
A note on SAT algorithms and proof complexity

Jan Kraj́ıček∗

Faculty of Mathematics and Physics
Charles University in Prague

Abstract

We apply classical proof complexity ideas to transfer lengths-of-proofs
lower bounds for a propositional proof system P into examples of hard
unsatisfiable formulas for a class Alg(P) of SAT algorithms determined by
P . The class Alg(P) contains those algorithms M for which P proves in
polynomial size tautologies expressing the soundness of M . For example,
the class Alg(Fd) determined by a depth d Frege system contains the com-
monly considered enhancements of DPLL (even for small d). Exponential
lower bounds are known for all Fd. Such results can be interpreted as a
form of consistency of P 6= NP.

Further we show how the soundness statements can be used to find
hard satisfiable instances, if they exist.

Keywords: Computational complexity.

We shall consider algorithms that take as inputs CNF formulas and always
terminate. If the output M(ϕ) of algorithm M on input ϕ is not a satisfying
assignment for ϕ we shall call the computation rejecting. By a SAT algorithm
we shall mean an algorithm that upon receiving a CNF formula computes a
satisfying assignment, if one exists. We consider primarily deterministic algo-
rithms but the whole construction works for algorithms whose set of rejecting
computations is in NP. Such more general algorithms are a special case of
propositional proof systems in the sense of Cook and Reckhow [11]. We could
also allow non-uniform algorithms.

Denoting RejectM (w,ϕ) the property that w is a rejecting computation of
M on ϕ and by Sat(a, ϕ) the satisfiability relation between a truth assignment
and a formula, the property that M is a SAT algorithm can be expressed by a
universal statement

(M) Sat(a, ϕ) → ¬RejectM (w,ϕ) .

∗Supported in part by grants IAA100190902 and MSM0021620839. Also partially affiliated
with the Institute of Mathematics of the Academy of Sciences and grant AV0Z10190503.

1

A Cook-Reckhow propositional proof system (a proof system for the set of
propositional tautologies) mentioned earlier is simply any p-time relation P (x, y)
for which

ϕ /∈ SAT iff ∃yP (¬ϕ, y)

(usually one allows any formula ϕ and not just CNF but one can also reduce to
CNF via the so called limited extension, cf.[11, 14]). A SAT algorithm M can
be then trivially thought of as a proof system PM by defining

PM (τ, w) iff RejectM (w,¬τ) .

For example, if M is the simple DPLL algorithm [12, 13] then PM is exactly
the tree-like resolution (i.e. given an unsatisfiable formula, computations using
different DPLL search strategies are in one-to-one correspondence with tree-like
resolution refutations). Similar descriptions in terms of variants of resolution
are known for several commonly considered enhancements of DPLL, cf. [3, 4, 6].

In this note we want to point out1 that proof complexity offers another,
somewhat more subtle, relation between SAT algorithms and proof systems
based on interpreting the formulas (M) as soundness statements (aka reflection
principles) about M . This is a specialization of a classical relation between
the provability of reflection principles and simulations among proof systems,
cf. [9, 17, 14]. Let us remark that proof complexity studies also other topics
intimately linked with SAT algorithms, such as the existence of a p-optimal
proof system or automatizability of proof search (cf.[8, 15, 19] for overviews and
references). Here we shall restrict ourselves to reflection principles only.

Relevant background can be found in any of [10, 14, 19].

1 Reflection principles and the class Alg(P)

For k ≥ n ≥ 1 and suitable s = kO(1) let

rejectMk,n(y, x, z)

with y = (y1, . . . , yk), x = (x1, . . . , xn) and z = (z1, . . . , zs) be any 3CNF
formula such that for all w ∈ {0, 1}k and ϕ ∈ {0, 1}n:

(F) RejectM (w,ϕ) iff rejectMk,n(w,ϕ, z) ∈ SAT .

