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MODAL SET THEORY-

Jan Krajíèek

In [8] we proposed a set theory MST formalized in modallo-

gic. The Bim of this lecture ia to announce new consistency

result concerning MST (these form Part II). For completeness

of a presentation we recapitulate the motivation of t~T and

some definitions and,results (without proofe) from (8] (these

form Part I).

We do not mention here connections with other related sys-

tems (aee Cll,...,[6J); this is done, in detail, in [8J.
c

We thank to P.Pudlék for many valuable discussions and for

his assistance to our work.

Part I. §O. Introduct!o~

Cantor'a comprehension (CC):

3y ~t; lf(t) -= t e y

where ~ is sny property, is a very elegant principle. Its
substance describes Cantor's naive ~et-universe. Unfortunate~
in the most customary formalization, where sny formula of the

set-theoretica1language is accepted ss a property, is CO con-
troversisl.

In most set-theories the motivation lies in Cantor's univer-
se. They replace CO Qy 8 list of weaker axioms (e.g.ZF) or re-
strict it (e.g.NF).

At the same time they lose important features of CC: homo-

geneity, simplicity and elegance or apparent intuitive picture.
We think that these festures of CC justi•y the search for

other possible reformulations of CC.
The modification of CC which is formalized by MST covers so-

me mathematics (it interprete PA) and, on the other side, some
of its considerable fragments are proved to be consistent.
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§l. Theory MST

Let us imagine the following situation. There exists some

Set-universe which is the object of our consideration. The

only atomic predicates are "to be equal" and "to be element

of". Each etomic sentence and hence eech sentence is true or

felse in the Set-universe.

Dur wish is to recognize the truth, i.e. the sentences true

in the Set-universe. SO some true sentences are known to us,

are in our knowledge. .

For formalizing the model operator "to be known" we extend

the usual classical set-theoreticallanguage by edopting 8 new
'"

unary logicel connective C which should be an epistemic moda-

lity. Thus our language (the model set-theoreticallenguage)

is the modal predicate calculus with identity (see [7)) with

a binary predicate E as the only non-logicel symbol.

1.1 When we decide to try to understend the set-universe we-
cen, elready, take the fact of looking for the knowledge

as a part of the knowledge. Put otherwise, we may accept assum-

ptions which menifest the principles and the correctness of

our knowledge. Hence the fol1owing two axiom Bchemas and one

deduction rule should be eccepted:

(i) tJ~ ~ ~
(ii) o(lf 4"f'}->(olf ~ O~)

~ J 0'-1, -- --

This extension of the classice1 pre~icate calculus ie ca1-

led T in (7].

l.~ The main idea of rJ!ST is that CC doea not refer to the

whole Set-universe but only to its known part, to our"
Qniverse of di~ourse". That means: it seems to us from the

point of view of our knowledge thet the Set-universe behavee

e8 if CC were sound.

In the chosen langaage thi8 modification of CC (1~odal CO

or short1y MCO) csn be described es follows:

(iii 1

, T-axioms

necessitation rule (N-rule
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tper.

reticsllangusge with free varisbles smong t,sl'888,ak

th~ uni versal closure of the following formu1a holds:.

3yVt; (Qr(t,al'888,a~= atE-Y) &.
8< (fJl<ftt'Sl' 8 8 8 ,ak): Ot+y) .

The Si'8 are ca11ed parameters and will be omi tted f'ur-.

~ The lest but one princip1e we adopt is the extensionali-

ty in the usual forma1ization:
. C c c ( Vt ; t E: x = t E y) ~ x=y .'

Dne reason for it is simp1y our usage ~ thinking about Set-

universe. It also he1ps to prove various properties of a given

set~: it suffices to define, in some usefu1 wgy, a set ~ with

the same extension as ~ (see 3.7). On the other side, many con-

cepts and resu1ts using extensionality can be interpreted with-

out it (see (3)).

1.4 So far we have not accepted sny concrete "theory of know~- o

1edge", sny non-10gica1 epiátemic assumptions. The .1aet
princip1e of MST is of this kind. As usua1~~ttabbrevi8tee

loif. The princip1e is:

L2. : .o x=y ~ O x=y

or equiva1ent1y

(i) (x=y ~ Ox=y) St. (x:ty ~ Orly) or (i,i) Ox=y v Oxiy o.

