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Genesis

In 1996, Alexei Semënov and Denis Richard showed to the first author
a short draft [S] sketching a very elementary algorithm (high school
level) of “quantifier elimination” for real closed fields following an
idea of A. Muchnik. To our knowledge, it was never expanded into a
paper. The second author, under the direction of the first one, trans-
formed it into a coherent text as a part of his “mémoire de licence”
[Oz]. The algorithm essentially relies on intermediate value property,
pseudo-euclidean division and sign change table for univariate poly-
nomials overR.

It was then realized that this algorithm exhibits some more general
feature and that it can be very naturally turned into an algorithm of
quantifier elimination for algebraically closed fields too. We think
that this algorithm deserves to be better known.

In section 2, we describe the algorithm for real closed fields and prove
its correctness. Then, in section 3, we show how to turn it into an
algorithm for algebraically closed fields. Although the algorithm pre-
sented here is not substantially different from the one proposed in the
book [BCR], we believe it is quite simpler in its presentation. We do
not precisely analyse its complexity but we suspect that it is far from
being efficient w.r.t. the fast algorithms of quantifier elimination for
real closed fields recently discovered by Renegar and other authors
(see [Re]).

1 A brief history

One can probably say that the logical study of the field of real numbers
began with the work of Alfred Tarski on quantifier elimination. A
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modern formulation of his result of quantifier elimination for the reals
is the following:

To any formulaϕ(x1, . . . , xn) in the vocabulary{0, 1,+, . . . , <}
one can effectively associate two objects: (i) a quantifier free
formula ϕ(x1, . . . , xn) in the same vocabulary, and (ii) a proof
of the equivalenceϕ ↔ ϕ that uses only the axioms of ordered
fields together with the intermediate value property for polyno-
mials (that is the axioms for real closed fields1).

We will refer it in the sequel as Tarski’s Theorem.

A precise formulation of this fundamental theorem and a clear out-
line of its proof were announced inThe completeness of elementary
algebra and geometry[T1], but the publication was interrupted by
the war. A detailed proof of the fundamental theorem finally appeared
under the titleA decision method for elementary algebra and ge-
ometry [T2].

Tarski’s original proof relies on an algorithm which tests the solvabil-
ity of a system of polynomial equations and inequations in several
unknowns inR, it is a kind of generalized Sturm’s theorem (which
itself generalizes sign change’s rule). In his proof, he only uses the
axioms of real closed fields. But Tarski does not mention the result
in full generality, he only states it for the fields of real numbers and
real algebraic numbers. In [T2] the emphasis was put on a decision
procedure for elementary Euclidean geometry which is a byproduct of
his theorem of quantifier elimination for the field of real numbers.

Also, Tarski never seems to have explicitly mentioned in his publi-
cations that the theory of algebraically closed fields admits quantifier

1We recall that Rolle’s Theorem is valid for real closed fields
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elimination. Obviously, he knew this result, but he was only interested
in decidability and completeness in each characteristic.

After the algorithm proposed by Tarski, different authors introduced
new ones. Among these, let us cite Seidenberg [Se], a colleague of
Tarski in Berkeley, and Hörmander [Hö]. The purpose of Seidenberg
was to make Tarski’s result much more accessible to mathematicians.
Seidenberg’s proof does not use the logical formalism, he describes
the proof in a geometric and algebraic context. That explains why
Tarski’s Theorem restricted to the fieldR, is generally known as Sei-
denberg’s Theorem (or as the Seidenberg-Tarski’s Theorem).

Quantifier elimination made important contributions to the logical
study of the field of real numbers, but also to algebra. As A. Robin-
son shows in [Ro], quantifier elimination for real closed fields permits
to give an easy alternative proof to Hilbert’s Seventeenth Problem.
In real algebraic geometry, Tarski’s Theorem implies e.g. that the
projection of semi-algebraic set is semi-algebraic and that the closure
of a semi-algebraic set is semi-algebraic. Similarly for algebraically
closed fields, Chevalley’s Constructibility Theorem, asserting that the
projection of a constructible set is constructible, is a particular formu-
lation of quantifier elimination. The reader can find plenty of details
about history of Tarski’s Theorem, its proofs and uses in mathematics,
logic and computer science in [D] which was very influential when
writing this short introduction.