Such a formula exists by the NP-completeness of 3SAT as RejectM(w,ϕ) is a
polynomial time relation. Similarly, for n ≥ 1 and suitable m = nO(1) let

satn(u, x, v)

with u = (u1, . . . , un), x = (x1, . . . , xn) and v = (v1, . . . , vm) be a CNF formula
such that for all a, ϕ ∈ {0, 1}n:

Sat(a, ϕ) iff satn(a, ϕ, v) ∈ SAT

1Actually I was pointing out these facts informally in writings or in lectures over the years
but it appears that a formal presentation may be useful.

2

(we may need the extra variables v to put satn into CNF).
We want to stress that the choice of the formulas rejectMk,n is completely arbi-

trary as long as the equivalence (F) holds. This is important as it substantially
simplifies proofs of reflection principles (see below). On the other hand, the
formulas satn need to be chosen with care, following the natural formalization
of the satisfiability relation by induction on the logical complexity of ϕ. This is
in order to be able to establish condition D4 in the next section.

For k ≥ n ≥ 1 define
refMk,n(x, y, z, u, v)

where x, y, z, u, v are tuples of variables as above to be the DNF formula

rejectMk,n(y, x, z) → ¬satn(u, x, v) .

Note that the size of refMk,n is kO(1).

Definition 1.1 For a proof system P let Alg(P) be the class of all algorithms
M such that there are formulas rejectMk,n satisfying the equivalence (F) and such

that the corresponding formulas refMk,n have polynomial size P -proofs.

Let us consider an example. A Frege proof system is any propositional cal-
culus operating with formulas in a complete basis, based on a finite number of
axiom schemes and schematic inference rules which are sound and implication-
ally complete. By a theorem of Reckhow [11, 14] Frege systems polynomially
simulate each other, even when having different languages. In particular, the
minimal proof lengths of formulas differ at most polynomially in various Frege
systems.

Let F be a Frege system in DeMorgan language with disjunction
∨

and
conjunction

∧
of unbounded arity. The depth dp(A) of a formula is defined

inductively: the depth of constants and variables is 0, the negation increases
the depth by 1, and applying any of

∨
,
∧

to formulas Ai yields a formula of the
depth 1 + maxi dp(Ai). Note that in this counting of the depth DNF formulas
have depth up to 3.

For d ≥ 3 define Fd to be the subsystem of F using only formulas with the
depth bounded by d. Systems Fd are collectively called by some authors AC0

Frege systems. Note that various choices of F determine AC0 Frege systems
that p-simulate each other, although the particular depth may change in the
simulation.

We claim that the class Alg(Fd) contains various common enhancements of
DPLL, even for small d. To construct short Fd-proofs of the reflection principles
(and, in fact, any other short proofs) it is best to use the general relation between
first-order theories and proof systems. The relation has many facets but the one
useful here can be informally described as follows. We say that proof system P
simulates theory T if whenever T proves that a coNP-property A(x) holds for
all x then P admits polynomial size proofs of the propositional tautologies 〈A〉n
expressing (as in the proof of the NP-completeness of SAT) that ∀x(|x| = n)A(x)

3

holds (see [14, Chpt.9] for details of the translation). First such simulation of a
theory by a proof system was defined by Cook [9].

The AC0 Frege systems simulate in this sense a theory from [7] called
V 0

1 (BD) there, or V 0
1 in [14] or V 0 in [10]. The theory represents formulas,

computations, assignments, etc. as binary string and allows to prove their
properties by induction on the length of a string for any AC0-property. It is
easy to see that that suffices to prove the soundness of resolution or its vari-
ous extensions corresponding to enhancements of DPLL. Namely, think that a
k-tuple of clauses over variables x1, . . . , xn is represented by a string defining a
(2n) × k 0 − 1 matrix where rows correspond to all 2n potential literals and 0
or 1 in row i and column j means that the i-th literal occurs in the j-th clause.

It is then straightforward to define, quantifying only over the matrix entries
(i.e. its coordinates), that a tuple of clauses forms a refutation of another tuple
of clauses. Having such a refutation, and an assignment to variables satisfying
all initial clauses, prove by induction on j that the first j clauses in the refutation
all are satisfied by the assignment (this is, in particular, an AC0 property). This
type of proof in V 0

1 uses induction for formulas with two quantifiers and can be
simulated by short proofs in Fd for small d (in our definition of the depth d = 5
will suffice).

