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Abstract

A method for constructing Boolean-valued models of some fragments
of arithmetic was developed in [3], with the intended applications in
bounded arithmetic and proof complexity. Such a model is formed by
a family of random variables defined on a pseudo-finite sample space. We
show that under a fairly natural condition on the family (called com-
pactness in [3]) the resulting structure has a property that is naturally
interpreted as saturation for existential types. We also give an example
showing that this cannot be extended to universal types.

Let K be a Boolean-valued L-structure. That is, each sentence A in the
language L(K), L augmented by constants for all elements of K, is assigned a
truth-value [[A]] in a complete Boolean algebra B. These values commute with
propositional connectives (after Boole[1]) and satisfy

[[∃xA(x)]] =
∨

u∈K

[[A(u)]] and [[∀xA(x)]] =
∧

u∈K

[[A(u)]]

(after Rasiowa-Sikorski[5]).
Let p be a set of formulas in variables x = x1, . . . , xn. In the classical case

the set p is an n-type over a structure if it is finitely satisfied, i.e.

∧

Φ⊆fp

∃x
∧

A∈Φ

A(x)
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where Φ runs over finite subsets of p, and it is realized in the structure if

∃x
∧

A∈p

A(x)

holds there. In the context of Boolean-valued structures this is naturally tran-
scribed as the following condition on truth values:

(Satur)
∧

Φ⊆fp

[[∃x
∧

A∈Φ

A(x)]] ≤
∧

A∈p

[[A(u)]]

for some u ∈ Kn; we shall say that such u realizes (Satur) for p in the
structure. Note that in that case (Satur) is actually an equality as the left-hand
side always majorizes the right-hand side.

In this paper we show that a certain class of Boolean-valued structures con-
structed via forcing with random variables (recalled in Sections 1 and 2) is
saturated in this sense for sets of existential formulas. This is done first for
the special case of sets p consisting of open formulas in Section 3 to display
clearly the idea, and for the existential case in Section 4. In Section 5 we give
an example of a structure from the same class that is not saturated for sets of
universal formulas. The paper is concluded by a brief explanation in Section 6
how is open saturation of the structures considered potentially relevant to proof
complexity.

Background on model theory can be found in [4], further material (and
details) on forcing with random variables in [3].

1 Forcing with random variables set-up

In this section we shall briefly recall the construction of Boolean valued struc-
tures by forcing with random variables from [3]. The intended target structures
are models of arithmetic with a special emphasis on bounded arithmetic. This
is motivated by a close relation of bounded arithmetic to proof complexity but
we shall not review this topic here (an interested reader can consult [2, 3]).

The structures are built from a family of random variables on a pseudo-finite
sample space. Let M be a non-standard ℵ1-saturated model of true arithmetic
in some language L containing the language of Peano arithmetic and having a
canonical interpretation in the standard model N. In [3] we took a language
having symbols for all relations and functions on N but here it is natural to
consider countable L. In fact, we shall assume that L is definable in Peano
arithmetic (this includes finite and recursive languages).

Let Ω ∈ M be an infinite set; as it is an element of the model it is M-finite.
Let F ⊆ M be any family of functions α : Ω → M. We call elements of F
random variables. It is not assumed that F is definable in the ambient model
M.

Let A be the Boolean algebra of M-definable subsets of Ω and let B be its
quotient by the ideal I of sets of an infinitesimal counting measure. Using the
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idea of Loeb’s measure, the ℵ1-saturation of M and some measure theory it was
shown in [3] that B is a complete Boolean algebra.

The counting measure on A induces a strict measure µ (in the ordinary
sense with values in R) on B. The measure defines a metric on B: the distance
of two elements is the measure of their symmetric difference.

For any k-ary function symbol f from L and any α1, . . . , αk ∈ F define the
function f(α1, . . . , αk) : Ω → M by

f(α1, . . . , αk)(ω) := f(α1(ω), . . . , αk(ω)), for ω ∈ Ω .

