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ABSTRACT. We give a general reduction of lengths-of-proofs lower bounds for
constant depth Frege systems in DeMorgan language augmented by a con-
nective counting modulo a prime p (the so-called ACC[p] Frege systems) to
computational complexity lower bounds for search tasks involving search trees
branching upon values of maps on the vector space of low degree polynomials
over Fy.

In 1988 Ajtai [2] proved that the unsatisfiable set (-PHP,,) of propositional

formulas

\/ pij and  —p i V pi,; and  pig, Vo i,
J€[n]

foralli € [n+1] ={1,...,n+1}, all iy # iy € [n+1],5 € [n], and all ¢ € [n+1], 71 #
j2 € [n] respectively, expressing the failure of the pigeonhole principle (PHP), has
for no d > 1 a polynomial size refutation in a Frege proof system operating only with
DeMorgan formulas of depth at most d. Subsequently Krajicek [I7] established an
exponential lower bound for these so-called AC? Frege proof systems (for different
formulas) and Krajicek, Pudldk and Woods [22] and Pitassi, Beame and Impagliazzo
[25] improved independently (and announced jointly in [7]) Ajtai’s bound for PHP
to exponential.

All these papers employ some adaptation of the random restriction method that
has been so successfully applied earlier in circuit complexity (cf. [IL13}14}[3T]).
Razborov [2§] invented already in 1987 an elegant method, simplified and general-
ized by Smolensky [30], to prove lower bounds even for AC?[p] circuits, p a prime.
Thus immediately after the lower bounds for AC? Frege systems were proved, re-
searchers attempted to adapt the Razborov-Smolensky method to proof complexity
and to prove lower bounds also for AC°[p] Frege systems.

This turned out to be rather elusive and no lower bounds for the systems were
proved, although some related results were obtained. Ajtai [3H5], Beame et al. [6]
and Buss et al. [9] proved lower bounds for AC? Frege systems in DeMorgan lan-
guage augmented by the so-called modular counting principles as extra axioms (via
degree lower bounds for the Nullstellensatz proof system in [6[9]), Razborov [29]
proved n/2 degree lower bound for refutations of (-PHP,,) in polynomial calculus
PC of Clegg, Edmonds and Impagliazzo [I1], and Krajicek [20] used methods of
Ajtai [Al5] to prove Q(loglogn) degree lower bound for PC proofs of the counting
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principles. Krajicek [19] proved an exponential lower bound for a subsystem of an
ACP[p] Frege system that extends both constant depth Frege systems and polyno-
mial calculus. Maciel and Pitassi [23] demonstrated a quasi-polynomial simulation
of AC°[p] proof systems by a proof system operating with depth 3 threshold for-
mula. Impagliazzo and Segerlind [16] proved that ACY Frege systems with counting
axioms modulo a prime p do not polynomially simulate polynomial calculus over F,.
Recently Buss, Kolodziejezyk and Zdanowski [10] proved that an AC°[p] Frege sys-
tem of any fixed depth can be quasi-polynomially simulated by the depth 3 AC°[p]
system. Also, Buss et al. [9] showed that the AC°[p] Frege systems are polynomially
equivalent to the Nullstellensatz proof system of Beame et al. [6] augmented by the
so-called extension axioms formalizing in a sense the Razborov-Smolensky method.

In this paper we reduce the task of proving a lengths-of-proofs lower bound
for AC®[p] Frege systems to the task of establishing a computational hardness
of a specific computational task. The task is a search task and it is solved by
trees branching upon values of maps on the vector space of low degree polynomials
over F),. The hardness statements to which lower bounds are reduced say that
every tree of small depth and using small degree polynomials succeeds only with
an exponentially small probability.

Maciel and Pitassi [24] formulated such a reduction of proof complexity to com-
putational complexity (and the implied conditional lower bound). However, in their
construction they needed to redefine the proof systems (allowing arbitrary formu-
las with M OD,, ; connectives and restricting only cut-formulas to constant depth);
the hard examples whose short proofs yield a computational information are not
ACP[p] formulas. In particular, their reduction does not seem to yield anything for
the originally defined AC?[p] Frege systems (see Section [I]).

The paper is organized as follows. In Section [I] we recall the definition of the
proof systems. In Sections 2HE] we reduce the lower bounds to the task to show
the existence of winning strategies for a certain game. This is reduced further in
Section [@] to the task to show that search trees of small depth that branch upon
values of maps on the vector space of low degree polynomials over F,, cannot solve
a certain specific computational task.