We leave out the question whether LP has 10gica1 or empiri-

cal character.

It is a kind of a finitistic assumption. There are a1so clo-

se connections to leibniz's princip1e: '!No two monads are .exact-

ly a1ike", from his theory of monad s (see [9)). This msy be

forma1ized as Ox=y -, x=y (where -ox=y simulates indistingui-

shabi1ity) or equiva1ent1y x:f:y ~ Ox:j:y. Thus leibniz's princip1e

coincides with the second conjunct of Ci). Sure1y, the first is

a trivial consequence of the substitution properties of identity.

Hence the name LP seems to be justified for thie Axiom.
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conjunct of Ci) is called LI and the second LNI there.

~ Let us summarize the defini tions. The formsl theory MST

is formalized within model predicate calculus with iden-

tity. The axioms of identity are essumed. The underlying logi-,

cel system is T. The only non-1ogicsl assumptions are: exten-

sionali ty, MCC and LP. "

Let us strese explicit1y that N-rule is eppliceble generslly

(in contrast to theories of [2) and [3)). In particular, sll

. instances of MCC are "known". This gives to the who1e system
'. . .

features of a "log~cal cslcu1us". .
C "

We wi11 use free1y various results about modsl1ogics whiCh

are proveï in [7).

In the whole text we do not discuss possible extensione of

MST (see [8)). Also in consistency resu1ts, by way, stronger

theories are proved to be consistent then is exp1icitly stated,
.

but these are irrelevant to our discussion.
,

§2. Russell-s paradox/'

Let us discuss Russe11's paradox ~orma1ly. Applying MCC toRusse11's formu1a t" t we obtain : ' .

3y-ttt;fJttt'a QtEy ~ OtE:tE.Otf.Y
and hence :

3y;ay~ y = Oy ,y .

Now sure1y :

(. O y (;, Y -, y'E, Y ) .a (a y 4: Y -') y ty) Ul. .

and the only escape from the contradiction gives :~,

'Jy;(oy~y=ayct:y)~ (>yEy ~ Oy4.y .
Fortunately, this situation does not lead to inconsistency .

because Qy~ y \o IJ Y 4-Y is not a theorem of T.

We even 'profit by this trivia1 but important corollary:

2.1 Corolla~: -3y; <>yEy ~ () Y4Y .

The reader could calculate himself that other modifications

of Russell's paradox (e.g.curry'8) 81so fai1s for MST.

J
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Decidable And small seta
,

In this Chapter we develop two important notions of MST.

It is not surprising that "known formulas" or "known seta"

will have pleasant properties. This standa behind the follow.

ing definitions and results.

3.1 Metadefini tion: Call a formule ~ D-decidable ifi
O lf v JJ llf halda. .

Other equivalent condi tions are: 1 alf -') f'J1 ~ , oCf-?a tf
or (tf ~ I'Jlf)A (1 tf -., 1J1lf). Note that decidabili ty of <P (i. e.

MST I- c Cf or r.~ST t-l tf) implies (by N-rule) Q-decidabili ty oi

it butCthe converse does not generally holds.

Some of the following results are proved using additional

8ssumptions; namely: Barcan's formule V'x Q<f (xJ ~t1tx lfcxJ (BF.
and Brouwer's axiom ~ tJ tp -) tf (B) (for detaile see [8)) .
This will always be indicated in brackets before a statement.

J.2 Theorem: Ci) Booleen combination of O-decidable formulas'

is O-decidable.
(ii) (BF) All formulas buil t up from C -decidable

aneB are O-decidable.
3.3 Corollary: Booleen combination of equalities is Q-deci-

dable.

- Cell a set y ~decidabl~ (D ly)
~-~ ft; Ct'F:y v Ct4.y halda.