If this function is also always in F we say that F is L-closed.
Any L-closed family F is the universe of a Boolean-valued L-structure K(F )

with L(F )-sentences having their truth values in B defined as follows. Every
atomic L(F )-sentence A is naturally assigned a set 〈〈A〉〉 from A consisting of
those samples ω ∈ Ω for which A is true in M. The image of 〈〈A〉〉 in B,
the quotient 〈〈A〉〉/I, is denoted [[A]]. Following Boole [1] and Rasiowa-Sikorski
[5] this determines the truth value [[A]] ∈ B for any L(F )-sentence A: [[. . .]]
commutes with Boolean connectives and

[[∃xA(x)]] :=
∨

α∈F

[[A(α)]] and [[∀xA(x)]] :=
∧

α∈F

[[A(α)]] .

It holds that all logically valid sentences get the maximal truth value 1B. We
say that a sentence is valid in M if its truth value is 1B.

There are various generalizations of this basic set-up considered in [3]. For
example, the random variables from the family F can be only partially defined
on the sample space Ω (as long as their regions of undefinability have infinitesi-
mal counting measures) or the sample space may be equipped with some other
probability distribution than the uniform one.

We shall use one immediate consequence of the ℵ1-saturation of M and so
we formulate it as a lemma.

Lemma 1.1 Let {ak}k∈N be any sequence of elements of M. Then there is
an element a∗ ∈ M that codes a sequence {a∗i }i≤t of some non-standard length
t ∈ M \N such that a∗k = ak for all k ∈ N.

Any such element a∗ is called a non-standard extension of {ak}k∈N. We
shall skip in future the ∗ in the notation and denote a non-standard extension
simply as {ai}i≤t.

2 Compact families and witnessing of quanti-

fiers

In this section we shall recall the concept of a compact family F from [3, Chpt.3]
and some properties of K(F ) it implies.

Definition 2.1 Let F ⊆ M be a family.
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1. F is closed under definitions by cases by open L-formulas iff when-
ever α, β ∈ F and B(x) is an open L(F )-formula with free variable x then
there is γ ∈ F such that:

γ(ω) =

{

α(ω) if B(α(ω)) holds
β(ω) otherwise.

2. F is compact iff there exists an L-formula H(x, y) such that for

Fa := {b ∈ M | M |= H(a, b)}

the following two properties hold:

•
⋂

k∈N Fk = F .

• Fk ⊇ Fk+1, for all k ∈ N.

Recall that the Overspill is the principle, a simple consequence of induction, that
if a property definable inM holds for all standard numbers, it must hold actually
for all elements up to some non-standard element of M (cf. [3, Appendix]).
The primary intended use of compact families is to allow the following type of
reasoning.

Assume {αk}k∈N is an arbitrary sequence of elements of F and that {αi}i≤t

is its non-standard extension. Note that the conditions posed on sets Fk in the
definition of compactness imply that for all standard k it holds that

• ∀j ≤ k αj ∈ Fk, and

• ∀j < k Fj ⊇ Fj+1.

By the Overspill in M this must hold also for some non-standard s ≤ t. In
particular, all αj from the non-standard extension with j ≤ s are in Fs ⊆ F ,
and hence in F too.

Theorem 2.2 [3, Thm.3.5.2]
Let F be an L-closed family that is closed under definition by cases by open

L-formulas and compact. Let A be an L(F )-sentence of the form

∃x1∀y1 . . .∃xk∀ykB(x1, y1, . . . , xk, yk)

with B open.
Then there are α1, β1, . . . , αk, βk ∈ F such that for all i = 1, . . . , k:

[[∀yi∃xi+1∀yi+1 . . . ∃xk∀ykB(α1, β1, . . . , αi, yi, xi+1, yi+1, . . . , xk, yk)]] = [[A]]

and

[[∃xi+1∀yi+1 . . .∃xk∀ykB(α1, β1, . . . , αi, βi, xi+1, yi+1, . . . , xk, yk)]] = [[A]] .