Remark: It may be quite cumbersome to transform a rejecting run of some
algorithm, a DPLL enhancement, into a resolution refutation, as the references
[3, 4, 6] mentioned earlier show. However, because we have a free hand in choos-
ing the formulas rejectMk,n we can incorporate such a refutation (and the transfor-
mation of the particular computation into it as well) into the non-deterministic
witness (i.e. into the tuples of variables z in the formulas rejectMk,n). Then
V 0

1 may prove such a reflection principle (and hence some Fd may prove shortly
their propositional translations) even though it may not be able to formalize the
particular transformation of computations into refutations or prove its proper-
ties.

The reader can find details of the simulation of V 0
1 by the AC0 Frege systems

(going really back to [18]) in [14].

2 Hard examples for SAT algorithms

To state the theorem without excessive technical assumptions let us call a proof
system P decent iff the following tasks can be performed by polynomial time
algorithms:

D1 From a P -proof π of formula ψ(x) and a truth assignment a to variables
x construct a P -proof of ψ(a).

D2 Given a true sentence ψ (i.e. no variables) construct its P -proof.

D3 Given P -proofs π1 of ψ and π2 of ψ → η construct a proof of η.

4

D4 Given a formula ϕ(u1, . . . , un) and a P -proof of ¬satn(u,¬ϕ, v) construct
a P -proof of ϕ.

Conditions D1-3 are fairly obvious to verify for the usual proof systems2, includ-
ing Frege systems and their constant depth subsystems Fd. The algorithm for
condition D4 is defined by induction on the number of connectives in ϕ, cf.[14,
Chpt.9]. Note that the decency of a proof system has not much to do with its
strength.

Theorem 2.1 Let P be a decent proof system and M a SAT algorithm. Assume
that P admits polynomial size proof of all formulas

refMk,n

corresponding to some formulas rejectMk,n obeying the equivalence (F). Assume

further that for some sequence of DNF tautologies τn of size n ≤ |τn| ≤ nO(1)

and the function

ℓ(n) := the minimal size of a P -proof of τn

it holds that ℓ(n) is super-polynomial (i.e. the formulas τn witness a super-
polynomial lower bound for P).

Then M needs time ℓ(n)Ω(1) to reject ¬τn as unsatisfiable.

Proof :
For a tautology τ let kτ be the time M needs to reject ¬τ . The statement

follows from

Claim: Any tautology τ has a P -proof of size k
O(1)
τ .

Put ϕ := ¬τ and let k := kτ . Assume that the variables of ϕ are u =
(u1, . . . , un). Let w ∈ {0, 1}k and e ∈ {0, 1}s be such strings that the sentence
rejectMk,n(w,ϕ, e) is true.

By the existence of polynomial size P -proofs of refMk,n and by the decency
condition D1 we have that formulas

rejectMk,n(w,ϕ, e) → ¬satn(u, ϕ)

have p-size P -proofs. By D2 also sentences

rejectMk,n(w,ϕ, e)

have p-size P -proofs and thus by D3 the formulas

¬satn(u, ϕ)

have size kO(1) P -proofs. Applying D4 yields size kO(1) P -proof of τ .
Note the the final P -proof of τ is constructed by a p-time algorithm once

given w and e.

2P. Beame has pointed out that not all standard SAT algorithms when considered as proof
systems are decent. In particular, [4] have shown that resolution with clause learning does
not satisfy D1 unless it simulates general resolution (which appears unlikely).

5

q.e.d.

Remark: The assumption that the hard tautologies τn are DNF is not essential.
If τn is not a DNF one uses in the argument a CNF representing ¬τn via limited
extension mentioned earlier. In particular, the decency condition D4 holds for
the usual proof systems for these more complex formulas too.

There is quite a variety a proof systems for which even exponential lengths-
of-proofs lower bounds (for DNFs) are known. These include the systems Fd

introduced earlier, but also proof system operating with linear inequalities (e.g.
cutting planes) or with polynomials over fields (e.g. polynomial calculus) and
their various combinations, or even with OBDDs. On the other hand super-
polynomial lower bounds are not known for (depth unrestricted) Frege systems;
see [15] or [8] for an overview and references (and [16] for the OBDD proof
system).