2 Muchnik’s algorithm

In this section, we describe the algorithm together with a proof of its
correctness. Let us remind the reader that a real closed field is an or-
dered field2 with the intermediate value property for univariate poly-

2A field endowed with a linear ordering compatible with field operations

4



nomials. For simplicity of the exposition, we describe the algorithm
for the field of real numbers. As it can be easily checked, the same
proof holds for any real closed field.

Through this paper we consider polynomials of the formp(~Y ,X) with
coefficients inZ and whereX and ~Y = (Y1, . . . , Ym) are variables.
Such polynomials can also be seen as polynomials in the variableX
with coefficients in the ringZ[Y1, . . . , Ym]. The notationdeg p is used
for the degree ofp(~Y ,X) with respect to the variableX. In the sequel
we will use the following four operations which apply to polynomials
with nonzero degree.

Let p(X) = anXn + · · ·+ a0 ∈ Z[~Y ][X] with n > 1 andan 6= 0.

(i) Derivative: D(p) = ∂
∂X p

(ii) Extracting the leading coefficient: E(p) = an

(iii) Omitting the leading term: O(p) = an−1X
n−1 + · · ·+ a0

(iv) Modified remainder: it is applied to a couple of polynomials
p = anXn + · · · + a0 andq = bmXm + · · · + bo such that
n = deg p > deg q = m, q 6= p and provides the unique
polynomialr in Z[~Y ][X] with deg r < deg q such that

(bm)n−m+1 · p = q · ` + r

i.e., E(q)n−m+1 · p = q · ` + r

for somè in Z[~Y ][X] . We will denoter by MR(p, q).

We want to define the closure of a finite set3 of polynomials in
Z[~Y ][X] under the four operations. For any finite setsS, S

′
of poly-

3The same definitions and results hold if we replace set by list; this remark will be
useful because we will have further to consider the list of polynomials which appear
in a formula.
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nomials∈ Z[~Y ][X], we define

D(S) := {D(p) : p ∈ S, deg p > 1}
E(S) := {E(p) : p ∈ S, deg p > 1}
O(S) := {O(p) : p ∈ S, deg p > 1}

MR(S, S′) := {MR(p, q) : (p, q) ∈ S × S
′
, p 6= q, deg p > deg q > 1}

C(S, S
′
) := D(S

′
) ∪ E(S

′
) ∪O(S

′
) ∪MR(S, S

′
) ∪MR(S′, S)

deg S := max
p∈S

deg p

Proposition 2.1. LetS be a set of polynomials inZ[~Y ][X]. Then

(i) #D(S),#E(S),#O(S) 6 #S

(ii) #MR(S, S′) 6 (#S)(#S′)

(iii) deg C(S, S′) < deg S′

where#S denote the cardinal of the setS.

Proof. The claims are obvious.

We claim that the closure of a finite setS of polynomials under the
four operations is finite. Let us defineS0 = S andSn = C(

⋃n−1
i=0 Si,

Sn−1), n > 1.

Proposition 2.2. Let S be a finite set of polynomials∈ Z[~Y ][X] and
let CS =

⋃
n∈N Sn. Then

(i) CS is the closure ofS by the operationsD,E,O,MR.

(ii) CS is a finite set.

(iii) CS can be effectively build within a finite number of steps
fromS.
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Proof. The first claim is immediate from the construction ofCS. Let
us consider the second one. Since each of the operationsD,E,O,MR
decreases the degree of polynomials, it results that ifdeg Sn > 1
thendeg Sn+1 < deg Sn. Therefore there existsk ∈ N such that
deg Sk = 0 and so the process stops. On the other hand, for any
n ∈ N we have#Sn <∞ sinceS0 is finite. HenceCS is finite. This
proves the second claim. The last one is now trivial.