More background on proof complexity can be found in [I8] or [26]; the problem
(and a relevant background) to prove the lower bound for the systems is discussed
in detail also in [21] Chap. 22].

1. AC°[p] FREGE PROOF SYSTEMS

We will work with a sequent calculus style proof system in a language with con-
nectives =, unbounded arity \/ and unbounded arity connectives MOD, ; for p a
prime and i = 0, ..., p—1. The intended meaning of the formula MOD,, ;(v1,. .., yx)
is that ). y; = ¢ (mod p). The proof system has the usual structural rules (weak-
ening, contraction and exchange), the cut rule, the left and the right — introduc-
tion rules, and two introduction rules for \/ modified for the unbounded arity; the
V :left rule

o1, ' > A o, ' A ... ¢, I'>A
Vigtwi,P—)A
and the \/ : right rule
' = A, o,
F—)A,\/igtgoi
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for any j <t. There are no rules concerning the M OD,; connectives but there are
new MOD,-axioms (we follow [I8] Sec. 12.6]):

e MOD, ((0),

° —\MODp7i(®) s for i = 1, R 1,

[ MOD;,LZ‘(F, ¢) = [(MODp7Z(F) A\ _‘(,25) V (MODp,i—l(F) A ¢)] for i = 0, ey
p—1, where i — 1 means i — 1 modulo p, and where I" stands for a sequence
(possibly empty) of formulas.

The depth of the formula is the maximal number of alternations of the connectives;
in particular, formulas from (-=PHP,,) have depth 1 and 2 respectively. We have
not included among the connectives the conjunction A; this is in order to decrease
the number of cases one needs to consider in the constructions later on. Note that
the need to express A using - and \/ may increase the depth of AC® formulas
comparing to how it is usually counted. But as we are aiming at lower bounds for
all depths, this is irrelevant.

We shall denote the proof system LK (MOD,) and its depth d subsystem (op-
erating only with formulas of depth at most d) LK4(MOD,). It is well-known
that this system is polynomially equivalent to constant depth Frege systems with
MOD,,; connectives (or to the Tait style system as in [I0]), and in the mutual
simulation, the depth increases only by a constant as the systems have the same
language (cf. [18]). The size of a formula or of a proof is the total number of symbols
in it.

2. FROM A PROOF TO A GAME WITH FORMULAS

In this section and in the next one we define certain games using the specific case
of the PHP as an example. This is in order not to burden the presentation right
at the beginning with a technical discussion of the form of formulas we allow. As
it is shown in Section [@] this is without a loss of generality and, in fact, motivates
the general formulation there.

Consider the following game G(d,n,t) played between two players, Prover and
Liar. At every round Prover asks a question which Liar must answer. Allowed
questions are:

(P1) What is the truth-value of ¢?
(P2) If Liar already gave a truth-value to ¢ = \/, ., ¢;, Prover can ask as follows:
(a) If Liar answered false, then Prover can ask an extra question about
the truth value of any one of ¢;, j < u.
(b) If Liar answered true, then Prover can request that Liar witnesses his
answer by giving a j < u and stating that ¢; is true.

All formulas asked by Prover are built from the variables of (-PHP,,), and must
have the depth at most d and the size at most 2¢. The Liar’s answers must obey
the following rules:

(LO) When asked about a formula he already gave a truth value to in an earlier
round, Liar must give the same answer.

(L1) He must give ¢ and —¢ opposite truth values.

(L2) If asked according to (P2a) about ¢; he must give value false. If asked
according to (P2b) he must also give value true to some ¢; with j < w.

(L3) If asked about any M OD,-axiom he must say true.

(L4) If asked about any formula from (—=PHP,,) he must say true.
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The game runs for ¢ rounds of questions and Liar wins if he can always answer
while obeying the rules. Otherwise Prover wins.

Lemma 2.1. For anyd > 2, n > 1 and s > 1. If there is a size s LKq(MOD),)
refutation of (wPHP,,) then Prover has a winning strategy for the game

G(d+0O(1),n,0(logs)) .

Proof. Tt is well-known that LK-proofs (or Frege proofs) can be put into a form of
balanced tree with only a polynomial increase in size and a constant increase in the
depth (cf. [I7[18]). In particular, the hypothesis of the lemma implies that there
is a size sOW) refutation m of (=PHP,,) in LK, 0(1)(MOD,) that is in a form of
tree whose depth is O(log s).