4



3 Saturation for sets of open formulas

In this section we prove a special case of saturation when all formulas in the
set p are open. We will use the following immediate corollary of Theorem 2.2.
To simplify the notation we consider, here as well as in the next section, sets of
formulas in one free variable; the general case would be done in the same way.

Corollary 3.1 Let F be an L-closed family that is closed under definition by
cases by open L-formulas and compact. Let A(x) be an open L(F )-formula with
one free variable x.

Then there is α ∈ F such that:

[[∃xA(x)]] = [[A(α)]] = 〈〈A(α)〉〉/I .

Proof :
The first equality follows from Theorem 2.2 and the second one follows by

the definition of [[A]] as A is open and taking the quotient by I commutes with
Boolean connectives.

q.e.d.

In proving the next theorem we could restrict to the special case when the
left-hand side of (Satur) has value 1B by taking a suitable quotient of B. How-
ever, this would be done at the expense of having to show that the inequality for
the resulting new Boolean-valued structure could be pulled back to the original
one. We thus prefer not to make this simplification.

Theorem 3.2 Let L be a language definable in Peano arithmetic. Let F be an
L-closed family that is closed under definition by cases by open L-formulas and
compact.

Assume that p is a countable set of open L(F )-formulas in one free variable
x.

Then there is an element α ∈ F that realizes the saturation inequality (Satur)
for the set p in K(F ).

Proof :
Let A′

1(x), A
′
2(x), . . . enumerate p and define

Ak(x) :=
∧

i≤k

A′
i(x) , for k ≥ 1 .

Then we have the following

Claim 1:All implications
Ak+1(x) → Ak(x)

are logically valid and if an element α ∈ F satisfies the following inequality
∧

k

[[∃xAk(x)]] ≤
∧

k

[[Ak(α)]]
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then α realizes the (Satur) inequality for p in K(F ).

Note that the inequality is actually an equality in that case.

Claim 2:Assume α ∈ F , U ⊆ Ω ∧ U ∈ M and it holds

〈〈Ak(α)〉〉 ⊇ U

for all k ∈ N, and
µ([[∃xAk(x)]]) ց µ(U/I)

as standard k → ∞.
Then α satisfies the inequality from Claim 1 and hence realizes (Satur) for

p in K(F ).

The arrow ց means that the sequences of reals on the left-hand side is non-
increasing and its limit is the right-hand side. The claim follows as

[[∃xAk(x)]]) ≥ [[Ak(α)]]) ≥ U/I .

Now we are going to show that some α and U satisfying the hypothesis of
Claim 2 do exist. This will prove the theorem.

By Corollary 3.1 there are αk ∈ F such that

[[∃xAk(x)]] = [[Ak(αk)]] .

Define Uk := 〈〈Ak(αk)〉〉, so

[[∃xAk(x)]] = Uk/I

and as Aℓ logically implies Ak for l ≥ k, also

Uk ⊇ Uℓ , for ℓ ≥ k .

Consider the sequence {Ak, αk, Uk}k∈N and let

{Ai, αi, Ui}i≤t , t non-standard

be its non-standard extension provided by Lemma 2.1.
By the compactness of F there is a definable family {Fa}a of sets such that

F =
⋂

k ∈N Fk. Consider the following property, definable inM (the definability
of L is used here), of an element i ≤ t. It is the conjunction of seven conditions:

1. Ai is an open L(Fi)-formula.

2. Ai → Aj is logically valid for all j ≤ i.

3. 〈〈Ai(αi)〉〉 = Ui.

4. Ω ⊇ U1 ⊇ . . . ⊇ Ui.
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5.
|Uj |
|Ω| − |Ui|

|Ω| < 1/j for all j ≤ i.