Let BCS be the subset ofCS which consists of all polynomials of
degree zero w.r.t. the variableX. By a sign condition on BCS,
we mean that we fix the sign at each element ofBCS. If BCS ={
t1(~Y ), . . . , ts(~Y )

}
then we associate to a sign condition onBCS

the following formula

∆(~Y ) := t1(~Y )∆10 ∧ · · · ∧ ts(~Y )∆s0 (1)

where∆i ∈ {<,=, >}. Sometimes we will say that the column∆ :=
(∆1 · · · ∆s)t is a sign condition onBCS.

A sign condition∆ on BCS is saidsatisfiable if there exists~a such
that formula∆(~a ) is true i.e.

R |= (∃~a)
(
t1(~a)∆10 ∧ · · · ∧ ts(~a)∆s0

)
It is equivalent to say that the system of polynomial inequalities ap-
pearing in the formula∆(~Y ) has a solution~a in Rm. Sometimes we
will use the terminology “~a satisfies∆ onBCS” or “formula ∆(~a) is
true”.

Let S = {p1(~Y ,X), . . . , p`(~Y ,X)} be a finite set of polynomials
∈ Z[~Y ][X] and letγ0 = −∞ < γ1 < γ2 < · · · < γn < γn+1 = +∞
be inR ∪ {−∞,+∞}. We now consider tablesT on S with ` rows
labelled byp1, . . . , p` and2n + 1 columns labelled by

]γ0, γ1[, γ1, ]γ1, γ2[, . . . , γn, ]γn, γn+1[
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such that the entries of the table are in{<,=, >} and, for eachγj

with 1 6 j 6 n, there existsi such that the entry in position(pi, γj)
is “=”. Such a table is calleda sign change table4 for S and it is a
visual representation of the following formula5

T (~Y ) := (∃γ1, . . . , γn)
∧̀
i=1

[( n∧
j=1

pi(~Y , γj)∇ij0
)

∧
(n+1∧

j=1

(∀z)
(
γj−1 < z < γj → pi(~Y , z)∇′ij0

))]

where∇ij ,∇′ij are respectively entries of the table in position(pi, γj)
and(pi, ]γj−1γj [). Sometimes it will be useful to say that the sign of
pi atγj is∇ij to express that∇ij is the sign in position(pi, γj).

We say thata table T on S is satisfied at~a ∈ Rm, or that~a satisfies
the table T on S, if the formulaT (~a) is true. Let us remark that,
whenT (~a) is true, it expresses the sign changes of the polynomials
pi(~a, X)’s on the real line w.r.t. the interval subdivision given by the
γi’s and thatγ1, . . . , γn are all zeros of non zero polynomials among
p1(~a, X), . . . , p`(~a, X); or in other words, the visual representation
of T (~a) is exactly the sign change table (in the classical sense) of the
polynomialsp1(~a, X), . . . , p`(~a, X).

Key Lemma. Let beS andBCS as above. Any satisfiable sign con-
dition ∆ onBCS determines in a unique way a sign change tableT∆

for CS (and so forS) such that

(i) The tableT∆ can be effectively computed fromS and∆.

4These signs tables with−, 0, + instead of<, =, > are well-known among high
school students when they study curve-sketching techniques for functions.