The Prover will attempt - by asking Liar suitable questions - to built a path of
sequents Z1, Zs, ... in w such that

e 7, is the end-sequent of 7, i.e. the empty sequent.

e 7,11 is one of the hypothesis of the inference yielding Z;.

e If Z; is I' — A then Prover asked all formulas in I'; A and Liar asserted
that all formulas in I" are true and all formulas in A are false.

Assume 77, ..., Z; has been constructed. Next, Prover’s move depends on the type
of inference yielding Z;:

e Structural rules: Prover asks no questions and just takes for Z;;; the hy-
pothesis of the inference.

e Cut rule: Prover asks about the truth value of the cut formula, say ¢,
and if Liar asserts it to be true, Prover takes for Z;;; the hypothesis of
the inference having ¢ in the antecedent, otherwise it takes the hypothesis
with ¢ in the succedent.

e A - introduction rule: if - was the formula introduced, Prover asks ¢
and takes for Z; 1 the unique hypothesis of the inference.

e The \/ : right introduction rule: if the principal formula was ¢ =/, ¢i
and the minor formula ¢; Prover already asked ¢ in an earlier round and
got answer false. He now asks ¢; and takes for Z; 1 the unique hypothesis
of the inference.

e The \/ : left introduction rule: if the principal formula was ¢ = \/,_, ¥,
Prover already asked ¢ in an earlier round and got answer true. She now
asks Liar to witness this answer by some ¢; and then takes for Z;1; the
hypothesis with the minor formula ¢; in the antecedent.

This process either causes Liar to lose or otherwise arrives at an initial sequent
which Liar’s answers claim to be false. But that contradicts rules (L1), (L3) or
(L4). O

Shallow tree-like refutations of a set of axioms can be used as search trees find-
ing an axiom false under a given assignment: the Liar answers the truth values
determined by the assignment (see e.g. the use of such trees in [I7L[I8]). It was an
important insight of Buss and Pudlék [27] that when Liars are allowed not to follow
an assignment but are only required to be logically consistent, then the minimal
length of Prover’s winning strategy characterizes the minimal depth of a tree-like
refutation (a form of a statement opposite to the lemma also holds as pointed out
in [27] in the context of unrestricted Frege systems).
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3. ALGEBRAIC FORMULATION OF (—=PHP,,) AND A GAME WITH POLYNOMIALS

Let Fplz;; | i € [n+ 1] A j € [n]] be the ring of polynomials over the finite field
F, with p elements with the indicated variables. Denote by S,, the ring factored
by the ideal generated by all polynomials J;fj — ;5. Elements of S, are multi-linear
polynomials. Let S, . be the Fj-vector space of elements of \S,, of degree at most
e. We shall denote monomials z,,... where a, ... are unordered tuples of variable
indices; the monomial is then the product of the corresponding variables.

Beame et al. [6] formulated (the negation of) PHP as the following (-PHP,)-
system of polynomial equations in S,,:

oz, i x; =0, for each iy # iy € [n+ 1] and j € [n].
o x5 x5, =0, for each i € [n+ 1] and j1 # j2 € [n].
o 1- EjG[n] x;; = 0, for each i € [n + 1].

The left-hand sides of these equations will be denoted Qs i,:j, @ij1 5o, and Qs
respectively.

The language of rings is a complete language for propositional logic and it is
easy to imagine a modification of the G-game to such a language if the answers
of Liar have to respect both the sum and the product. The game we are going to
define allows only simple questions and requires that sums of two polynomials and
products of two monomials are respected.

We shall define the following game H(e,n,r) played by two players Alice and
Bob. Alice’s role will be similar to that of Prover in the G-game and Bob’s to that
of Liar. In every round Alice may put to Bob a question of just one type:

(A) Alice asks Bob to give to a polynomial f from S, . a value from F,.
Bob’s answers must obey the following rules:

(B0) If asked about a polynomial whose value he gave in an earlier round Bob
must answer identically as before.

(B1) He must give to each element ¢ € F), the value ¢, and to each variable either
0orl.

(B2) If he gave values to f, g and f + g, the values given to f and g must sum
up to the value he gave to f + g.

(B3) If he gave values to monomials x,, x, and z, - xp, the product of the values
given to x, and xp must equal the value given to x, - xp.

(B4) He must give value 0 to all polynomials Q;, i,:j, @iijy,j, and Q;.

The game runs for r rounds and Bob wins if he can answer all questions while
obeying the rules. Otherwise Alice wins.