In principle it may happen3 that some algorithm M , when considered as a
proof system, may be included in a proof system P while not being in Alg(P).
Indeed, Atserias and Bonet [2] have shown that resolution proof system R does
not prove its own soundness, i.e. no SAT algorithm whose rejecting runs corre-
spond to general resolution proofs will be in Alg(R). However, it seems plausible
that any such (natural) algorithm will be in Alg(Fd) for some d ≥ 3.

The theorem implies, in particular, that any super-polynomial lengths-of-
proofs lower bound for a decent proof system (for any sequence of tautologies)
yields the following form of consistency for P 6= NP. This is because the formu-
las refMk,n are the propositional translations of the statement (M), just written
contrapositively.

Corollary 2.2 Let T be a first-order theory and P a decent proof system that
simulates T in the sense described earlier.

If P is not polynomially bounded (i.e. there is a sequence of tautologies
requiring super-polynomial size P -proofs) then the set of the negations of all
statements (M) for all clocked polynomial time algorithms M is consistent with
T .

In particular, P 6= NP is in this sense consistent with V 0
1 (in fact, even with

a bit stronger theory with various combinatorial principles - like pigeonhole
principle - added as axioms). Note that any super-polynomial lower bounds
for Extended Resolution (which is equivalent to Extended Frege system, cf.
[11]) would imply such a consistency with theory V 1

1 whose principal axiom is
induction on the length of strings for any NP-property. This theory defines
all polynomial time algorithms and proves many of their properties (and, in
fact, proves many significant complexity-theoretic results) and it is difficult to
imagine a natural SAT algorithm whose soundness would not be provable there,
cf.[7, 10, 14].

3As K. Ghasemloo pointed out.

6

Let us note that using some more proof complexity ([9, 17, 14]) one can get
a similar statement about the consistency of NP 6= coNP.

3 Finding hard satisfiable formulas

Unless P = NP, for any SAT algorithm M there have to be satisfiable hard
formulas, formulas that need super-polynomial time: if M would always find a
satisfying assignment for any satisfiable formula in time nc we could equip M
with a clock that would stop any computation going over the time and reject
the input. This new algorithm M c would be sound and would run in polynomial
time.

In the next statement we observe that the reflection formulas refM
c

k,n can be
used to find such hard instances efficiently.

Theorem 3.1 Assume P 6= NP and let M be any SAT algorithm. Let c ≥ 1 be
arbitrary.

Then there is an algorithm that for infinitely many n ≥ 1 constructs in time
nO(c2) from 1(n) a satisfiable formula αn of size at least n such that M needs
more time on αn than |αn|

c.

Proof :
Fix M and c ≥ 1. From P 6= NP it follows that for infinitely many n ≥ 1 M

needs more time than nc on some satisfiable formula of size n.
Take any such n ≥ 1 and put k := nc; hence ¬refMc

k,n is satisfiable. Note that

the size of ¬refM
c

k,n is nO(c).

We let M run on ¬refMc

k,n for time |¬refM
c

k,n |
c ≤ nO(c2). If it finds a satisfying

assignment we read αn of size n from it. Otherwise we take for αn the formula
¬ref

Mc

k,n itself.

q.e.d.

Note, as Albert Atserias has pointed out, that we have apparently no way
to tell which length n is good (i.e. the algorithm succeeds in finding the hard
formula) unless the first case happens for the particular n. This drawback can
be removed by replacing the assumption P 6= NP by a presumably stronger one
that every polynomial time algorithm fails to compute SAT on any sufficiently
large length n. Then our algorithm succeeds to find hard satisfiable instances
of every sufficiently large length (of a specific form and other lengths can be
treated by a suitable padding). Bogdanov et.al.[5] manage to construct hard
witnessed satisfiable instances (for infinitely many n, assuming also P 6= NP).

In fact, it would be interesting to remove the hypothesis P 6= NP from the
theorem altogether for some broad class of SAT algorithms. Alekhnovich et.al.[1]
do this for two subclasses of DPLL algorithms, the so called generalized myopic
and drunk algorithms, but their algorithm finding hard satisfiable instances
succeeds only with a high probability.