6. F1 ⊇ . . . ⊇ Fi.

7. αj ∈ Fi for all j ≤ i.

All seven conditions are valid for all standard i perhaps with the exception of
5: but taking a suitable subsequence of the original sequence {Ak, αk, Uk}k∈N

arranges this condition too. The first two items are included because in the
argument below we need to talk in M also about the satisfiability relation for
formulas Ai with a non-standard index. By the Overspill then the property
must be true for all i ≤ s up to some non-standard s ≤ t. We want to show
that for such an s, αs and Us satisfy the hypothesis of Claim 2.

By 6 and 7 αs ∈ Fs ⊆ F and by 1, 2 and 3

〈〈Ak(αs)〉〉 ⊇ 〈〈As(αs)〉〉 = Us

for all k ∈ N. It remains to note that

µ([[∃x(Ak(x)]]) ց µ(Us/I) .

follows by 3, 4 and 5.

q.e.d.

In the argument we have used that for an open formula A(x) the set 〈〈A(α)〉〉
is definable from α and satisfies [[A(α)]] = 〈〈A(α)〉〉/I. This is not true for general
formulas but for for existential formulas one could add witnesses (in the sense
of Corollary 3.1) for the values [[Ak(αk)]] to the data in {Ak, αk, Uk}k∈N and
run an analogous argument.

Assuming little bit more about the structure however, we can derive the
existential case directly from Theorem 3.2.

4 The existential case

In this section we note that Theorem 3.2 implies the statement also for sets
of existential formulas as long as the underlying structure admits a pairing
function. This is always the case for structures of interest in [3] as they are
models of various bounded arithmetics.

Definition 4.1 Let F be an L-closed family. We say that K(F ) has pairing
if L contains symbols π1(x), π2(x) for two unary functions and a symbol 〈x, y〉
for a binary function, and the universal closures of the following three formulas
are valid in K(F ):

• 〈π1(z), π2(z)〉 = z.

• π1(〈x, y〉) = x.
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• π2(〈x, y〉) = y.

Theorem 4.2 Let L be a language definable in Peano arithmetic. Let F be an
L-closed family that is closed under definition by cases by open L-formulas and
compact. Assume that K(F ) has pairing.

Let p be a countable set of existential L(F )-formulas in one free variable x.
Then there is an element α ∈ F that realizes the saturation inequality (Satur)
for the set p in K(F ).

Proof :
Using the pairing to replace several existential quantifiers by one we may

assume without a loss of generality that the formulas in p have the form A(x) =
∃yB(x, y), with B open. Enumerate p as Ak(x) = ∃yBk(x, y), k ∈ N, and define
open formulas

Ck(z) := Bk(π1(z), π1(π
(k)
2 (z)))

where π
(k)
2 abbreviates k-times iterated π2. The following claim implies that if

α ∈ F realizes (Satur) for {Ck | k ∈ N} then π1(α) realizes it for p.

Claim: For any k ∈ N it holds that

[[∃x
∧

i≤k

Ai(x)]] = [[∃z
∧

i≤k

Ci(z)]] .

Clearly the left-hand side majorizes the right-hand side. For the opposite
direction apply Corollary 3.1 to get γ, β1, . . . , βk ∈ F such that

[[∃x
∧

i≤k

Ai(x)]] =
∧

i≤k

[[Bi(γ, βi)]]

and define
α := 〈γ, 〈β1, 〈β2, . . . , 〈βk, γ〉 . . .〉

(the second γ could be replaced by any element of F .) It is easy to see that the
substitution z := α gives to the right-hand side in the Claim a value that equals
to [[∃x

∧

i≤k Ai(x)]].

q.e.d.