5 Whenj = 1, γj−1 < z < γj is replaced byz < γ1, similarly for j = n + 1.
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(ii) for any~a ∈ Rm, ~a satisfies∆ onBCS iff ~a satisfiesT∆ onCS,
i.e., for any~a ∈ Rm, ∆(~a) is true iffT∆(~a) is true
or againR |= ∀~Y ,

(
∆(~Y )↔ T∆(~Y )

)
Before proving the lemma, let us show how it gives a proof of Tarski’s
Theorem

Proof of Tarski’s Theorem.First let us recall an elementary fact about
quantifier elimination. To prove quantifier elimination for any formula
we only need to prove it for formulas with one existential quantifier;
indeed when we know how to eliminate one quantifier we can proceed
by induction on the number of quantifiers. Moreover the existential
quantifier distributes disjonctions. So for the theory of real numbers
in the natural language of ordered fields, we just need to show how to
eliminate the quantifier in formulas of the following type

ϕ(~Y ) := (∃X)
(
p1(Y1, . . . , Ym, X)∇10 ∧ · · ·

· · · ∧ p`(Y1, . . . , Ym, X)∇`0
)

where∇i ∈ {<,=, >} andpi(~Y ,X) ∈ Z[~Y ][X] for i ∈ {1, . . . , `}.
Let us denote6 L := {p1(~Y ,X), . . . , p`(~Y ,X)}. Let us remark that
to know whether the formulaϕ(~a) is true for a given~a ∈ Rm is
equivalent to know whether the column∇ = (∇1 · · · ∇n)t appears in
the sign change table of the listp1(~a, X), . . . , p`(~a, X). In view of the
key lemma, the answer to this question is equivalent to the existence
of a sign condition∆ on BCL such that∆(~a) is true and the sign
change tableT∆ on L contains the column∇. To achieve the proof
it remains to show that the existence of such∆ can be expressed by a
formula without quantifier.

6 In generalL will be a list (with some repetitions), but all the results stated before
are true for a list, as already mentionned.
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Let F be the set of all sign conditions∆ on BCL such that the sign
change tableT∆ on L contains∇ amongst its columns. From key
lemma and the previous remark, it is clear that for all~a ∈ Rm and for
all ∆ ∈ F we have∆(~a) is true implies thatϕ(~a) is true. Conversely
it is clear that ifϕ(~a) is true then∆(~a) is true for some∆ in F (∆ is
given by the signs of the elements ofBCL evaluated in~a). Hence we
have that

R |= ∀~Y
(
ϕ(~Y )←→

∨
∆∈F

∆(~Y )
)

Since the formula∆(~Y ) are quantifier free the theorem is proved.

Proof of Key Lemma.First for the givenS, we constructCS and
BCS and letBCS = {t1, . . . , ts} andCS = BCS ∪̇ {q1, . . . , qs′}.
From the construction ofCS andBCS we can be easily convinced
that we can choose an ordering forq1, . . . , qs′ such that the follow-
ing property is satisfied: for anyqi, i = 1, . . . , s′ and p among
q1, . . . , qi−1, we haveD(qi),E(qi),O(qi) andMR(qi, p) ∈ CSi−1 =
BCS∪{q1, . . . , qi−1}.7 This property can be restated in the following
form: for any j ∈ {1, . . . , s′} the setCSj is closed under the four
operationsD,E,O,MR. This property will be called “the closure
property” hereafter.

Now the proof consists in a proof by induction onj by building
a sign change table forCSj with the properties(i) and (ii) (for
j ∈ {1, . . . , s′}). From the construction it will be clear that there
is a unique way to do it. The existence of this unique table forCSj

together with the closure property is called hereafter the “invariant” of
the proof.

Let ∆ be (∆1 · · · ∆s)t a satisfiable sign condition onBCS. It is
immediate from the definitions that to fix∆ on BCS is equivalent to

7 We putCS0 = BCS.
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fix the following sign change table8 for BCS

−∞ +∞

t1 ∆1 ∆1 ∆1
...

...
...

...
ts ∆s ∆s ∆s

Let j = 0. let us remark that the sign change table onBCS de-
fined above from∆ satisfies properties(i) and(ii) and so the invari-
ant. Since by assumptionCS1 satisfies the closure property, the poly-
nomial q1 is necessarily of degree 1, and soE(q1) andO(q1) are in
BCS. So,q1 is equal totiX + tj whereti, tj ∈ BCS.