Next results show that the domain of decidable seta is rich

and behaves reasonably.
3.5 Theorem: If <{ft) is O-decideble then there exists 8 de-

cidable set y s.t. -tlt;tey=CfCt} .
Ci) ~yVt;t'y (ii) .Jy'tft;te.y

"!~:::;C1: (iiU 3yVt;t E:.y= (t=alv ... vt=sk)

(i v) ;] y -V t ; t E Y -= ( t=t al ~ . . . ~ t:t sk)

and for 8, b decideble:- -
, . <. v) .] y +t t; t E: Y = ( t E: a"'" t ~ b)

,".---,'. (v i) ~ y 'ti t; t e. y~ (t E. 8" t e b)

(vii) .:;}y"t/ t;tE yE t~8
(viii) .:j y't/t;te: y-: (t e s v t=c) .

Moreover, y is decidable in esch csse.

3.4 Definition:

3.6 Corollary:
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1._7 Theo!,em (BF) : Let ~ be a decidab1e set. Then ~

Ci) (the union) (-'{b"a;Dlb))~-JCVt..t(c-:;éb"a;tc.b)
(ii) (the power) -]c"'lt;D(t) -) (t E c:. t ~ a)
(iii) (the replacement) It' ~ lx, tJ is Q -decidable

then .:;} b t' t; t ( bO:; (oj x E' a; tf (x t t) .
The result 3.6 (iii) (end extensiona1ityj~1ihat a11 seta fi-

nite from outside of Set-universe are decidable. Hence the

fo11owing
_~.8 Det'inition: Call a set '1 §~ (SCy») ift' Vx;.x~y ~ D(X),

shou1d substitute finiteness.
Observe that 2.1 implies existence of 8 set which is not

c

sma11.
J.9 Theore~ (the comprehension): Let ~ be a small set end rCt)

sny t'ormu1a. Then: -]y-';t;t Ey= (t~ a.-:1(tJ)

(end y is sma11..
J.1O Theorem: (i) (BF) The union ot' a small set of sma1l eete

is a smal1 set.
(ii) (BFtB) A smal1 set has a power set.

§4. Arithmetic- -
Using familiar van Neumann's defini tion we' may introduce

ordina1s. Then the "natura1" cendidates t'or natural numbers
are the small ordinels. Srnce it is not evident why there

cou1d not be a limit smal1 ordina1, we use the t'ollowing
4~1 Def~!~~: .! is a cnatura1 number (N (a)) it'f a conjuncti-

on of the fol1owing halda:
Ci) ~ is transitive
6i) § is strict1y we11-ordered by ,
(iij.) § is small
Civ) 'V' b~ a 3c; c=me~ b

(where bf.e end c=maXf.b are obvious abbreviations).
Thent trivial1Yt empty set is natural number~he1ement and

Qsuccessor of a naturel number is a netural number and naturel

numbers are strictly ordered by é.
4.2 Metadefinition: A formu1atf(t) is ca11ed a cut in N it'f'

~-

a conjunction of the fo11owing ho1ds:
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(i) l' t; <f (tJ ~ N (t )

Ci i) (~(aJ.&. b < a ) -) lfCbJ

(iii) ( tf (aj .ac."b is a successor of a")~
4r(b) .

A cut '((tJ is called a !!ontrivie1. iff also:
Civ) ~ a, b; 'f ca}Allf (b) 08.. N( b) .

r~ow we are ready to state
~.3 Theorem (the induction) : There are no nontrivial cuts

in No
Let us now sketch how to introduce the arithmetical struc-

ture on N. Define in some reasonable way addition. For example:
'"a + b = c iff "there exists a small sequence so,...,sb s.t.

so=a, sl=a+l,...,sb=c (u+l abbreviates a successor of u)"
(the "sequence" will be defined es usual). So we easily pro-

ve a+O=a and s+(b+l)=(s+b)+l. Then, us ing 4.3, we prove that
+ is defined for sny two naturel number~. The same can be do-
ne for multiplication end 4.3 will guarentee the wanted ar i-

thmetical properties of + and . . Observe that 4.3 a1so imp1ies

that this cen be done uniqueli.