We consider the multiplicativity condition for monomials rather than for poly-
nomials as that more clearly isolates the role of linearity. As is shown in Section @
the two versions of the multiplicativity condition are essentially equivalent.

In principle Bob’s strategy can be adaptive (i.e. his moves depend on the devel-
opment of the game) or even may depend on Alice. Call a strategy of Bob simple
if it is a function B assigning to elements of S), . values in F;, and Bob, when asked
to evaluate f, answers B(f). We shall abuse the language occasionally and talk
about a simple Bob rather than a simple strategy for Bob.
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4. FIVE USEFUL PROTOCOLS FOR ALICE

In this section we describe five simple protocols in which Alice can force Bob to
answer various more complicated questions, similar to that of (P2).

Protocol M. Assume that Bob asserted that Zigu fi # 0. Alice wants to force
Bob to assert that f; # 0 for some j < u (or to lose).

Alice splits the sum into halves and asks Bob to evaluate )., /2 fiand D, /2 fi.

As he already gave a non-zero value to >, fi, by (B0) and (B2) - unless he quits
- Bob must give a non-zero value to at least one of the half-sums. Continuing in
a binary search fashion in logu rounds Alice forces Bob to assert that f; # 0 for
some j < u.

Protocol M;. Assume that Bob gave to some polynomials f, g and f - g values
B(f), B(g) and B(f - g) respectively, and that B(f)- B(g) # B(f - g). Alice wants
to force Bob into a contradiction with the rules.

Alice writes polynomials f and g as Fy-linear combinations of monomials: f =
Y aca CaTa and g = ), g dyxy, With cq,dy € F), and x4, 2, monomials. She splits
A into two halves A = AgUA;, and asks Bob for the values of
(Y cata) , (D Caa) g, (Y ata), and (Y cawa) g -
a€Agp a€Agp acAq a€Aq
Unless Bob violates the linearity rule (B2) his answers must satisfy
B( Z Caxa) : B(g) # B(( Z Caa) 'g)
acA; ac€A;

for either i = 0 or ¢ = 1. Continuing in the binary search fashion, Alice forces Bob
to assert

B(cawa) - B(g) # Blca®a - 9)
for some monomial z,. Using (B1) and (B2) she forces
B(cara) = coB(x,) and B(caag) = coB(x49)
and hence
B(xq) - Blg) # B(xa-9) .
The number of variables is n®") and so the number of monomials of degree at most
e is n9(¢). Hence all this process requires is at most O(elogn) rounds of Alice’s

questions.
Now she analogously forces Bob to assert

B(z,) - B(xy) # Bl - )
for some monomial x; occurring in g, violating thus (B3).

Protocol Ms. Assume that Bob asserted that Higk fi # 0 and let j < k be
arbitrary. Alice wants to force Bob to assert that f; # 0 (or to lose).

Alice asks Bob to state the value of f; and if Bob says f; # 0 she stops. Otherwise
the triple f;,g and f;g for g := HKk’#j fi satisfies the hypothesis of protocol M;
and Alice can win in O(elogn) rounds.

Protocol Ms. Assume that Bob asserted that Higk fi = 0. Alice wants to force
Bob to assert that f; = 0 for some j < k (or to lose).
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We shall describe the protocol by induction on k. Alice asks first for the value
of fi. If Bob states that fr = 0 she stops. If he states that fi # 0 she asks him
for the value of [],_, fi. If Bob says that [],_, fi = 0, Alice has - by the induction
hypothesis - a way how to solve the task.

If Bob says that [[,_, fi # 0 Alice forces him into contradiction using proto-
col M;. We may assume that all polynomials f; are non-constant and thus the
induction process takes at most k < e steps.

Note that again Alice needed at most 2e + O(elogn) = O(et) rounds in total.

Protocol M. Let g = fP~! and assume that Bob gave to g a value different from
both 0,1. Alice wants to force Bob into a contradiction.

Alice asks Bob for the value of f and assumes Bob states f =c€ F,. If c=0
Alice uses protocol My to force a contradiction. If ¢ # 0 Alice asks Bob for values
of f2,f3,..., fP~! and unless Bob returns values c?,c?, ..., cP~! she forces him into
a contradiction by protocol M;. But Bob cannot keep up these answers because if
he gave to g now the value c?~! = 1 he would violate rule (B0).

