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Speed-up for propositional Frege systems
via generalizations of proofs

JAN KRAJíÈEK

Abstract. A Frege system with the substitution rule has a speed-up over a Frege system
with respect to the number of proof-steps which is of the formo n(2nJ.~)
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Let us denote by F (EF, SF respectively) some Frege system (Frege system with
the extension role, Frege system with the substitution rule respectively). Frege
system is a usual propositional calculus based on a finite number of axiom schemes
and roles. The extension rule allows to infer the formula p = A, provided the
atom p does not occur in A, in any line preceeding p = A and in the last formula
of the proof. The substitut ion rule allows to infer from formula A(Pl, . . . , Pk) any
formula A(B1,... ,Bk) where formulas Bi are simultaneously substituted for atoms
Pi. These propositional calculi were defined in [2].

In this note we are interested in the number of steps (= proof lines) in proofs in
these calculi. For these purposes the exact choice of the systems is not essential. In
[2] it was shown that for any two Frege systems F1, F2 there is a polynomial-time
computable function (=polynomial simulation) f(:1:, y) such that if d is an F1-proof
of the formula A then f( d, A) is an F2-proof of A. The same holds for allY two Frege
systems with the extension rule and for any two Frege systems with the substitution
rule. It is easily seen that these polynomial simulations increase the number of steps
only linearly. Moreover, EF-proofs can be transformed into F-proofs increasing
the number of steps only linearly too-cf.[2, PropA.3].

In [3], [7] it was shown that EF polynomially simulates SF. The explicit simu-
lation constructed in [7] increase sometimes the number of steps exponentially. It
follows from the result of Cejtin and Èubarjan [1] that this must hold for any such
a simulation. N amely they have proved that S F has an exponential speed-up over
F w.r.t. the number of steps.

The aim of this note is to present a new proof of this result (with an improved
bound) which is a simple application of the results about generalizations of proofs

[4,5,6,8].
It should be stressed explicitely that this speed-up result does not solve the

important open problem whether F polynomially simulates SF since the formulas
on which the speed-up is realized are themselves of an exponentiallength.

Propositionalformulas arebuilt upfrom atomspO,pl,... qO,ql..., constants 0,1
and connectives including, and -+.
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The depth dP(A) oí a íormula is inductively defined by:

(i) dP(A) = O iff A is an atom or a constant,
(ii) dp(,A) = 1 + dp(A),
(iii) dp(A --+ B) = 1 + max(dp(A), dP(B».

In the sequel (,)m(A) wil1 abbreviate the íormula:

,(,(,(...(,A)
m-time.

Theorem. There are con"tant" C,E > O "uch that for aUl :5 k < (41 it hold,,;

(i) there i" an SF-proof of (1)2. (1) with :5 c.k "tep",
(ii) any F-proof of (1)2. (1) mu"t have ? E' 2k "tep".

PaOOF: Assume k ? 1.

(i) Consider formulas
2"Bto := p -+ (.) (p).

Obviously SF f- Bo. Also Bk+l CaD be derived from Bk in SF within a
constant number of steps: by substitution

pl-+ C-,)Z'Cp)

derive from Bk the lormula:

(,)2' (P) -+ (,)2'+1(p),

and by cut-rule (which is a derived role in SF) applied to thisformula and

Bk derive Bk+l.
Hence Bk'S have SF-proofs with O(k) steps. But (-,)2. (1) is inferred from

Bk by the substitution p f-+ 1 and one more application of cut-rule. This
proves the first part of the theorem.

(ii) We must show that any F-proof of (-,)2. (1) has at least e. 2k steps, for some

constant e > O.

Claim. There is a constant Co > O such that for any F-proof d = Cl,..., CI there
is a sequence ï = Ci,.. . , Ci of propositional formulas built-up from the atoms
occurring in d and new ones q = qo,. . . , q. such that:

(i) ï is an F-proof,
(ii) dp( Ci.) $ Co . I, for i $ "

(iii) there is a substitution a assigning to atoms q some propositional formulas

such that a(d.) = d.
Proof of the claim: The claim is an immediate corollary to Theorem 2.1 of [5].
However, to make the exposition reasonably accessible we outline another argument
based on the technique developed in [4,6,8]. For the details see there.
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To any F-proof d with I steps is assigned a unification problem !1d,

!14 = {(Sl,tl),...,(sr,4)}

such that
(a) dp(sj),dp(tj) ~ CI, for aIl j ~ r,
(b) r ~ C2 o 1,

where the constants CI, C2 depend only on the particular system Fo
As proveï in [4,6,8] any unifier 6 of nd determines an F-proof d6 of depth

dp(d6) ~ ~-;;;c(dp(6(sj»,dp(6(tj»)o

Let 60 be a most general unifier of ndo By the results of [6,Lemmas 1.1 and 1.2] it
holds:

dP(d60) .$ 2. r. ~ax(dp(sj), dp(tj»,
JSr

i.e. by (a) and (b) above:

dP(d6o)~2.cI.C2.1.
Moreover, for any unifier .5 of t.JJ, d6 is a substitution instance of d60. In particular,
d is a substitution instance of d60. Put ï = d6o and Co = 2. CI . C2. This proves the
claim.

Assume now that
d = CI, . . . , C,

is an F-prooí oí the íormula (-,)2. (1), i.e. C, = (-,)2. (1).
By the claim there is an F -prooí d. = Ci,. . . , ci such that in particular it holc.s:

(i) dp(C,.) $ Co .1, and
(ii) C, is a substitution instance oí C,'.

Thus ií Co . 1 < 2k, Ci has necessarily the íorm:

-,)m(qo),

for some atom qo and m $ Co
Define the substitution a:

a(qo) = o, if mis even
= 1., if mis odd.

It follows from the claim that a(d.) is an F-proof of a false formula. Thus it
must hald:

?: 2k.Co

Put c := COi. .
This bound improves the bound obtained in [1] which was only of the form 2k' ,

..",n
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