~- Through ari thmetic and through the not-ion of "smal1 set"

theory MST forma1izes some properties of finiteness.
On the other side, resu1t 2.1 suggests that it is e1so poBsi-
b1e to introduce some infinity in MST. Let us sketch one

8pproach.
The 'Iinfini te" seta wi11 be "non-smel1~I ones but the dif-

ferent "degree" of infinity of two infinite seta 8,b wi111ay
rether in their different "comp1exity" (in the sense of know-
1edge) than in the di•ferent cardinality. Thus we may define
a~b iff "there exists a decideb1e bijection f s\lcb thet
-Vx; oxE. a= Of{X)fb 'I (there is, c1early, a number of other

possibilities). It is easy to prove, for examp1e, that there
are infinite sets of different "degree" (e.g.Russe11'e and

universal .
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§5. Two consietent fragments

In this Chapter we present two consistency resu1te which

are both proved by construction of sn appropriate Kripke-sty-

1e model.
2.1 Theorem: The theory MST without extensionality and with

MCC restricted on1y to nonmoda1 formu1as is con-

- ,
c & (o t~y -7 o-ff<t,ž» is consistent.

Various consistency resulte concerning fragmente of MST

vlith restricted applicability of N-rule cen be proved, in

particular using interpretation into the Fefermen'e theory

from [3) (see [8)).

sistent.

(a formula is nonmoda1 iff i t does not contain Q
5.2 The'orem: The theory ~M3T wi th MCC replaced by a Bcheme:

3yVt; (OtéY -) a~(t,z) II...
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Psrt II, §.6;. New coneietency reeult

In thie Chapter we prove coneistency of the following 8ub-

theory S of MST. Theory S has N-rule genera11y applicable

and the following axiom schemas over those of predicate ca1-

culus: (1) 1:1 ~ ~ <f

. (2) C(~~""• -9 (oCf -') Q"•)

Ox=y -7 CJx=y

(4)

(5)
e'

The proof will 'be done by in terpreting S in peano' 8 ari thmetic

'PA.
6~i Lemma :v There exists s provsbility predicete P(x) in PA

s. t. for sny sri thmetica! formulss <I. ~ holds:-Ci\ if PA I-lf then PA J- p( Cf) .

(i-i) PA\- p(c1==i'i-)~(p(")-")P('If) ,"'.' 1.,;;

(iii) PAf-(x=y ~p(n»)a.. (x:ty ~ p($j;)
Civ) PA~ I pC f:{) v -, P (-}"Cf. -

(Remsrk: we use ususl formslizstion of.!yntsx in PA; thue ~
denote a code of a formuls Cf , Prf (d, Cf) means "d is a proof

of ~ in PA", for b e number b denotes sn appropriate numer8l
""

and so on.) ,

~roof (in P~: A proof d is a sequence. of formulas which will be

called.s~ep~ of d. Letters d, do' dl are reserved ~or
proofs. Define in PA : . ".

a) d ')-"èf ~ 'I tf is s step in d"

~ d e tf ~!' 'Ithe sequence which is s prologation of' d by

sdding Cf ss s new step"

C) "d is inconsistent" ~ 'Ifrom set {y Id>-q} is the for-

muls x*x derivsble in predicste calculus only"

dl d+~!' "min Xd" , where Xd is a set of' 811 dG)-q.' which
satisfies a conjunction cf: . . . ,J.
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i) dQ:)lf i8 a proof in PA "..:,..',:"'", ,
(iv d~q is not rlnconsistent ,C,'

(ii:iJ. d)-(f' .

e) "d is goOd"~ "there exists a sequence (so,el'...'suJ.- v. + d d . .e.t. so= x=x, vl<u;si+l=si sn eu= " .,

Now we are ready to define provabllitypredicate P(x)s " .
PCèj) M .=J d; prf(d,q) ~ "d is good't. " '

Subl~mma Ci): Predicate p(x) satisfies 6.1(í).. -
Proof: Let Cf be sny formula s.t. PA \-tf . We prove PA\- p{~)

by metainduction on the number of eteps in the shortest proot
of tf . cfhuS suppose that for 811 st..:pe 'Y' i IS before. Cf in the
ehortest proof o!. ~ holds PA ~ P l "'• i) . Let do be a good
proof s. t. do)-- ~ i s (such clearly exists). If a1so dï-t? we
are done so suppose 1 do)-- tf . Consider good proofs d ~do s. t.
d+< dG)tì . There is on1y finite1y msny formulas be11owV+ -
hence we may chaose dl the leest good proof ~ do s. t. dl~dl6>tt..