5. FRoM PROVER TO ALICE AND FROM BOB TO LIAR

In this section we employ the Razborov - Smolensky method to show that the
existence of many simple winning strategies for Bob yields a winning strategy for
Liaif]. The reason to single out simple strategies is that we shall apply the Razborov
- Smolensky approximation method in order to move from a G-game to an H-
game, by approximating formulas by low degree polynomials with respect to (a
set of) Bob’s strategies. The approximation process (and hence a strategy to be
constructed for Alice) depends on the set of Bob’s strategies we start with, and to
avoid circularity we restrict to sets containing only (but not necessarily all) simple
strategies.

Lemma 5.1. Letd > 2, n>1 and t > logn be arbitrary and take parameters e, r
e = (2 +20)p)? and r = O(et*) .

Let P be any strategy for Prover in game G(d,n,t). Let Qe ., be a non-empty set
of simple strategies for Bob in game H(e,n,r).

Then P can be translated into a strategy A for Alice in H(e,n,r) such that the
following holds:

o If

(5.1) Probpeq B wins over A in H(e,n,r)] > 1 — 270+

c,n,r[

then there exists a Liar’s strategy L winning over P in G(d,n,t).

Proof. Let P and Q. be given. Let F' be the smallest set of formulas closed
under subformulas and containing all possible P’s questions according to rule (P1)
in all plays of the game G(d,n,t) against all possible Liars. The number of such
(P1) questions is at most 2t and each has size at most 2¢ and so also at most
2¢ subformulas. Thus the depth of all formulas in F is at most d and their total
number is bounded by 2¢°+t.

I'We could have bypassed the G-game and the explicit use of the Razborov - Smolensky method
by employing the characterization of the size of AC?[p] Frege proofs in terms of degree of proofs
in the so-called Extended Nullstellensatz of [9]. We prefer here a self-contained presentation.
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We shall use the Razborov - Smolensky method to assign to all formulas ¢ € F
a polynomial ¢ € S, .. However, we shall approximate with respect to Bob’s
strategies from € ,, , rather than with respect to all assignments to variables as it
is usual. .

Fix parameter ¢ := t2 4+ 2t. Put &, = z., (mp) := 1 — ¢ and for ¢ =
MOD, i(¢1,...,¢k) define

¢ =1- (D ¢)-r".
J<i
For the remaining case ¢ = \/ie[u] @; assume that all polynomials ¢; were already

defined. Pick ¢ subsets Ji,...,J; C [u], independently and uniformly at random
(we shall fix them in a moment), and define polynomial

Peyr--ya) = 1 = J[O = Qv ™),

j<e i€ J;
and using p, put

(5-2) ¢ = pp(P1,-- s Pu) -

The following claim is easily verified by induction on the depth of ¢, using the
protocols from Section [l

Claim 1. Let ¢ € F and assume that Bob asserted that ¢ = ¢ € F, for some
¢ #0,1. Then Alice can force Bob into a contradiction in O(elogn) rounds.

Let b; € {0,1} be the truth-value of the statement B(p;) # 0. For B € Qc , »
we have that

(5.3) \/ b = po(br,...,bu)

with the probability at least 1 — 27¢ (taken over the choices of sets .J). Hence we
can select specific sets J, . .., J; such that ([5.3) holds for all but 27+, ,, .| simple
Bob’s strategies from €, . The polynomial ¢ in (.2) is assumed to have this
property.

Define in this way the polynomial ¢ for all (at most 2°°*!) formulas ¢ € F
by induction on the depth 1,2,...,d. Each is of degree at most ({(p — 1))¢ <
((t2 + 2t)p)? = e and it holds that:

Claim 2. There is a subset Err C Q. ,,, such that |[Err| < 27%Q., .| and such
that (5.3]) holds for all disjunctions ¢ € F' and all B € Q. ,, » \ Err.

Now we define, using the given strategy P for Prover, a specific strategy A for
Alice in H(e,n,r). We transcript P into A question by question; each question of
P may be replaced by a series of questions of Alice.

If P asks according to (P1) what is the value of ¢, Alice simply asks for the
value of ¢. Let ¢ = Vie[u] ©; and assume that P asks according to (P2); there are
two cases to consider:

(a) ¢ got value false and P asks for the value of one disjunct ¢;,
(b) ¢ got value true and P asks for a witness ;.