If the sign ofti is “=” in the sign condition∆ thenqi = tj ; in this
case it is clear that we get a sign change table forCS1 by copying the
row labelled bytj with a new labelq1:

q1 ∆j ∆j ∆j

If the sign ofti is not “=” then for any~a ∈ Rm satisfying∆ we have
ti(~a) 6= 0. Thusq1 = ti(~a)X+tj(~a) has a root inR. We split then the
column labelled]−∞,+∞[ in three columns labelled by]−∞, γ[, γ
and]γ, +∞[ and we obtain the following table forCS1:

X −∞ γ +∞

t1 ∆1 ∆1 ∆1 ∆1 ∆1
...

...
...

...
...

...
ts ∆s ∆s ∆s ∆s ∆s

q1 −∆i −∆i = ∆i ∆i

8For convenience of the proof we add two columns to the table forBCS labelled
by +∞ and−∞.
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In both cases it is easy from the construction to check that properties
(i) and(ii) are true for this table. This proves the initial step of the
induction.

Let us assume that we have built the table forCSj which satisfies
the invariant. Again the closure property guarantees that theD(qj+1),
E(qj+1) andO(qj+1) are inCSj .

If the sign of the leading coefficient ofqj+1 is “=” in the tableCSj ,
the extension is obtained as in the casej = 0: we add at the bottom
of the table a row labelled byqj+1 which is a copy of the row with the
labelO(qj+1) in the table forCSj .

If the sign of the leading coefficient ofqj+1 is not “=”, let us as-
sume that the labels of the columns of the table forCSj are−∞ =
γ0, ]γ0, γ1[, γ1, . . . , ]γn, γn+1[, γn+1 = +∞.9 Obviously the table
for CSj+1 will have one more row at the bottom labelled byqj+1 and
also will have additional columns.

We now describe the construction of this table. For this purpose, we
need to find the sign ofqj+1 at γ0, . . . , γn+1. From the sign of the
leading coefficient ofqj+1 (which is given by∆), it is easy to compute
the sign ofqj+1 at γ0 = −∞ andγn+1 = +∞. To get the sign of
qj+1 at γ ∈ {γ1, . . . , γn} we use our modified remainder operation;
let us chooseq in {q1, . . . , qj} such that the sign in position(q, γ) in
the table forCSj is “=” and let us perform the division ofqj+1 by q.
Then we have

E(q)m · qj+1 = h.q + MR(qj+1, q)

wherem = 1 + deg qj+1 − deg q.

9Since property(ii) is true by assumption for the table forCSj , we have that this
table is exactly the sign change table for the polynomialsq1(~a, X), . . . , qj(~a, X) for
any~a ∈ Rm satisfying the table, i.e. theγi’s can be seen as all the roots inR of the
nonzero polynomials amongq1(~a, X), . . . , qj(~a, X).
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By induction the signs ofE(q), q,MR(qj+1, q) atγ are known. Hence
the sign ofqj+1 atγ is given by

(sign ofE(q)m atγ) · (sign ofMR(qj+1, q) atγ)

As the table forCSj satisfiesproperty (ii), we have that the signs of
E(q), q,MR(qj+1, q) atγ ∈ {γ0, . . . , γn+1} are constant on

V :=
{
~a ∈ Rm : R |= ∆(~a)

}
Therefore the sign ofqj+1 atγ is constant onV. So for the remaining
of the proof we can choose for~Y a value~a ∈ V.

Now we expand the table forCSj into a table forCSj+1. Assume
that signs ofqj+1(~a, X) at γi andγi+1 are “=”. Then the derivative
of qj+1 would have a root in]γi, γi+1[ since between two roots of a
polynomial there is a root of its derivative (Rolle’s theorem). So, this
root would be also a root of the derivative. But the derivative ofqj+1

belongs toCSj , this contradicts the fact thatγ1, . . . , γn are all the
roots of the nonzero polynomials amongq1(~a, X), . . . , qj(~a, X). The
same argument shows that there is at most one root ofqj+1 in each
interval[γi, γi+1].