7

Acknowledgements: I thank Paul Beame, Luke Friedman, Kaveh Ghasemloo,
Leszek Kolodziejczyk and Neil Thapen for comments. I thank in particular to
Albert Atserias for his remarks on Theorem 3.1 and for pointing out [5].

References

[1] M. Alekhnovich, E. A. Hirsch, and D. Itsykson, Exponential lower bounds
for the running time of DPLL algorithms on satisfiable formulas, in: Proc.
of ICALP 2004, LN Computer Science, 3142, (2004), pp.84-96.

[2] A. Atserias and M. L. Bonet, On the Automatizability of Resolution
and Related Propositional Proof Systems, Information and Computation,
189(2), (2004), pp.182-201.

[3] A. Atserias, J. K. Fichte, and M. Thurley, Clause-learning algorithms with
many restarts and bounded-width resolution, J. of Artificial Intelligence,
40, (2011), pp.353-373.

[4] P. Beame, H. Kautz, and A. Sabharwal, Towards understanding and har-
nessing the potential of clause learning, J.of Artificial Intelligence Research,
22, (2004), pp.319-351.

[5] A. Bogdanov, K. Talwar, and A. Wan: Hard instances for satisfiability and
quasi-one-way functions, in: Proc. of the First Symposium on Innovations
in Computer Science, (2010), pp.290-300.

[6] M. L. Bonet and S. R. Buss, An Improved Separation of Regular Resolution
from Pool Resolution and Clause Learning. Preliminary manuscript, 2011.

[7] S. R. Buss, Bounded Arithmetic. Naples, Bibliopolis, (1986).

[8] S. R. Buss, Towards NP-P via Proof Complexity and Search. To appear,
2011.

[9] S. A.Cook, Feasibly constructive proofs and the propositional calculus, in:

Proc. 7th Annual ACM Symp. on Theory of Computing, (1975), pp. 83-97.
ACM Press.

[10] S. A. Cook, and P. Nguyen, Logical foundations of proof complexity, Cam-
bridge University Press, 2010).

[11] S. A. Cook, and Reckhow, The relative efficiency of propositional proof
systems, J. Symbolic Logic,44(1), (1979), pp.36-50.

[12] M.Davis, G. Logemann, and D. Loveland, A Machine Program for Theorem
Proving, Communications of the ACM, 5(7), (1962), pp.394397.

[13] M.Davis and H.Putnam, A Computing Procedure for Quantification The-
ory, J.of the ACM. 7(3), (1960), pp.201215.

8

[14] J. Kraj́ıček, Bounded arithmetic, propositional logic, and complexity theory,
Encyclopedia of Mathematics and Its Applications, Vol. 60, Cambridge
University Press, (1995).

[15] J. Kraj́ıček, Proof complexity, in: Laptev, A. (ed.), European congress of
mathematics (ECM), Stockholm, Sweden, June 27–July 2, 2004. Zurich:
European Mathematical Society, (2005), pp.221-231

[16] J. Kraj́ıček, An exponential lower bound for a constraint propagation proof
system based on ordered binary decision diagrams, J. of Symbolic Logic,
73(1), (2008), pp. 227-237.

[17] J. Kraj́ıček and P. Pudlák, Propositional Proof Systems, the Consistency
of First Order Theories and the Complexity of Computations, J. Symbolic
Logic, 54(3), (1989), pp. 1063-1079.

[18] J. Paris and A. J. Wilkie, Counting problems in bounded arithmetic,
in: Methods in Mathematical Logic, Ed. C.A.DiPrisco, LNM 1130, (1985),
pp.317-340. Springer.

[19] P. Pudlák, The lengths of proofs, in: Handbook of Proof Theory, S.R. Buss
ed., Elsevier, (1998), pp.547-637.

Mailing address:
Department of Algebra
Faculty of Mathematics and Physics
Charles University
Sokolovská 83, Prague 8, CZ - 186 75
The Czech Republic
krajicek@karlin.mff.cuni.cz

9