Assume for the case (a) that Bob asserted in an earlier round that ¢ = 0. Alice
asks Bob for the value of ¢;. If he gives B(¢;) = 0 the simulation of P moves to the
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next round. If he replies that B(¢;) = 1, Alice uses first protocol M, repeatedly
to force Bob to assert
L= (@)™ #0
icd,
for all v < ¢. Then for each v she uses protocol My to force Bob to say that

@)t =0

i€Jy

and further protocol M3 to assert that

(5.4) Z @i = 0.
i€Jy
This needs O(felogn) = O(t*elogn) = O(et3) rounds.
As B(g;) = 1, if Bob uses a strategy B € Q. \ Err, the definition of Err
guarantees that one of the equations in (5.4) is false when @;’s are evaluated by B:

B(Y &) # > B(%) -
ic€dy i€y
This itself is not a violation of rule (B2) but Alice can use this situation and to
force Bob to lose. We shall describe her strategy as probabilistic; a deterministic
one is obtained by an averaging argument.
Alice splits J, = KoUK, into halves and asks Bob for the values of ZiEKo Di
and >,y @i Unless he violates (B2) his answers must sum up to B(>_,c; $i)-

Hence for k=0or k=1
B(Y &) # Y, B(gi)-

€Ky €Ky

Alice guesses for which &k this happens and then proceeds analogously with
Dic K, Pi» splitting it into halves, asking Bob for the values, etc. If she always
guesses right, then in ¢ steps (as the size of the sums is bounded by 2!) she will
reduce the sums to one term and will win. Alice has the probability at least 27t to
make the right choices. She does not know a priori which of the £ sums ), 7, Pi
to use so she must try all. This takes O(ft) = O(t®) rounds.

There are at most ¢ simulations of a (P2a) question in the G-game but Alice
needs to employ the random strategy above only once when the case B(¢;) =1
occurs, and then her probability of success is at least 27¢. By averaging there are
fixed choices that Alice can make, yielding this success probability outside of Err.
In particular, for a random B € €. ,, ,» \ Err, if Alice uses these choices then either
B must give to ¢; value 0 or Alice wins with the probability at least 27*. We shall
describe this situation below by the phrase that the (P2a) simulation succeeded.

Assume for the case (b) that Bob answered earlier that ¢ = 1 and hence also

that
[Ha = O e =o

j<t i€J;
Alice uses protocols M3 and M, to force Bob to state that Zier p; = 1 for some
v < £. This uses O(elogn) = O(et) rounds. Then she uses protocol My to force
Bob to say that ¢; # 0 for some j € J, and by Claim [ the value has to be 1
(O(elogn) = O(et) rounds are used in Claim [I). The number of formulas ; is
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bounded by the size of ¢, i.e. by 2¢, and so this uses at most ¢ rounds in protocol
My, i.e. still O(et) in total.

This describes the strategy A.

By Claim 2] with the probability at least 1 — 27" a random B € ., , is outside
Err, and for these Alice’s simulations of (P2a) questions succeed with the prob-
ability at least 27%. Thus the inequality (5.1) from the hypothesis of the lemma
implies that there is at least one B € Q. ,, .\ Err winning over the particular Alice’s
strategy A and for which A’s simulations of (P2a) questions succeed.

Use B to define a strategy L for Liar in the original game G(d,n,t) simply by
giving to ¢ the truth value B(¢) when asked a (P1) type question, and giving a
witness ¢; constructed in the case (b) above when asked a (P2b) type question.

From the construction of A (and rules for Bob) it follows that L satisfies the
rules for Liar. In particular, by (B4) all polynomials from the (-PHP,,)-system get
0 by B and so all axioms of (-PHP,,) get by L value true.

Note that one question of P is transcribed into at most O(et®) Alice’s questions.
Hence in every play of the H-game transcribing a play of the G-game there are in
total at most r = O(et?) rounds. O

6. A GENERAL REDUCTION TO A SEARCH PROBLEM

The reduction of the lengths-of-proofs problem to a question about the H-games
in Sections 2HE is not specific to (-PHP,,) and works in a fairly general situation
that we shall describe now. Then we reduce the proof complexity problem fur-
ther to a question about the computational complexity of a certain task involving
computations with search trees.