Now, by choice of do (and by consistency of PA), dBife X
d- o o

thus, b~ def~i tion of dl' els~ d1~ ~ ~Xd .
Hence dl =dlG>f..( , i. e. PA}- P(C() and we ate done.
Sublemma(ii): Pr~dicate P(x) satisfies 6.1(ii).
Proof(in PA):Let do be the greatest of good proofs of Ct'-=I'Y
snd Cf . Thus do")-Tf"~and dr èf. Consider dl the leest good

+ -
proof s.t. dl~do and dl~dl6ff. If not d~-Vthen clearly
d-PJ.y;e-Xdhence dr=d1G>f snd p{f') follows. We are done.
sublemmaClii): Predicate P(x) satisfies 6.l(iii).

Proof(in PA) : For sny numbers 8,b: 8=b~~=~. Clearly 811 re-

cursive properties of + and. which are needed for proving

true equality (or inequality) have good proofs. Then the sta-
.('Jlo~s., ( )tement oy lnduct10n on max a,b . We are done. .

,

Suble~a iv: Predicate P{x) satisfies 6.1(iv).

Proof (in PA J: Let PC tf) and PÚ~) and chaose d to be theo
greatest of good proofs of cp , 7'( . Then do is, inconsistent-
-contradiction. We are done.

This comp1etes also the proof of 6.1. :. ,

J
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6.2 Defini tion (in PA):- (i) Fle(y) ~ "y is s code of some :?2-formula tp{tJ (po-

ssibly with psrsmeters) with one tree varia-
bl e t (thus alBa y= fu)) "

(PC x) is a ~2-formula) --
(i i) y~ z U Fle(y) -'<. Fle(z.) k "if y=VCt) and z=~t) then

+lt;C(CtJ:"((tJ ft '.
. (This is possible to define in PA since the ':formulas Cf t ~

have bounded comp1exity.)(ii~) S(u,v) gr "there exists 8 sequence (so,...,su) s.t. .

Cc ti ~ u;Fle (si) and tw~ vjFle(w) ~~ i.G u;siC'W
and Vi*j~ u;/ Si~Sj , and 8~ v " . '

Civ) xE:Y M .:;Jv; SCy,v).I.. nif v= '<f (tj then t!(X) "
6 . 3 Lemma: PA ~ ("'Vt; t ~ x =- t E y) -) x=y .
~ -

6.4 Theorem: The theory S is consistent re1stive to PA.
proof: Define the interpretation ~I of sny model set-theore-
ticsl formu1s ~ ss fo110ws:

aj E interpret according to Def'inition 6.2 Civ}
b) = interpret absolutely
c) (oCf)I!JJ [p ("Cf I) ~ cpI J ~

d) I commutes wi th I ,~ and -V .
Now we .g1~: If S 1- <f then PA I- tf I .
By 6.1 and 6.3 this is c1ear for axiom schemas (1),...,(4).
For (5) let CfCt,z) be sny modal set-theoretical formula and
a sny psrameters (i.e. numbers). Then choose b, s.t.
S(b, I(tt"(t-;I) I J) . By defini tion 6.2: Vt; t(; b~ p( ii"ii-;!J I) ~d

tence: tt;p(~~"i} 1).1,.. '(Ct,a f -3> t ~b .
By 6 .1 Ci v): PC-T'C(t-;"'fr) 1)-7 I pC v~iJ I) , 80 slso :

P(1C;'"ét~)I)~ tf.b. Hen;e PC1~-èt~)I); 1<fCt,a)I-, tf b. .

Thus 1-interpretstion of sny instance of (5) is provable
in PA. The proof of the c1sim is completed by showing that

PA ~tfI imp1ies PAf-(~Cf)I . But this is immediste by 6.1(i).
Since (x*x) I = (x=tx) this alBa compl~tes the proof' of,- ~

theorem. .
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