5 The failure of the universal case

In this section we show that Theorem 4.2 cannot be generally strengthened to
sets of universal formulas. Take for L the language of Peano arithmetic together
with the inequality sign ≤ and with some function symbols for pairing and its
projections, and having also a unary function symbol |x| for the bit-length of
number x.
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In M we shall identify numbers with the binary strings consisting of their
bits. Let the sample space Ω be simply {0, 1}n for some non-standard n ∈ M
and let the family F consist of all functions on Ω computed by circuits with
n inputs and arbitrarily many outputs but of the size bounded above by all

terms 2n
1/k

, for all k ∈ N. In other words, these are functions computed in
sub-exponential non-uniform time. It is easy to see that F is compact: take for

Fk the functions on Ω computed by circuits of size bounded above by 2n
1/k

.
Let idΩ be the identity function on Ω. Consider the following universal

L-formulas:
Ak(x) := |x|k ≤ |idΩ| ∧ ∀y(|y| 6= x) .

(The expression |x|k is just an abbreviation for the term |x|·. . .·|x|, |x| occurring
k-times.)

The value of |idΩ| is on all samples n. Take for x any constant function α

outputting a fixed string of bit-length n1/k and of value 2n
1/k

. Then clearly
[[|α|k ≤ |idΩ|[[= 1B but also [[∀y(|y| 6= α)]] = 1B. This is because no function

from F can output a string of length 2n
1/k

. This implies that the left-hand side
of (Satur) for formulas Ak(x) has the truth value 1B.

On the other hand, assume that α makes all sentences |α|k ≤ |idΩ| valid.
Hence the sets Uk ⊆ Ω defined by

ω ∈ Uk iff |α(ω)| ≤ n1/k

have all counting measures infinitesimally close to 1. The sequence of Uk thus
satisfies

U1 ⊇ . . . ⊇ Uk

and

1 −
|Ui|

|Ω|
< 1/k , for all i ≤ k .

Taking its non-standard extension {Ui}i≤t and applying the Overspill analo-
gously as before yields a non-standard s ≤ t for which the counting measure of
Us = 〈〈|α|s ≤ |idΩ|〉〉 is infinitesimally close to 1, i.e. [[|α|s ≤ |idΩ|]] = 1B holds.

But then the value of α on each sample from Us is at most 2n
1/s

and so
there is a β ∈ F that outputs on each sample ω ∈ Us a string of bit-length

α(ω) ≤ 2n
1/s

. For such β however, [[|β| 6= α]] = 0B. This argument proves the
following statement.

Theorem 5.1 There is a finite language L and an L-closed family F that is
closed under definition by cases by open L-formulas, compact and such that
K(F ) has pairing, but for which there is a countable set of universal L(F )-
formulas in one free variable x for which no element of K(F ) realizes the satu-
ration inequality (Satur).
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6 A concluding remark

In the abstract we have alluded to intended applications of forcing with random
variables in proof complexity. To illustrate - in rather abstract terms - how open
saturation can be useful consider the following situation.

Let T be a theory in a countable language L and let ϕ be an L-definable
3CNF propositional formula ϕ. In a typical example T may be an extension of
a bounded arithmetic theory by an open diagram of some L-structure. The task
would be to construct a model of T containing a truth assignment satisfying ϕ.
That is, the model should satisfy a sentence of the form

∃x∀yA(x, y)

where A(x, y) is an open formula formalizing that the assignment x satisfies the
y-th 3-clause of ϕ.

If such a model can be found with α satisfying ∀yA(α, y), it often actually
suffices to work further only with a substructure of the model generated by α.
But in order for this substructure to satisfy ∀yA(α, y) it is not necessary that
the original model satisfies ∀yA(α, y); it suffices that α realizes in the model the
open type consisting of countably many formulas

A(x, t(x))

with t(x) ranging over all (countably many) terms with the only free variable x.
Open saturation allows to simplify the task to construct such a model and

to consider only how to realize in it finite subsets of the type.
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[2] J. Kraj́ıček, Bounded arithmetic, propositional logic, and complexity theory,
Encyclopedia of Mathematics and Its Applications, Vol. 60, Cambridge
University Press, (1995).
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