The only specific thing in the (-=PHP,,) case is the transcription of the axioms
of (-PHP,,) into the (-PHP,,) polynomial system in Section[8 This is not a mere
mechanical translation from DeMorgan language into the language of rings (in that
the axioms \/ jemn) Pij would translate into polynomials of degree about n and not
into degree 1 polynomials @;). In order to avoid inevitable technicalities when
trying to define suitable translations from a general set of axioms to a polynomial
system, we simply take as our starting point an unsolvable system of polynomial
equations of a constant degree. The truth value of an equation f(z1,...,2,,) =0
for Boolean variables x;, f a degree O(1) polynomial over F,,, can be defined by a
depth 2, size m®(1) AC?[p] formula. Namely, writing f as an F,-linear combination

> acA CaZq of monomials x4, with ¢, € {1,...,p — 1}, consider the formula
(61) Y = MOD[),O(%”la"'vd”ﬁ) )
where k = Zae 4 Co and the 1;’s are conjunctions of variables corresponding to

monomials from f, each monomial x, being represented c,-times. Clearlyﬂ p rep-
resents the truth value of f = 0 on Boolean variables. The polynomial system can
thus be also thought of as an unsatisfiable set of AC?[p] formulas and we can speak
about its LK (MOD),) refutations.

2Instead of assuming degree O(1) it would suffice to assume that f is an Fp-linear combination
of polynomially many monomials.
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We shall now consider the following general setup. For n = 1,2,... let §, be
a sequence of sets of polynomials over F, in variables Var(§,). We shall assume
that:

(1) polynomials in sets §,, have O(1) degree,
(2) the size of both §, and Var(g,) is n®W),
(3) the polynomial system

f =20, for feg,

contains equations 2% — z = 0 for all z € Var(§,) and is unsolvable in F,,.

Let S;f’e be the F,, - vector space of multi-linear polynomials in variables of §,, and
of degree at most e.

We want to replace games and strategies considered in previous sections by a
more direct computational model, namely that of search trees. Define an SY, -
search tree T to be a p-ary tree whose inner nodes (non-leaves) are labelled by
polynomials from S,fe, the p edges leaving a node labelled by g are labelled by
g=0,9=1,...,9 =p—1, and leaves are labelled by elements of a set X.

Any function B : S§ . — F,, determines a path Pp(B) in T consisting of edges
labelled by ¢ = B(g) and thus it also determines an element of X: the label
of the unique leaf on Pr(B). Hence T defines a function assigning to any map
B:S§ ., — Fy an element of X to be denoted T'(B).

Let Error§ . be the set of pairs and triples of the form (B1,c¢) for ¢ € F,
or (Bl,z) for x € Var(§n), (B2, f,g9), (B3,xz4,xp) or (B4, f) for f € §,, with
f,9,%q,xp of degree at most e. These are intended to indicate what instance of
which rule did Bob violate. We say that (B1,¢) is an error for B iff B(c) # c,
(Bl,a% is an error for B iff B(x) # 0,1, and similarly for the other pairs and
tripled.

In the following statement we talk about refutations of equations f =0, f € §,.
As pointed out earlier, we can view them also as depth 2, polynomial size formulas
with MOD), , connectives and hence it makes a prefect sense to talk about their
LK4(MOD,)-refutations.

The reductions of Sections PH5 used the example of (-PHP,,) (see the beginning
of Section 2)) but nothing specific to it was used. Hence we can employ the reduc-
tions to derive the following general statement. In it we replace degree e by (bigger)
r in order to avoid the need to define here the relation between them implicit in
Lemma 511

Theorem 6.1. Let r = r(n) > (logn)*M) be a function and let §, be sets of
polynomials obeying the restrictions (1), (2), and (3) listed above.

Then for every d > 2 there are g > 0 and ng > 1 such that for an arbitrary
non-empty set Qz . of maps from Sg’r to F,, the following implication (I) holds
foralln>ng and all 0 < € < €4:

(I) If for every S3,. - search tree T of depth r and with leaves labelled by

n,r

elements of ErrorS . it holds that

n,r

(6.2) Probgeqs, [ T(B) is not an error for B] > 1— 27"

3We ignore errors for (B0) as that rule cannot be violated by a simple Bob strategy and hence
search trees do not need to ask anything twice on any path.
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then LK4(MOD,) does not refute the set of formulas f =0, f € §n, by a
proof of size less than 297

Proof. Assume that LK (MOD,) does refute the set of formulas f =0, f € §p,
by a proof of size s = s(n). By Lemma [Z] Prover has a winning strategy P for
game G(d + ¢,n,t), where t = t(n) = O(log s) and ¢ is an absolute constant.
Put ¢; := m and let 0 < € < €q. If it were that t + 1 < r€ then the
parameters €', 1’ of the game H(e',n,r’) constructed in Lemma B.1] satisfy e’ <
r’ < r and, in particular, the game is an H(r,n,r) game.

