) The graph of f has a .l'~, #-free definition in S~.
(iii) S~ f- "f is non-decreasing".

(iv) Forallj<w, S~f-3xVy>xj<f(Y).

We caD now state the theorem.

Theorem 5.4. Let f be a function satisfying the assumptions (i)-(iv) above, and
define:

( ) 22(1~1I'/(%» g x := .

Then V~ + "g is total" is not n~-conservative over S2. In particular, V~ is not
ll'l-conservative over S2.

Proof (sketch). The assumptions (i)-(iv) posed on the function f(x) guarantee
that we caD carry aut the argument above. In particular we need that

22«d;md+lrlldll+2) .exlsts.

This follows from the assumption
2ftd}°lldll .g(d) = 2 exlsts.

The particular case g(x) -x #3X is obtained forf(x) -llxll o

Observe that g(x) caD be much slower than x #3X; take e.g. f(x):= logi(x).
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