If the signs ofqj+1 in γi and γi+1 are (>,>) or (<,<) , there is
no root of qj+1 between these. Otherwiseqj+1 would have a root
of multiplicity at least two in]γiγi+1[. So, this root would be also a
root of the derivative. This gives a contradiction as above. Finally,
if signs of qj+1 at γi andγi+1 are opposite then10 qj+1 has a rootρ
in ]γi, γi+1[. In this case we split the column labelled by]γi, γi+1[ in
three columns labelled by]γi, ρ[, ρ and ]ρ, γi+1[, and we put “=” in
the position(qj+1, ρ).

10It is here that the intermediate value property for polynomials is used.
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Now it is easy to find signs ofqj+1 between all columns of the table
and thus to finish the whole procedure. If in the row labelled byqj+1

we have an empty place between “(>,>)”, or “ (>,=)” or “ (=, >)”,
we put “>” into it. In the other cases we put “<”. Let us remark
that each row labelled byt1, . . . , ts, q1, . . . , qj contains empty places
in added columns. It easy to fill them since the introduction of roots
for qj+1 does not change the signs of the other polynomials.

3 Muchnik’s algorithm and algebraically
closed fields

One of main advantages of Muchnik’s algorithm developed in the key
lemma is the facility to apply it to algebraically closed fields. Ob-
viously, there is some differences because in these fields there is no
notion of ordering and also, polynomials of degreed have exactlyd
roots counted with multiplicities. Therefore, we have to change the
definition of sign change table introduced before.

Let K be an algebraically closed field of any characteristic. LetS =
{p1, . . . , p`} a finite list of polynomialsK[~Y ,X] and letγ1, . . . , γm

in K. We consider tablesT onS with ` rows andm columns labelled
by

γ1, . . . , γm

such that the entries of the table are in{6=,=}. Such a table is calleda
sign change tablefor S. With this definition, a natural analogue of the
previous key lemma can be stated, we leave this easy task to the reader.
As in the case of real closed fields, the proof that algebraically closed
fields in the language{+,−, . . . , 1, 0} admit quantifier elimination is
based upon the modified key lemma.
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We sketch now the proof of the modified key lemma. More exactly,
we explain the difference with the previous proof. For this reason, we
keep the same notations.

The main difference appears when we add columns to sign change ta-
ble of BCS ∪̇ {q1, . . . , qj} which corresponds to new roots ofqj+1.
In the previous case, the number of added columns to the table is
determined by the signs ofqj+1 in γ1, . . . , γn. In the algebraically
closed case, we use the fact that polynomials of degreed have exactly
d roots counted with multiplicities. So, in order to determine the num-
ber of new columns to add, it is sufficient to determine which among
γ1, . . . , γn are roots ofqj+1 (with their multiplicity). Indeed, if we
denoteµi the multiplicity of γi as a root ofqj+1 with the convention
thatµi = 0 if qj+1(γi) 6= 0, then the number of new columns is given
by11

deg qj+1 −
k∑

i=1

µi .

By the modified remainder operation, it’s easy to find the roots of
qj+1 amongγ1, . . . , γk. And knowing the sign change table forCSj ,
we can read the multiplicity of a rootγi of qj+1 among{γ1, . . . , γn}
by looking at the sign of the derivatives ofqj+1 at γi. Thereby, we
obtain a naturalµi such that(

Dµi−1(qj+1)
)
(γi) = 0 and

(
Dµi(qj+1)

)
(γi) 6= 0.

Obviously,µi is the multiplicity ofγi. The proof of the modified key
lemma is now trivial.

11Let us remark that a new root ofqj+1 is of multiplicity 1 because otherwise this
root will already be a root of its derivativeD(qj+1) and so it will be one of theγi’s.
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