The strategy A defined in Lemma [5.] for the game defines an ng - search tree
T of depth r and with leaves labelled by elements of Errory . in a natural way: a
path in T corresponds to possible answers of a simple Bob strategy and the path
stops as soon as a violation of one of the rules (B1)-(B4) occurs (rule (B0) cannot
be broken by a simple Bob strategy). The label of the resulting leaf is the instance
of the rule that was broken (if a violation did not occur we use any element of
Errors ).

Assume that g, , is a set of simple Bob’s strategies for which the inequality
(62) holds. Then also the inequality (5.1]) from Lemma 51 holds and thus by that
lemma there is a strategy L for Liar that wins over P in the original G-game. That

is a contradiction and thus s > 290, O

To conclude the paper let us discuss informally the construction underlying
Lemma [B.I] and Theorem In particular, we see these formal statements as
templates for a possible variety of analogous reductions, and it is not clear which
one - if any - will be eventually useful.

The strategy A is constructed in Lemma [l by a randomized process from
strategy P and from set €2 ,, . Let us call the class of all strategies A that can occur
in this way the class of (P, Q. ,, »)-generated strategies. One such class contains only
a few of all possible Alice’s strategies. Moreover, we can pick ., , depending on
P. Hence one can weaken the hypothesis in these statements and, for example,
Theorem could be reformulated as follows:

e Let » = r(n) > (logn)“™ be a function and let §, be sets of polynomials
obeying the restrictions 1., 2. and 3. listed above.

Then for every d > 2 there are €4 > 0 and ng > 1 such that the following
holds:

If for every Prover’s strategy P for game G/(d, n,r*(!)) there exists a non-
empty set Qg (P) of maps from SS  to F,, then the following implication
(I’) holds for all n > ng and all 0 < € < ¢eg4:

(') If for every S§ . - search tree T of depth r and with leaves labelled by
elements of Errory . originating from a (P, Qg »(P))-generated A it
holds that

Probpeq;, . (p)l T(B) is not an error for B | > 1 - 277",
then LK4(MOD,) does not refute the set of formulas f =0, f € §p,
by a proof of size less than 29",

This formulation stains the combinatorially clean original formulation by a reference
to P but (I’) may be a weaker hypothesis to arrange.

Another issue is the discouragingly high probability required in (B.I) and ([6.2).
This is due solely to Alice’s simulation of the (P2a) move of P. At that point she
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found £ < O(t?) < e < r sets K, |K| < 2!, of degree e polynomials such that for
one of them B fails linearity:

(6.3) B(> g¢) # >_Blag) ,
icK i€K

and her strategy worked up to this point for all B ¢ Err (as long as P was a winning
strategy for the Prover). Getting from this situation to a violation of rule (B2) costs
her the drop of the success probability by the multiplicative factor 27¢. Hence we
could redefine the rules for the H-game and, in particular, the error sets Error;f’e
for the search problems to be solved by the trees, and include that situation (i.e. A
producing ¢ sets K such that one of them satisfies (6:3))) among the stopping Bob’s
errors. Let us call xErrory , the set of errors with this new type of an error added.
Then we could reformulate Theorem differently as follows:

e Let » = r(n) > (logn)“™ be a function and let §, be sets of polynomials
obeying the restrictions (1), (2), and (3) listed above.

Then for every d > 2 there are ¢; > 0 and ng > 1 such that for an arbi-
trary non-empty set Qg,, » of maps from S¥ ,. to F, the following implication
(I”) holds for all n > ng and all 0 < € < ¢4:

(I") If for every ST . - search tree T' of depth r and with leaves labelled by
elements of *Errorgr it holds that

Probpeca;, . [ T(B) is not an error for B ] > 27

then LK (MOD,) does not refute the set of formulas f =0, f € §p,
by a proof of size less than 220",

Let us stress that the culprit property is the linearity by observing that simple
Bob’s strategies can be without a loss of generality assumed to satisfy all rules
except possibly (B2). First, having B we can define B’ by correcting all values of B
that violate rules (B1) or (B4). If B’ is asked by Alice for one of these new values,
the original B would lose. Hence B’ is as good as B against any A.

Then define B” by giving to every monomial z, = [[, z; the value [], B'(x;).
Enhance any A to vigilant A* that whenever she asks for the value of a monomial,
she asks also for the values of all its variables (this enlarges the number of round
e-times at most). Clearly, B” fares as well as B’ against a vigilant A*.

Finally, let us remark that it would be interesting and possibly quite useful to
modify the construction so that adaptive Bob’s strategies are allowed.
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